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Spectral singularities and whispering gallery modes of a cylindrical gain medium
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Department of Mathematics, Koç University, Sarıyer 34450, Istanbul, Turkey

(Received 11 February 2013; published 20 June 2013)

Complex scattering potentials can admit scattering states that behave exactly like a zero-width resonance.
Their energy is what mathematicians call a spectral singularity. This phenomenon admits optical realizations in
the form of lasing at the threshold gain, and its time-reversal is responsible for antilasing. We study spectral
singularities and whispering gallery modes (WGMs) of a cylindrical gain medium. In particular, we introduce a
class of WGMs that support a spectral singularity and, as a result, have a divergent quality factor. These singular
gallery modes (SGMs) are excited only if the system has a positive gain coefficient, but typically the required gain
is extremely small. More importantly, given any amount of gain, there are SGMs requiring smaller gain than this
amount. This means that, in principle, the system lacks a lasing threshold. Furthermore, the abundance of these
modes allows for configurations where a particular value of the gain coefficient yields an effective excitation of
two distant SGMs. This induces lasing at two different wavelengths.
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I. INTRODUCTION

Complex scattering potentials have numerous applications
in modeling various physical phenomenon [1]. Among their
remarkable properties is that unlike a real scattering potential,
they can support a peculiar type of scattering states that share
the characteristic properties of zero-width resonances [2]. The
underlying mathematical structure responsible for these states
is the concept of a spectral singularity [3]. The physical
meaning of spectral singularities has been given recently in
Ref. [2]. This has motivated a detailed study of the physical
aspects of spectral singularities [4–14]. Among the remarkable
results obtained in this direction is the discovery that in optics
a spectral singularity corresponds to lasing at the threshold
gain [10] while its time reversal provides the mathematical
basis of coherent perfect absorption of light that is also called
antilasing [8,15].

In Refs. [11,13], we explore the optical spectral singularities
(OSSs) in the radial (transverse) modes of an optically active
media with a spherical geometry. The condition that such
an OSS be present puts a lower bound on the size of the
active medium. For a homogeneous spherical gain medium
made out of a typical dye laser material [Eq. (40) below], the
lower bound on the radius of the sample turns out to be about
3 mm [11]. Given the difficulties associated with maintaining
a uniform gain coefficient throughout such a large sample, we
have considered in Ref. [13] the possibility of reducing the size
of the gain medium by using a high-refractive-index coating.
This turns out to decrease the lower bound on the radius of the
sample only by a factor of 3. The impossibility of achieving
this kind of OSS in micrometer-size gain media is connected
with the fact that they appear in the radial modes. For these
modes the Poynting vector of the wave propagating inside the
gain medium is along the radial direction and the length of the
optical path along which the wave is amplified is essentially
determined by the radius of the sample. This observation
suggests that it should be possible to create OSSs using much
smaller samples, if we consider surface waves propagating
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along the boundary of a spherical sample. The best-known
examples of these are the whispering gallery modes (WGMs)
[16–20]. Motivated by this idea, we give in this paper a
detailed analysis of the problem of spectral singularities for
the surface modes of a homogeneous cylindrical gain medium.
In particular, we explore the possibility of generating spectral
singularities in the WGMs of this model. We study a sample
with a cylindrical geometry, mainly because the WGMs for a
cylindrical medium [21,22] are easier to deal with than those
of a spherical medium.

Consider an optically active material confined in an infinite
cylinder of radius a (see Fig. 1). Let n denote the complex
refractive index of this material with real and imaginary parts,
η and κ , so that n = η + iκ , and suppose that n has a constant
value inside the confining cylinder and in time. Then the
time-harmonic electromagnetic waves, �E (�r,t) = e−iωt �E(�r)
and �B(�r,t) = e−iωt �B(�r), that interact with this system satisfy
the following Maxwell equations:

�∇ · �D = 0, �∇ · �B = 0, (1)

�∇ × �E − iω �B = 0, �∇ × �H + iω �D = 0, (2)

where ω is the angular frequency of the wave,

�D := ε0z(ρ) �E, �H := μ−1
0

�B, (3)

ε0 and μ0 are respectively the permeability and permittivity of
the vacuum, (ρ,ϕ,z) are cylindrical coordinates, and

z(ρ) :=
{
n2 for ρ < a,

1 for ρ � a.
(4)

By inserting (3) in Eq. (2) and eliminating �B in these equations,
we find the Helmholtz equation,

[∇2 + k2z(ρ)] �E(�r) = 0, (5)

where k := ω/c is the wave number and c := 1/
√

μ0ε0 is the
speed of light in vacuum.

