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We use the three-dimensional time-dependent Schrödinger equation (3 D-TDSE) to calculate angular electron
momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An
example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at
surfaces of metallic nanoparticles, nanotips, and gold bow-tie shaped nanostructures. Our studies show that the
inhomogeneity of the laser electric field plays an important role on the above-threshold ionization process in the
tunneling regime, causing significant modifications on the electron momentum distributions and photoelectron
spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through the tunneling
above-threshold ionization (ATI) process, one can obtain higher energy electrons as well as a high degree of
asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in
the mid- 1014 W/cm2 range and we use a linear approximation to describe their spatial dependence. We show
that in this case it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study
how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum
mechanical calculations are fully supported by their classical counterparts.
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I. INTRODUCTION

The process known as above-threshold ionization (ATI),
in which an atom or molecule absorbs more photons than
the minimum number required to single ionize it, has been a
subject of intensive studies during the last decades (see, e.g.,
[1] and references therein). The first experimental realization
was made at the end of the 1970s [2] and since then there
has been truly amazing progress in the understanding of the
nonperturbative nature of ATI. The recent advances in laser
technology make it possible to routinely generate laser pulses
with a few cycles of duration, which allows control of the
atomic and molecular processes in their natural time scales,
i.e., in the range of (sub)-femto to attoseconds. In addition,
these short laser sources find an extensive range of applications
in basic science, such as controlling molecular motions and
chemical reactions [3,4]. Furthermore, the few-cycles pulses
provide the fundamental pillar in the generation of high-order
harmonics and the creation of isolated extreme ultraviolet
(XUV) pulses [5,6].

The appearance of COLTRIMS experiments (see, e.g., [7]
and references therein) offered an unprecedented possibility
of performing stringent tests on the different theoretical
approaches. On one side, this is because the imaging of the
vectorial momentum distributions of the reaction fragments
are easily accessible, while on the other they are particularly
sensitive to various details of the theory. COLTRIMS were pri-
marily developed for the study of few-body dynamics induced
by particle impact, i.e., electrons and ions, but the extension to
scrutinize and tackle laser-induced processes was natural (see,
e.g., [8–10]). Among the features which were theoretically
analyzed was the complex emission pattern present in the
two-dimensional momentum plane, parallel and perpendicular
to the laser polarization axis, of the laser-ionized electron

distributions near threshold [11]. It was also investigated how
these patterns evolve as the laser-matter processes change from
the multiphoton to the tunneling regimes [10].

The main difference between a few-cycle pulse and a
multicycle one is the strong dependence of the laser electric
field on the so-called carrier envelope phase (CEP) [12,13].
The electric field in a few-cycle pulse can be characterized
by its duration and by the CEP. The influence of CEP has
been experimentally observed in high-harmonic generation
(HHG) [14], the emission direction of electrons from atoms
[15], and in the yield of nonsequential double ionization [16].
In order to have a better control of the system on an attosecond
temporal scale it is, therefore, important to find reliable and
direct schemes to measure the absolute phase of few-cycle
pulses.

The investigation of ATI generated by few-cycle driving
laser pulses plays a key role in the CEP characterization due to
the sensitivity of the energy and angle-resolved photoelectron
spectra to the value of the laser electric field absolute
phase [17,18]. Consequently, the behavior of the laser-ionized
electrons renders the ATI phenomenon a very valuable tool
for laser pulse characterization. To determine the CEP of a
few-cycle laser pulse, it is essential to record the difference
between the yield of electrons ionized for different emission
angles. Through this technique one can analyze the so-called
backward-forward asymmetry in order to characterize the
absolute CEP of a few-cycle laser pulse [19]. Furthermore,
it appears that the high-energy region of the photoelectron
spectra is most sensitive to the absolute CEP and consequently
electrons with large kinetic energy are needed in order to
correctly describe it [1,20].

Recent experiments using a combination of plasmonic
nanostructures and rare gases have demonstrated that the
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harmonic cutoff of the gases could be extended further than in
conventional situations by using the field locally enhanced due
to the coupling of a laser pulse with the metal nanostructure
[21,22]. In such nanosystems, due to the strong confinement of
the plasmonics spots and the distortion of the electric field by
the surface plasmons, the locally enhanced field is not spatially
homogeneous in the region where the electron dynamics takes
place. One should note, however, that the outcome of the
experiments of Ref. [21], in which a combination of gold
bow-tie nanostructure and argon gas for generation HHG
was used, has been recently under intense scrutiny [23,24].
In addition, recently, instead of atoms or molecules in gas
phase, solid state nanostructures have been employed as a
target to study the photoelectron emission by intense few-
cycle laser pulses [25,26]. This laser driven phenomenon,
called above-threshold photoemission (ATP), has received
special attention due to the novelty of the involved physics
and potential applications. In the ATP process, the emitted
electrons have energy far beyond the usual cutoff for noble
gases (see, e.g., [26–31]). Furthermore, the photoelectrons
emitted from these nanosources are sensitive to the CEP, and
consequently this fact plays an important role in the angle and
energy-resolved photoelectron spectra [25,26,32,33].

From a theoretical point of view, the fundamental assump-
tion behind all the strong field phenomena, namely that the
laser field is spatially homogeneous in the region where the
electron dynamics takes place [34,35], is not any more valid
for the locally enhanced plasmonic field. Indeed, in such
system the driven electric field, and consequently the Lorentz
force the laser-ionized electron feels, will also depend on posi-
tion. Up to now there have been very few studies investigating
the strong field phenomena in such spatially inhomogeneous
fields [36–42]. All of these studies have demonstrated that
the spatial dependency of the field strongly modifies the
laser-driven phenomena that appear in such circumstances.

For a homogeneous driving field, up to know, different
numerical and analytical approaches have been employed to
calculate the ATI (see, e.g., [1,43–47] and references therein).
In this article we extend the studies of our previous paper [40]
by applying the numerical solution of the time-dependent
Schrödinger equation (TDSE) in three dimensions to calculate
the angular electron momentum distributions and photoelec-
tron spectra of ATI driven by spatially inhomogeneous fields,
covering both the tunneling and multiphoton regimes. The
spatial dependence of the field is considered to be linear
and this can be considered a reliable approximation in the
parameters range we use in the present article [36–42]. We
mainly focus on studying ATI of hydrogen atoms, but our
scheme, within the single active electron approximation, can
be directly applied to any complex atom. We demonstrate how
the spatial inhomogeneity of the laser electric field modifies
both the two-dimensional electron momentum distributions
and the photoelectron spectra. In addition, we examine also the
influence of the CEP parameter in the measurable quantities.
Finally, our quantum mechanical results are compared with
classical calculations based on Newton equations.

This article is organized as follows. In the next section
we present our theoretical approach to model ATI driven by
spatially nonhomogeneous fields, with main emphasis on the
extraction of the electron angular momentum distributions

starting from the TDSE outcomes. Subsequently, in Sec. III we
apply our method to compute the electron momentum distribu-
tions and energy-resolved photoelectron spectra of hydrogen
atoms using few-cycle laser pulses for both homogeneous and
inhomogeneous fields, considering the tunneling and multi-
photon regimes. Furthermore, we solve the classical equations
of motion of an electron in an oscillating inhomogeneous
electric field to support our quantum mechanical method.
Finally, in Sec. IV we conclude our contributions with a short
summary and outlook.

II. THEORETICAL APPROACH

In order to obtain the characteristics of the above-threshold
ionization (ATI) phenomenon driven by spatial nonhomoge-
neous fields, such as the electron momentum distribution and
the energy-resolved photoelectron spectra P (E) (including the
dynamics of both direct and rescattered electrons), we solve
the three-dimensional time-dependent Schrödinger equation
(3D-TDSE) in the length gauge:

i
∂�(r,t)

∂t
= H�(r,t) =

[
− ∇2

2
− 1

r
+ Vl(r,t)

]
�(r,t). (1)

The time-dependent electronic wave function �(r,t) can be
expanded in terms of spherical harmonics:

�(r,t) = �(r,θ,φ,t) ≈
L−1∑
l=0

l∑
m=−l

�lm(r,t)

r
Ym

l (θ,φ), (2)

where the number of partial waves depends on each specific
case. Here, in order to assure the numerical convergence,
we have used up to L ≈ 250 in the most extreme case
(I = 5.0544 × 1014 W/cm2). In addition, due to the fact that
the plasmonic field is linearly polarized, the magnetic quantum
number is conserved and consequently in the following we can
consider only m = 0 in Eq. (2). This property considerably
reduces the complexity of the problem. In here we consider
z as a polarization axis and we take into account that the