Equation (5) admits a variety of solutions [23]. Our
objective is to explore the solutions that support an OSS. To
this end, we first examine an azimuthal field configuration
which is the cylindrical analog of the radial modes of the

063834-11050-2947/2013/87(6)/063834(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.063834


ALI MOSTAFAZADEH AND MUSTAFA SARISAMAN PHYSICAL REVIEW A 87, 063834 (2013)

FIG. 1. (Color online) An effectively infinite cylindrical gain
medium of radius a.

spherical models studied in Refs. [11,13]. This is the content
of Sec. II. We then construct in Sec. III a set of solutions of the
Maxwell equations where the electric field is aligned along the
z direction. These include the WGMs as well as a large class of
surface modes that support OSSs. In Secs. IV and V, we give a
detailed discussion of three different notions of WGMs. These
are the conventional WGMs that are related to the zeros of the
Bessel functions Jν , the WGMs whose energy density forms
a peak on the surface of the cylinder, and a class of WGMs
that yield spectral singularities. In Sec. VI, we give a detailed
analysis of these WGMs that takes into account the dispersion
effects. Finally, in Sec. VII, we summarize our findings and
present our concluding remarks.

II. SPECTRAL SINGULARITIES IN THE RADIAL MODES

Consider a z-independent solution of (5) that has the form

�E = Eϕϕ̂, (6)

where Eϕ is a scalar function of ρ and ϕ, and a hat on any of
the cylindrical coordinates denotes the unit vector along the
coordinate in question. Substituting this ansatz in Eq. (5), we
find that Eϕ is independent of ϕ and that it satisfies Bessel’s
equation with the following solution:

Eϕ =
{

b1J1(nkρ) for ρ < a,

a1H
(1)
1 (kρ) + a2H

(2)
1 (kρ) for ρ > a,

(7)

where J1 and H
(1,2)
1 are, respectively, the Bessel and Hankel

functions of order 1, and a1,2 and b1 are complex coefficients.
Inserting Eq. (6) in the first equation in (2) and using (7) to
compute �B, we also find that �B = Bzẑ, where

Bz =
{−ic−1nb1J̃1(nkρ) for ρ < a,

−ic−1
[
a1H̃

(1)
1 (kρ) + a2H̃

(2)
1 (kρ)

]
for ρ > a,

(8)

and for every differentiable function f of a real or complex
variable Z, f̃ (Z) := [ d

dZ
+ 1

Z
]f (Z).

Having obtained explicit expressions for the electric and
magnetic fields inside and outside the gain medium, we use
the appropriate boundary conditions for the problem to match
them at the boundary of the cylinder [24]. These turn out to
correspond to the requirement that Eϕ and Bz be continuous
functions at ρ = a. In view of (7) and (8), this condition takes
the form

b1J1(nka) = a1H
(1)
1 (ka) + a2H

(2)
1 (ka), (9)

nb1J̃1(nka) = a1H̃
(1)
1 (ka) + a2H̃

(2)
1 (ka). (10)

We can use these relations to read off the following expression
for the reflection amplitude of the system [11]:

R := a1

a2
= J1(nka)∂ρH

(2)
1 (kρ) − H

(2)
1 (ka)∂ρJ1(nkρ)

H
(1)
1 (ka)∂ρJ1(nkρ) − J1(nka)∂ρH

(1)
1 (kρ)

∣∣∣∣∣
ρ=a

.

(11)

The spectral singularities are the real and positive values of k2

for which R diverges. They are, therefore, given by the real
values of k, satisfying

H
(1)
1 (ka) ∂ρJ1(knρ)|ρ=a = J1(kna) ∂ρH

(1)
1 (kρ)|ρ=a. (12)

This is the well-known resonance condition (also called eigen-
value [21] or characteristic [19] equation) that is now required
to be satisfied by real values of k. In particular, if we define the
quality factor Q for the resonant solutions as the ratio of the real
part of k to its imaginary part [19], we find that the solutions
corresponding to a spectral singularity have a divergent quality
factor. This is an alternative way of expressing the physical
interpretation of a spectral singularity [2].

Equation (12) is similar to the one giving the spectral
singularities in the radial modes of the spherical gain medium
of Ref. [11], where the spherical Bessel and Hankel functions
appear and the order of these functions is

√
5/2 rather than 1.

Carrying out the same analysis as the one outlined in Ref. [11]
and using the same dye laser material [with specifications given
in Eq. (40) below], we find that OSSs can appear provided that
the radius of the cylinder is larger than about 3.28 mm. This
is almost identical with the lower bound we found in Ref. [11]
for the radius of the spherical gain medium.

As we pointed out in Sec. I, the appearance of such a large
lower bound on the size of the gain medium is related to
the fact that for the radial modes the length of the optical
path along which the wave gets amplified is proportional to
the radius of the cylinder. In order to obtain a substantially
longer optical path, either we should coat the cylinder with
a high-reflectance coating to produce a cylindrical resonator
in which the effective optical path is enhanced as a result of
multiple internal reflections, or consider field configurations
in which the wave circles around the symmetry axes of
the cylinder several times before exiting the gain region.
The extreme scenario in which this happens is a WGM where
the energy density of the wave is concentrated on or near the
surface of the cylinder and the Poynting vector is parallel to
this surface. This qualitative reasoning requires a quantitative
verification that we offer in the following sections.

III. SPECTRAL SINGULARITIES IN THE
AZIMUTHAL MODES

Consider a transverse electric wave given by �E =
Ez(ρ,ϕ) ẑ. Inserting this ansatz in Eq. (5) and seeking for
separable solutions corresponding to Ez(ρ,ϕ) = Rz(ρ)�z(ϕ)
give

�E =
{

b1Jν(nkρ)eiνϕ ẑ for ρ < a,[
a1H

(1)
ν (kρ) + a2H

(2)
ν (kρ)

]
eiνϕ ẑ for ρ > a,

(13)

where ν is an integer, and a1,a2, and b1 are complex
coefficients possibly depending on ν. Substituting (13) in the
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first equation in (2) and solving for �B, we find

�B =
{

B(in)
ρ ρ̂ + B(in)

ϕ ϕ̂ for ρ < a,

B(out)
ρ ρ̂ + B(out)

ϕ ϕ̂ for ρ > a,
(14)

where

B(in)
ρ := b1 ν(ωρ)−1Jν(nkρ) eiνϕ,

B(in)
ϕ := ib1ω

−1∂ρJν(nkρ) eiνϕ,

B(out)
ρ := ν(ωρ)−1

[
a1H

(1)
ν (kρ) + a2H

(2)
ν (kρ)

]
eiνϕ,

B(out)
ϕ := iω−1

[
a1∂ρH

(1)
ν (kρ) + a2∂ρH

(2)
ν (kρ)

]
eiνϕ.

The coefficients a1,a2, and b1 are clearly not independent.
In order to find the relation among them, we match the values of
�E and �B at the boundary by imposing the appropriate boundary
conditions at ρ = a [24]. Again, these demand that �E and �B
be continuous functions of ρ at ρ = a. More specifically, we
have

b1Jν(nka) = a1H
(1)
ν (ka) + a2H

(2)
ν (ka), (15)

b1∂ρJν(nkρ)|ρ=a = a1∂ρH
(1)
ν (kρ)|ρ=a + a2∂ρH

(2)
ν (kρ)|ρ=a.

(16)

By eliminating b1 in Eqs. (15) and (16), we obtain the following
expression for the reflection amplitude:

R := a1

a2
= Jν(nka)∂ρH

(2)
ν (kρ) − H (2)

ν (ka)∂ρJν(nkρ)

H
(1)
ν (ka)∂ρJν(nkρ) − Jν(nka)∂ρH

(1)
ν (kρ)

∣∣∣∣
ρ=a

.

(17)

In particular, we have a spectral singularity provided that we
can satisfy

H (1)
ν (ka)∂ρJν(nkρ)|ρ=a = Jν(nka)∂ρH

(1)
ν (kρ)|ρ=a (18)

using a real value of k. Note that (17) and (18), respectively,
reduce to (11) and (12) for ν = 1. Equation (18) is also
identical in structure with the equation for the spectral
singularities in the radial modes of the spherical model of
Ref. [11]. The only difference is that in Ref. [11] we have
spherical Bessel and Hankel functions of order

√
5/2, whereas

here we have the usual Bessel and Hankel functions of an
arbitrary integer order ν. As we will see below, it is this
freedom in the choice of ν and the fact that it can take arbitrarily
large values that allow for realizing spectral singularities in
samples with a much smaller radius than those we consider in
Refs. [11,13].

IV. WHISPERING GALLERY MODES

Whispering gallery models correspond to field configu-
rations that propagate in a close vicinity of the boundary
of a cylindrical or spherical medium. For our cylindrical
model, (13) and (14) give an infinite family of exact solutions
of the wave equation. In order to see if this family includes
whispering gallery models, we examine the corresponding
(time-averaged) energy density and Poynting vector. These
are respectively given by

〈u〉 = 1

4
Re( �E · �D∗ + �B · �H ∗), 〈�S〉 = 1

2μ0
Re( �E × �B∗).

θ

ρ̂
ϕ̂

S

FIG. 2. (Color online) The Poynting vector 〈�S〉 and the angle θ on
the boundary of the cylindrical gain medium. ρ̂ and ϕ̂ are respectively
the unit vectors along the radial and azimuthal directions. The θ - and
ρ-component of 〈�S〉 have opposite sign.

Inserting (13) and (14) in these equations and carrying out the
necessary algebra, we find that for ρ � a,

〈u〉 = |b1Jν(nkρ)|2
4μ0c2k2

[
k2 Re(n2) + ν2

ρ2
+

∣∣∣∣∂ρJν(nkρ)

Jν(nkρ)

∣∣∣∣
2]

, (19)

〈�S〉 = |b1Jν(nkρ)|2
2μ0ck

{
ν

ρ
ϕ̂ + Im

[
∂ρJν(nkρ)

Jν(nkρ)

]
ρ̂

}
. (20)

Let θ be the angle between ϕ̂ and 〈�S〉 that is shown in Fig. 2.
According to (20) it is given by

θ = − tan−1

{
ρ

ν
Im

[
∂ρJν(nkρ)

Jν(nkρ)

]}
. (21)

If the cylinder has a real refractive index, θ = 0 and our
solutions correspond to waves circling around the symmetry
axis of the cylinder without any absorption or gain. This is to
be expected, because in this case the system does not include
an active component. If the cylinder consists of a gain or loss
material, then θ �= 0 and 〈�S〉 has a radial component. This
is an indication that in this case the system emits or absorbs
electromagnetic energy.