FIG. 1. (Color online) Photoelectron spectrum resulting from our
3D-TDSE simulations (in red) and superimposed (in black) with the
ATI results calculated by Schafer and Kulander in Ref. [48]. The laser
wavelength is λ = 532 nm and the intensity is I = 2 × 1013 W/cm2

(see Fig. 1 in [48] for more details). The superimposed plot has been
extracted from Fig. 1 of this cited reference.
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FIG. 2. (Color online) Energy-resolved photoelectron spectra P (E) calculated using the 3D-TDSE for an hydrogen atom (Ip = −0.5 a.u.).
The laser parameters are I = 1.140 × 1014 W/cm2 (E0 = 0.057 a.u.) and λ = 800 nm. We have used a sin-squared shaped pulse with a total
duration of four optical cycles (10 fs). (a) β = 0 (homogeneous case), (b) β = 0.002, (c) β = 0.003, and (d) β = 0.005. In all panels, solid
gray line: φ = 0; solid black line φ = π/2; dotted red line: φ = π ; and dashed blue line: φ = 3π/2.

spatial variation of the electric field is linear with respect to
the position. As a result, the coupling Vl(r,t) between the
atomic electron and the electromagnetic radiation reads

Vl(r,t) =
∫ r

dr′ · E(r′,t) = E0z(1 + βz)f (t) sin(ωt + φ),

(3)

where E0, ω, and φ are the laser electric field amplitude,
the central frequency, and the carrier envelope phase (CEP),
respectively. The parameter β defines the “strength” of the
inhomogeneity and has units of inverse length (see also
[36–38]). For modeling short laser pulses in Eq. (3), we use a
sin-squared envelope f (t) of the form

f (t) = sin2

(
ωt

2np

)
, (4)

where np is the total number of optical cycles. As a result,
the total duration of the laser pulse will be Tp = npτ , where
τ = 2π/ω is the laser period. We also assume that before
switch on of the laser (t = −∞) the target atom (hydrogen)
is in its ground state (1s), whose analytic form can be
found in standard textbooks. Within the single active electron
approximation, however, our numerical scheme is tunable to
treat any complex atom by choosing the adequate effective
(Hartree-Fock) potential, and finding the ground state by
numerical diagonalization.

Next, we will show how the inhomogeneity modifies the
equations which model the laser-electron coupling. Inserting
Eq. (2) into Eq. (1) and considering that

cos θY 0
l = cl−1Y

0
l−1 + clY

0
l+1, (5)

cos2 θY 0
l = cl−2cl−1Y

0
l−1 + (

c2
l−1 + c2

l

)
Y 0

l + clcl+1Y
0
l+2, (6)

FIG. 3. (Color online) Idem Fig. 2 but for a laser intensity I = 5.404 × 1014 W/cm2 (E0 = 0.12 a.u.).
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FIG. 4. (Color online) Two-dimensional electron momentum distributions (logarithmic scale) in cylindrical coordinates (kz,kr ) using the
exact 3D-TDSE calculation for an hydrogen atom. The laser parameters are I = 1.140 × 1014 W/cm2 (E0 = 0.057 a.u.) and λ = 800 nm.
We have used a sin-squared shaped pulse with a total duration of four optical cycles (10 fs) with φ = 0. (a) β = 0 (homogeneous case),
(b) β = 0.002, (c) β = 0.003, and (d) β = 0.005.

where

cl =
√

(l + 1)2

(2l + 1)(2l + 3)
, (7)

we obtain a set of coupled differential equations for each of
the radial functions �l(r,t):

i
∂�l

∂t
=

[
− 1

2

∂2

∂r2
+ l(l + 1)

2r2
− 1

2

]
�l

+βr2E(t)
(
c2
l + c2

l−1

)
�l

+ rE(t)(cl−1�l−1 + cl�l+1)

+βr2E(t)(cl−2cl−1�l−2 + clcl+1�l+2). (8)

Equation (8) is solved using the Crank-Nicolson algorithm
considering the additional term, i.e., Eq. (6) due to the spatial
inhomogeneity.

The ATI spectrum is calculated using the time-dependent
wave function method developed by Schafer and Kulander
(see [48] for more details). As a preliminary test and in order

to assure the consistence of our numerical simulations, we
have checked out our calculations with the results previously
obtained in Ref. [48]. The comparison confirms the high degree
of accuracy of our calculations as shown in Fig. 1.

For calculating the energy-resolved photoelectron spectra
P (E) and two-dimensional electron distributions H(p,θ ) we
use the window function approach developed by Schafer
[48,49]. This tool has been widely used, both to calculate
angle-resolved and energy-resolved photoelectron spectra
[50], and it represents a step forward with respect to the usual
projection methods.

III. RESULTS

In this section we calculate both energy-resolved photoelec-
tron spectra P (E) and two-dimensional electron momentum
distributions in order to investigate the influence of the spatial
inhomogeneities of the field and the sensitivity of these two
measurable quantities to the different laser parameters, espe-
cially to the carrier envelope phase (CEP). The investigations
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FIG. 5. (Color online) Idem Fig. 4 but for φ = π/2.

063833-4



ELECTRON-MOMENTUM DISTRIBUTIONS AND . . . PHYSICAL REVIEW A 87, 063833 (2013)

k
z
 (a.u.)

k r (
a.

u.
)

 

 
(c)

−2 −1 0 1 2
0

1

2

−7

−6

−5

−4

−3

−2

k
z
 (a.u.)

k r (
a.

u.
)

 

 
(d)

−2 −1 0 1 2
0

1

2

−7

−6

−5

−4

−3

−2

k
z
 (a.u.)

k r (
a.

u.
)

 

 
(b)

−2 −1 0 1 2
0

1

2

−7

−6

−5

−4

−3

−2

k
z
 (a.u.)

k r (
a.

u.
)

 

 
(a)

−2 −1 0 1 2
0

1

2

−7

−6

−5

−4

−3

−2

FIG. 6. (Color online) Idem Fig. 4 but for φ = π .

are carried out for both the tunneling, for which the Keldysh
parameter is γ � 1 (γ = √

Ip/2Up, where Up = I/4ω2 is
the ponderomotive energy and Ip is the ionization potential),
and multiphoton regimes, for which the Keldysh parameter is
γ � 1. Furthermore, we confirm how in the tunneling regime
the CEP, joint with the spatial nonhomogeneities, modify in a
particular way both the energy-resolved photoelectron spectra
and the two-dimensional electron momentum distributions as
we have shown in our previous contribution [40]. On the
other hand, we show that in the multiphoton regime (γ � 1)
the spatial nonhomogeneous character of the laser electric
field hardly affects the analyzed quantities. We also want to
point out, however, that the frontier between the tunnel and
multiphoton regimes appears to be a controversial and diffuse
issue [51,52].

A. Tunneling regime

We commence by investigating the tunneling regime. For
this case we employ a four-cycle (total duration 10 fs)
sin-squared laser pulse with wavelength λ = 800 nm and
two different intensities, namely I = 1.140 × 1014 W/cm2

and I = 5.0544 × 1014 W/cm2. These two intensities give

values for the laser electric field of E0 = 0.057 a.u. and
E0 = 0.12 a.u., respectively. For all the cases we chose
four different values for the parameter that characterizes the
inhomogeneity strength, namely, β = 0 (homogeneous case),
β = 0.002, β = 0.003, and β = 0.005. In addition we also
vary the carrier envelope phase φ in Eq. (3), taking φ = 0,
φ = π/2, φ = π , and φ = 3π/2. For all the above mentioned
cases we calculate the so-called energy-resolved photoelectron
spectra P (E) [1]. The results are shown in Figs. 2 and 3 for I =
1.140 × 1014 W/cm2 (γ = 1) and I = 5.0544 × 1014 W/cm2

(γ = 0.475), respectively.
For the homogeneous case, the spectra exhibits the usual

distinct behavior, namely, the 2Up cutoff [≈13.6 eV in Fig. 2(a)
and ≈57.4 eV in Fig. 3(a)] and the 10Up cutoff [≈68 eV
in Fig. 2(a) and ≈300 eV in Fig. 3(a)]. The former cutoff
corresponds to those electrons that, once ionized, never return
to the atomic core (the so-called direct electrons), while the
latter one corresponds to the electrons that, once ionized,
return to the parent ion and elastically rescatter (the so-called
rescattered electrons). Classically, it is a well established
fact that the maximum kinetic energies Ek of the direct and
the rescattered electrons are Ed