The solutions we have constructed above correspond to
a WGM provided that 〈u〉 attains its maximum and |θ | 	 1
on or near the surface of the cylinder. For realistic optically
active material the imaginary part κ of the refractive index is
several orders of magnitude smaller than its real part η. This
suggests that we can obtain a rather accurate description of
the behavior of 〈u〉 and θ by expanding the terms appearing in
Eqs. (19) and (21) in powers of κ and neglecting the second-
and higher-order terms. This gives

〈u〉 = η2 |b1|2 F+(ζ )

4μ0c2
+ O(κ2), (22)

θ = ζ 2F−(ζ ) κ

η νJν(ζ )2
+ O(κ2), (23)

where ζ := ηkρ, F±(ζ ) := J
′
ν(ζ )2 + (1 ± ν2

ζ 2 )Jν(ζ )2, a prime
denotes the derivative of the corresponding function, and
O(κ�) stands for terms of order � and higher in κ .

It turns out that F+ has an infinity of positive maximum
points. The smallest of these that yields the highest peak
(global maximum) of F+ is given by

ζ ≈ ν[1 + 0.81 ν−(2/3) + O(ν−(4/3))]. (24)
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FIG. 3. (Color online) Graphs of F+ (thick blue curve), Jν (dashed
purple curve), and J ′

ν (thin red curve) as functions of ζ for ν = 1000.
The peaks of F+ (and therefore 〈u〉) are attained at the positive zeros
of J ′

ν . The highest pick occurs at ζ = j ′
ν,1 ≈ 1008.1, which is the

smallest positive zero of J ′
ν . The vertical gray lines give the ζ values

corresponding to a spectral singularity for η = 1.479. The smallest
of these is about 1017.2. This is larger than j ′

ν,1 and smaller than the
smallest positive zero of Jν , namely, jν,1 ≈ 1018.7.

This is slightly larger than ν [25]. Demanding that this
maximum point occurs at the boundary of the cylinder, ρ = a,
so that 〈u〉 has no maxima inside the cylinder, we find for
physically relevant situations that ζ = η ka � 1. Therefore ζ

is a maximum point of F+ provided that ζ � ν � 1. For this
range of values of ζ and ν, (1 + ν2/ζ 2)Jν(ζ )2 can take much
larger values than J ′

ν(ζ )2. This suggests that the maxima of
F+ (and therefore 〈u〉) coincide with those of Jν(ζ )2, i.e., they
are the zeros of J ′

ν(ζ ). This observation can be easily verified
graphically, as shown in Fig. 3.

Next, we obtain a crude estimate for the magnitude of the
angle θ at the smallest zero of J ′

ν where 〈u〉 attains its global
maximum value. In view of (23) and (24) and the fact that
ν � 1, we find

θ ≈ 1.6ν(1/3)

η
[1 + 1.6ν−(1/3) + O(ν−1)]κ + O(κ2). (25)

Typically κ and ν are at most of the order of 10−3 and 103,
which combined with the fact that η > 1 correspond to θ values
of at most of the order of 10−2.

In light of (23) and the fact that the smallest zero of J ′
ν is

slightly larger than ν, we see that up to terms of order κ2, that
we can safely neglect, θ has the same sign as κ . This means that
whenever the cylinder is filled with a gain material, in which
case κ < 0, θ is negative and the radial component of the
Poynting vector points away from the cylinder. This confirms
the expectation that in this case there is a flux of energy through
the boundary of the cylinder that is directed away from it.
Conversely, for a lossy material κ and consequently θ are
positive, there is an energy flux pointing toward the symmetry
axis of the cylinder, and the system absorbs energy.

The above observations show that our solutions become
WGMs with wave number k provided that J

′
ν(ηka) ≈ 0. This

is actually not quite the same as the standard description of
WGMs given in the literature [19], where they are associated
with the zeros of Jν rather than those of J ′

ν . The reasoning used
in the standard description of the electromagnetic WGMs has
its root in Lord Rayleigh’s seminal works on acoustic WGMs

and is based on the following properties of Jν [25]:
(1) The ρ-dependence of the (electric) field inside the

cylinder (or a sphere) is essentially determined by Jν(ηkρ).
(2) For ν � 1, which is the case for almost all practical

purposes, increasing the value of ζ starting from zero has the
following effect on Jν(ζ ): Jν(ζ ) takes negligibly small values
for 0 � ζ < ν/2 [with Jν(0) = 0]. It then attains its largest
value at the first zero of J ′

ν(ζ ), namely,

j ′
ν,1 = ν[1 + 0.809 ν−(2/3) + O(ν−(4/3))], (26)

which is slightly larger than ν. As ζ exceeds j ′
ν,1, Jν(ζ )

decreases until it hits its first zero,

jν,1 = ν[1 + 1.856 ν−(2/3) + O(ν−(4/3))], (27)

which is slightly larger than j ′
ν,1. Increasing ζ further makes

Jν(ζ ) oscillate between positive and negative values with
a diminishing amplitude. Figure 3 provides a graphical
demonstration of this behavior for ν = 1000.

According to Lord Rayleigh, a WGM corresponds to the
situation that the wave is “pressed down” to the surface [19].
This requirement is fulfilled provided that we take ηka = jν,1.
This is because in this case the largest peak of the energy
density resides inside the cylinder and in close vicinity of
its boundary. In contrast, the condition ηka = j ′

ν,1 implies
that this peak lies on the boundary of the cylinder. This is
also consistent with Lord Rayleigh’s description of a WGM.
Therefore, ηka = jν,1 and ηka = j ′

ν,1 correspond to different
types of WGMs that we respectively denote by WGM and
WGM′. The same holds for higher-order WGMs that are
associated with larger zeros of Jν and J ′

ν . These are labeled
by the azimuthal mode number ν and a radial mode number
q that counts the zeros of Jν (or J ′

ν) [19]. Because typically ν

takes very large numbers, WGM and WGM′ are quite closely
located and as a result have similar physical properties.

V. SINGULAR GALLERY MODES

In Sec. III we showed that the field configurations (13)
and (14) support an OSS provided that they satisfy (18). In
Sec. IV we derived conditions under which we could identify
them with WGMs. In this section, we examine WGMs that
support an OSS. In order to gain an understanding of the
problem, we offer an analytic treatment of (18) based on the
first-order perturbation theory in which we ignore the second-
and higher-order terms in powers of κ and ν−1.

First, we express (18) as

n J ′
ν(nx)

Jν(nx)
= H (1)′

ν (x)

H
(1)
ν (x)

, (28)

where x := ka. We then recall that n x = (η + iκ)x = ζ +
iκx and expand the left-hand side of (28) in powers of κ . This
gives

n J ′
ν(nx)

Jν(nx)
= ηJ ′

ν(ζ )

Jν(ζ )
− iζ

[
J

′
ν(ζ )2

Jν(ζ )2
+ 1 − ν2

ζ 2

]
κ + O(κ2).

(29)

Next, we recall that for a WGM, ζ > ν � 1. This suggests that
in our perturbative expansion of the right-hand side of (29) we
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use the Debye’s asymptotic expansions [25]:

Jν(ζ ) =
√

2

πν tan α
[cos φ + O(ν−1)],

(30)

J ′
ν(ζ ) =

√
2

πν tan α
[sin φ + O(ν−1)],

where α := cos−1(ν/ζ ) ∈ (0, π
2 ) and φ := ν(tan α − α) − π

4 .
For the typical laser material that we are interested in, η > 1
and |ζ − ν| 	 ν so that x < ν. This in turn shows that we can
use Debye’s asymptotic expansions [25]:

H (1)
ν (x) = eψ − 2ie−ψ + O(ν−1)√

2πν tanh β
,

(31)

H (1)′
ν (x) =

√
sinh(2β)

4πν
[eψ + 2ie−ψ + O(ν−1)],

where β := cosh−1(ν/x) ∈ R+ and ψ := ν(tanh β − β). Sub-
stituting (30) in Eq. (29) and using the resulting expression
and (31) in Eq. (28), we find a complex equation whose real
and imaginary parts give(

1 − 4e−4ψ

1 + 4e−4ψ

)
sinh β + η sin α tan φ ≈ 0, (32)(

4e−2ψ

1 + 4e−4ψ

)
sinh β +

(
x η sin2 α

cos2 φ

)
κ ≈ 0. (33)

Here ≈ stands for approximate equalities that involve ignoring
O(κ2) and O(ν−1) in Eqs. (29)–(31). Moreover, using (30) in
Eq. (23), we have

θ ≈ ζ 2κ

ην

(
sec2 φ − ν2

ζ 2

)
. (34)

Equations (32) and (33) describe OSSs in the azimuthal modes,
fulfilling the condition

ζ > ν > x � 1 � |κ|. (35)

In particular, (33) implies that no spectral singularity can exist
for a passive or lossy medium where κ � 0, [4].

For a WGM′, where J ′
ν(ζ ) ≈ 0, (30) together with the fact

that 0 < α 	 π/2 give sin φ ≈ 0 and consequently, tan φ ≈ 0.
Inserting this relation in Eq. (32) and making use of the fact
that sinh β > 0, we obtain

ψ ≈ ln 2

2
≈ 0.347. (36)

Note, however, that for β � 0, ψ is a decreasing function of β.
Because ψ vanishes for β = 0, we have ψ � 0 for all β � 0.
This shows that we can never satisfy (36). Therefore, WGM′s
do not support spectral singularities.