max = 2Up and Er
max = 10Up,

respectively (see below for more details). In a quantum
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FIG. 7. (Color online) Idem Fig. 4 but for φ = 3π/2.
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FIG. 8. (Color online) Two-dimensional electron momentum distributions (logarithmic scale) in cylindrical coordinates (kz,kr ) using the
exact 3D-TDSE calculation for an hydrogen atom. The laser parameters are I = 5.0544 × 1014 W/cm2 (E0 = 0.12 a.u.) and λ = 800 nm.
We have used a sin-squared shaped pulse with a total duration of four optical cycles (10 fs) with φ = 0. (a) β = 0 (homogeneous case),
(b) β = 0.002, (c) β = 0.003, and (d) β = 0.005.

mechanical approach, however, it is possible to find electrons
with energies beyond the 10Up cutoff, although their yield
drops several orders of magnitude depending strongly on the
atomic species studied [1].

Experimentally speaking, both the direct and rescattered
electrons contribute to the energy-resolved photoelectron
spectra. It means for tackling this problem both physical
mechanisms should to be included in any theoretical model.
In that sense, the 3D-TDSE, which can be considered as an
exact approach to the ATI problem for atoms and molecules
in the single active electron approximation, appears to be the
adequate tool to predict the P (E) in the whole range of electron
energies. On the other hand, the most energetic electrons, i.e.,
those with kinetic energies Ek � 2Up, are commonly used to
characterize the CEP of few-cycle pulses. Consequently, if one
will use the high energy region of the P (E) to compute the
absolute CEP, a correct description of the electron rescattering
mechanism is necessary.

For the spatially nonhomogeneous cases, the positions of
the direct and the rescattered electron cutoffs are extended

towards larger energies. For the rescattered electrons,
this extension is very noticeable. In fact for β = 0.005
with E0 = 0.12 a.u., it reaches values close to ≈700 eV
[Fig. 3(d)] against the ≈300 eV shown by the homogeneous
case [Fig. 3(a)]. Another new feature present for all the
nonhomogeneous cases is the strong sensitivity of the P (E)
to the carrier envelope phase (CEP). This behavior can be
clearly noticed by comparing Figs. 2(a) and 3(a) (i.e., the
homogeneous case) with the rest of the panels of Figs. 2
and 3. It is evident that for the homogeneous case only two
curves are present, due to the fact that the P (E) for φ = 0
(φ = π/2) is identical to φ = π (φ = 3π/2), respectively. On
the other hand, for all the nonhomogeneous cases it is possible
to clearly distinguish the four cases, i.e., φ = 0 (solid gray
lines), φ = π/2 (solid black lines), φ = π (dotted red lines),
and φ = 3π/2 (dashed blue lines). Indeed, this particular
characteristic of the P (E) for nonhomogeneous fields could
make them a new and better CEP characterization tool.

It should be noted, however, that other well-known and
established CEP characterization tools, such as, for instance,
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FIG. 9. (Color online) Idem Fig. 8 but for φ = π/2.
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FIG. 10. (Color online) Idem Fig. 8 but for φ = π .

the forward-backward asymmetry or two-dimensional elec-
tron momentum distributions, should complement the P (E)
measurements [1]. Furthermore, the utilization of nonhomo-
geneous fields would open the avenue for the production of
high-energy electrons, reaching the keV regime, if a reliable
control of the spatial and temporal shape of the laser electric
field is attained. Investigations in such direction have already
started (see, e.g., [29] and references therein).

A deep analysis of the electron distributions for atomic
ionization produced by an external laser field can be performed
in terms of the two-dimensional electron momentum distribu-
tion. The exact solution of the three-dimensional Schrödinger
equation (3D-TDSE) provides us with an excellent tool to
analyze in detail how the two competing fields, namely the
laser electric field and the Coulomb atomic potential, modify
the electron wave packet of the laser released electron. In
Figs. 4–7 we calculate two-dimensional electron momentum
distribution for a laser field with an intensity of I = 1.140 ×
1014 W/cm2 (E0 = 0.057 a.u), λ = 800 nm, and different
values of the the β parameter: (a) β = 0 (homogeneous case),
(b) β = 0.002, (c) β = 0.003, and (d) β = 0.005. We employ
a few-cycle laser pulse with four total cycles (10 fs) and
various values of the carrier envelope phase (CEP) parameter

φ, namely φ = 0 (Fig. 4), φ = π/2 (Fig. 5), φ = π (Fig. 6),
and φ = 3π/2 (Fig. 7), respectively.