The argument we used to establish the impossibility of
producing an OSS in a WGM′ relies only on the conditions (35)
and J ′

ν(ζ ) ≈ 0. Therefore it holds also for higher-order WGM′
whose energy density 〈u〉 has peaks inside as well as on the
boundary of the cylinder. This argument does not, however,
exclude the possibility of realizing spectral singularities for a
class of azimuthal modes such that ρ = a is not a maximum of
〈u〉 but the Poynting vector is still along the tangential direction
to the surface of the cylinder, i.e., |θ | 	 1. The conventional
WGMs that belong to this class turn out not to support OSS
either. This can be justified as follows. Consider the WGM
corresponding to the first zero of Jν , i.e., ζ = jν,1. According
to (30), this implies that cos φ ≈ 0. This is consistent with (32)
only if the absolute value of the first term on the left-hand side
of (32) takes extremely large values. It is not difficult to see
that according to (35) this quantity is bounded from above.
Therefore this WGM does not support an OSS. With further
care one can also show that the same conclusion holds for
WGMs with larger radial mode numbers.

The inconsistency between the equations determining OSSs
and those defining WGMs and WGM′s suggests that we
impose the former equations on field configurations with large
ν values directly. This defines a class of surface modes that
is consistent with Lord Rayleigh’s qualitative description of
WGMs and yield OSSs. We call them “singular gallery modes”
(SGMs).

The vertical gray lines in Fig. 3 correspond to the ζ

values at which a sample with η = 1.479 displays an OSS
for ν = 1000. They represent SGMs. As shown in this figure
for the first four WGMs, fixing the value of ν we find a single
SGM for each WGM (zero of jν). This suggests labeling the
SGMs by the same azimuthal mode number ν and the radial
mode number q that we use to label WGMs and WGM′s.
We respectively use λν,q , κν,q , gν,q , and θν,q to denote the
wavelength λ, imaginary part of the complex refractive index
κ , the gain coefficient g = −4πκ/λ, and the angle θ for the
corresponding OSS. Table I gives the values of these quantities
for a sample of radius a = 75 μm. Because the set of zeros
of jν does not have an accumulation point, q has an upper
bound qmax. This means that for each ν there are finitely

TABLE I. The values of λν,q , κν,q , gν,q , and θν,q for spectral singularity of the lasing gallery modes with ν = 1000 for a sample of radius
a = 75 μm and real part of complex refractive index η = 1.479. The radial mode number q takes values between 1 and 83.

q ζ λν,q (nm) κν,q gν,q (cm−1) θν,q

1 1017.171 685.196 −4.272 × 10−172 7.836 × 10−167 −4.558 × 10−168

2 1031.343 675.781 −1.917 × 10−163 3.565 × 10−158 −1.121 × 10−159

3 1042.981 668.240 −1.649 × 10−156 3.100 × 10−151 −7.040 × 10−153

4 1053.324 661.679 −1.781 × 10−150 3.384 × 10−145 −6.148 × 10−147

...
...

...
...

...
...

80 1462.126 476.642 −1.938 × 10−5 5.110 −1.546 × 10−2

81 1466.506 475.254 −3.733 × 10−5 9.871 −2.980 × 10−2

82 1470.756 473.880 −5.759 × 10−5 15.273 −4.595 × 10−2

83 1474.984 472.522 −6.171 × 10−5 16.411 −4.923 × 10−2
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TABLE II. Values of qmax, λmin, λmax, and gmin for various ν,
η = 1.479, and a = 75 μm.

ν qmax λmin (nm) λmax (nm) gmin (cm−1)

850 70 555.275 804.615 1.536 × 10−140

900 74 524.647 760.428 2.693 × 10−149

950 78 497.222 720.851 4.632 × 10−158

1000 83 472.522 685.196 7.836 × 10−167

1050 87 448.938 652.909 1.305 × 10−175

1100 92 428.703 623.533 2.144 × 10−184

1150 95 410.214 596.691 3.477 × 10−193

many SGMs and OSSs. Furthermore, because the larger values
of ζ correspond to larger values of x and therefore smaller
values of the wavelength, λν,q is a decreasing function of q.
Another interesting result is that −κν,q and −θν,q are increasing
functions of q and take extremely small values. The same is
true for gν,q , except for q � 75. For η = 1.479, a = 75 μm,
and ν = 1000, we have q = 1,2, . . . ,83,

472.521 nm < λν,q < 685.197 nm, 10−172 < −κν,q<10−4,

10−166 cm−1 < gν,q < 17 cm−1, 10−168 < −θν,q < 0.05.

The small values of κ explain the extremely good agreement
between the perturbative results obtained using (32)–(34) and
the exact (numerical) results that employ (28) and (23).

Table II gives the number of radial modes qmax, the
minimum and maximum values of the wavelength, λmin :=
λν,qmax and λmax := λν,1, and the smallest gain coefficient for
SGMs with azimuthal mode numbers ν = 850,900, . . . ,1150.
The interval [λmin,λmax] is the spectral range for these SGMs.
As we increase ν it shrinks slightly and gets red-shifted,
while qmax increases and gmin decreases monotonically. This
behavior of gmin and the fact that it takes extremely small values
show that unless we restrict the spectral range of interest,
the system supports OSSs and begins lasing for any positive
gain coefficient. Consequently, in principle, the system lacks
a lasing threshold. This is actually an expected result, for the

length of the optical path along which the surface waves get
amplified has no upper bound. Our numerical calculations
show, however, that the OSSs requiring lower gain coefficients
have wavelengths that are more sensitive to fluctuations.

VI. CHARACTERIZATION OF SINGULAR
GALLERY MODES

Equations (32) and (33) that describe OSSs involve four
real parameters, namely, x,η,κ , and ν. Among these x and
κ depend on the radius a, the wavelength λ, and the gain
coefficient g of the medium according to [26]

x = ak = 2πa

λ
, κ = − λg

4π
. (37)

In the preceding section we used (32) and (33) to describe
typical examples of optical spectral singularities for a sample
whose refractive index was assumed not to depend on the
wavelength. In this section we give a more detailed study of
the SGMs that take into account the dispersion effects.

Consider an optically active medium that is obtained by
doping a host medium of refraction index n0 and modeled
by a two-level atomic system with lower- and upper-level
population densities Nl and Nu, resonance frequency ω0,
damping coefficient γ , and the dispersion relation [10]:

n2 = n2
0 − ω̂2

p

ω̂2 − 1 + iγ̂ ω̂
, (38)

where ω̂ := ω/ω0, γ̂ := γ /ω0, ω̂p := (Nl − Nu)e2/(meε0ω
2
0),

e is electron charge, and me is its mass. We can express ω̂2
p in

terms of the imaginary part κ0 of n at the resonance wave-
length λ0 := 2πc/ω0 according to ω̂2

p = 2n0γ̂ κ0 + O(κ2
0 ),

[10]. Inserting this relation in Eq. (38), using n = η + iκ , and
neglecting O(κ2

0 ), we obtain [11]

η ≈ n0 + κ0f1(ω̂), κ ≈ κ0f2(ω̂), (39)

where f1(ω̂) := γ̂ (1 − ω̂2)/[(1 − ω̂2)2 + γ̂ 2ω̂2] and f2(ω̂) :=
γ̂ 2ω̂/[(1 − ω̂2)2 + γ̂ 2ω̂2]. In view of (37), we also have
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FIG. 4. (Color online) Spectral singularities associated with the SGMs of a cylindrical sample of radius 75 μm consisting of the Rose
Bengal–DMSO solution (40). Each curve corresponds to a particular value of ν that ranges from 805 (the rightmost curve) to 945 (the leftmost
curve) in increments of ten. The displayed dots represent the spectral singularities.

063834-6



SPECTRAL SINGULARITIES AND WHISPERING GALLERY . . . PHYSICAL REVIEW A 87, 063834 (2013)

0 250 500 750 1000

50

100

150

200

g 0
cm

1

900 950 1000 1050
0

0.5

1

g 0
cm

1

FIG. 5. (Color online) Graph of the gain coefficient g0 as a
function of ν for an OSS whose wavelength is closest to the resonance
wavelength, λ ≈ 549 nm. The physical parameters of the gain
medium are given by (40) and a = 75 μm. As ν tends to zero, g0

approaches an asymptotic value of about 219 cm−1. There is a sharp
drop of g0 for ν ≈ 880.

κ0 = −λ0g0/(4π ). Substituting this equation in Eq. (39) and
using the resulting relations together with (37) in Eqs. (32)
and (33) we can determine the λ and g0 values for the spectral
singularities that identify SGMs.

For definiteness we consider a cylinder of radius a =
75 μm filled with a Rose Bengal–DMSO (dimethyl sulfoxide)
solution with the following characteristics [26,27]:

n0 = 1.479, λ0 = 549 nm, γ̂ = 0.062, g0 � 5 cm−1.

(40)

The following is a summary of our numerical investigation
of the properties of the OSSs for the gain medium (40).
We obtained them using the exact equation for spectral
singularities (28) and the dispersion relations (39).

Figure 4 shows the location of the OSSs in the λ-g0 plane
for various choices of ν. The presence of OSSs for extremely
small gain coefficients confirms our expectation that surface
waves can support OSSs for very small values of the radius.

Figure 5 shows the behavior of the gain coefficient nec-
essary for generating an OSS with resonance wavelength λ =
549 nm for different values of ν. The larger ν is, the smaller the
required gain becomes. This confirms the perturbative results
we have listed in Table II.

As we explained in Sec. II, the quality factor Q for a field
configuration that gives rise to an OSS diverges. In reality,
the physical parameters that correspond to the emergence of
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FIG. 6. (Color online) Logarithmic plots of the reflection coef-
ficient |R|2 as a function of λ for a = 75 μm, g0 = 0.132 cm−1,
ν = 920 (the blue thin curve with the highest pick at λ ≈ 526 nm), and
ν = 885 (the purple thick curve with the highest pick at λ ≈ 546 nm).

an OSS can be computed with finite precision. The Q factor
computed in this way is expected to be finite but very large.
If we use more precise values for the physical parameters of
the OSS, we obtain larger Q factors. For example, suppose
that we fix ν and a, and determine the gain coefficient g0

required for a SGM to an accuracy of 10−3 cm−1. If we use
this value of g0 in the exact equation for OSSs, i.e., (28), and
solve this equation for the wave number k, we find a complex
value with very small imaginary part. We can use this data to
compute the quality factor for the SGM. Table III gives the
result of this calculation for the sample (40) with a = 75 μm,
ν = 1000, and q = 65,66, . . . ,71. The fact that the Q factor
takes very large values is particularly remarkable, for we have
examined SGMs with very large radial mode number where
the quality factor of the corresponding conventional passive
WGM is much smaller [19].

Because ν can take arbitrarily large values and for each
value of ν there are many SGMs, it is tempting to see
if we can generate OSSs with different wavelengths us-
ing the same amount of gain. Figure 6 shows the graph

TABLE III. The values of ζ , λν,q , gν,q , and Q for spectral singularity of the SGMs with ν = 1000 for a sample with specifications (40),
a = 75 μm, ν = 1000, and q taking values between 65 and 71. Q0 is the value of the quality factor for the corresponding passive mode where
κ = 0.

q ζ λν,q (nm) gν,q (cm−1) Q Q0

65 1382.989 503.954 1.190 × 10−11 1.048 × 1020 6.738 × 1016

66 1387.515 502.310 1.220 × 10−10 3.103 × 1019 7.011 × 1015

67 1392.024 500.683 1.165 × 10−9 2.780 × 1018 7.884 × 1014

68 1395.518 499.072 1.033 × 10−8 2.932 × 1018 9.490 × 1013

69 1400.996 497.476 8.514 × 10−8 3.560 × 1017 4.901 × 1013

70 1405.459 495.897 6.516 × 10−7 4.030 × 1016 6.810 × 1012

71 1409.908 494.332 4.627 × 10−6 1.504 × 1015 1.018 × 1012
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of the reflection coefficient |R|2 as a function of λ for
a situation in which this scenario holds effectively. The
peaks correspond to a pair of OSSs that arise for g0 ≈
g̃0 := 0.132 cm−1. They have the following ν, g0, and λ

values:

ν = 920, g0 = 0.131 968 cm−1, λ = 525.945 537 nm,

ν = 885, g0 = 0.132 161 cm−1, λ = 545.633 973 nm.

The peak on left of Fig. 6 has a larger height than the one on
the right, simply because the exact value of g0 for the former
is closer to g̃0 than that of the latter. Our numerical studies
show that using more and more precise values for g0 and λ

for plotting the graph of |R|2 as a function λ gives larger and
larger values for the height of the peaks; therefore their width
is zero. This is a clear indication that they represent spectral
singularities [2].

VII. DISCUSSION AND CONCLUSION

In this article we have addressed the problem of exploring
optical spectral singularities for the radial and azimuthal modes
of a cylindrical gain medium. We showed that the conventional
whispering gallery modes and those corresponding to situa-
tions where the energy density has a peak on the surface of the
cylinder do not support spectral singularities. The condition
that a surface wave does give rise to a spectral singularity
defines a class of whispering gallery modes that, by definition,
have a divergent quality factor. We therefore call them singular
gallery modes.

Our treatment of whispering gallery modes differs from
the standard approach [18–20] that makes use of the uniform
asymptotic expansion for the Bessel function Jν and its deriva-
tive [25]. The latter yields asymptotic (large-ν) series involving
the Airy function Ai and its derivative for J (ν + tν1/3) and

J ′(ν + tν1/3), where t is a real and positive parameter that
is of zeroth order in ν, t = O(ν0). In our notation, use of
this expansion amounts to setting ηx = ν + tν1/3, which is
consistent with the condition that 1 	 x < ν < ηx. However,
it implies that ν−1/3ηx − ν2/3 = O(ν0). Recalling that x =
2πa/λ, this restricts the range of allowed wavelengths. For
example, for a = 75 μm, ν = 1000, and 0 � t � 10, we find
that 633 nm < λ < 697 nm. Therefore if we had employed the
uniform asymptotic expansion in our calculations, we would
have missed 74 of the 83 spectral singularities we found for
this case in Sec. V (see Table I.)

An important outcome of our investigations is that the
cylindrical gain medium we consider has effectively no lasing
threshold, i.e., we can generate spectral singularities and have
the system begin lasing for extremely small values of the gain
coefficient. This confirms the validity of our basic motivation
for undertaking this project. We expect that the same result
holds also for a spherical gain medium. We plan to study the
singular gallery modes of samples with a spherical geometry.
Finally, we wish to emphasize that singular gallery modes have
the unique property of having an effectively infinite quality
factor. From the mathematics of spectral singularities, we
know that no passive optical material (real optical potential)
can possess a zero width and hence infinite-Q-factor resonance
state. Our results show that this is possible if we have an active
medium with very small amounts of gain.
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