Here we concentrate our analysis on the low energy region
of the distributions in order to study how the inhomogeneities
of the laser electric field affect the angular electron yield.
This region shows the usual bouquet-type structures (see
[11] for details) with noticeable modifications for all the
nonhomogeneous cases studied.

Furthermore, the low-energy electrons appear to be strongly
influenced by the spatial inhomogeneity of the laser electric
field [see (b)–(d) of Figs. 4–7]. We also can observe how the
bouquet structures present in the homogeneous case disappear
for particular values of φ [see, e.g., Fig. 6(d)].

In order to complete our investigations, we calculate two-
dimensional electron momentum distributions by increasing
the laser field intensity to I = 5.0544 × 1014 W/cm2 (E0 =
0.12 a.u). The results are depicted in Figs. 8–11 for φ = 0,
φ = π/2, φ = π , and φ = 3π/2, respectively. Here (a), (b),
(c), and (d) represent the cases with β = 0 (homogeneous
case), β = 0.002, β = 0.003, and β = 0.005, respectively.

Following the trend observed in the previous studied
case, we see strong modifications produced by the spatial
inhomogeneities in both the angular and low-energy structures.
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FIG. 11. (Color online) Idem Fig. 8 but for φ = 3π/2.
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FIG. 12. (Color online) Numerical solutions of the Newton
equation [Eq. (9)] plotted in terms of the direct and rescattered
electron kinetic energy Ed

k and Er
k , respectively. The laser parameters

are I = 1.140 × 1014 W/cm2 (E0 = 0.057 a.u), λ = 800 nm, and
φ = 0. We employ a few-cycle laser pulse with four total cycles
(10 fs). The temporal shape of the laser electric field is superimposed
in the top panel. Different panels correspond to various values of β

(see labels). Green filled circles: direct electrons; red empty circles:
rescattered electrons.

Indeed, the change seems to be even more pronounced. For
instance, the yield for electrons with kz < −1 a.u. for φ = 0
[Fig. 8(d)] and φ = π/2 [Fig. 9(d)] drops several orders of
magnitude in evident contrast with the yield for kz > 0 a.u.
This significant difference between the above mentioned yields
would open a new approach to characterize the CEP of
few-cycle laser pulses using spatially nonhomogeneous fields.

We now employ a classical model in order to explain and
characterize the extension of the energy-resolved photoelec-
tron spectra. According to the simple-man’s model [53] the
physical mechanism behind the ATI process can be understood
as follows: At a given time, that we call ionization time ti , an
atomic electron is released or born at the position z = 0 (i.e.,
where the atom is located) with zero velocity, i.e., ż(ti) = 0.
This electron now moves only under the influence of the
oscillating laser electric field (this model neglects the Coulomb
interaction with the remaining ion) and will reach the detector
either directly or through the process known as rescattering. By
using the classical equation of motion of an electron moving
in an oscillating electric field, it is possible to calculate the
maximum classical kinetic energy of the electron for both the
direct and rescattered processes.

FIG. 13. (Color online) Idem Fig. 12 for φ = π/2.

FIG. 14. (Color online) Idem Fig. 12 for φ = π .
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FIG. 15. (Color online) Idem Fig. 12 for φ = 3π/2.

The Newton equation of motion for the atomic electron in
the laser electric field can be written, using the functional form
of Eq. (3), as follows:

z̈(t) = −∇zVl(r,t), (9)

z̈(t) = E(t)[1 + 2βz(t)], (10)

where we have collected the time-dependent part of the electric
field in E(t), i.e., E(t) = E0f (t) sin(ωt + φ).

In the limit where β = 0 in Eq. (9), we recover the
homogeneous case [1]. For the direct laser ionization, the
kinetic energy of an electron released or born at time ti is

Ed
k = [ż(ti) − ż(tf )]2

2
, (11)

where tf is the end time of the laser pulse. For the rescattered
laser-ionized electron, in which the electron returns to the core
at a time tr and reverses its direction, the kinetic energy of the
electron yields

Er
k = [ż(ti) + ż(tf ) − 2ż(tr )]2

2
. (12)

For homogeneous fields, Eqs. (11) and (12) be-

come the usual expressions Ed
k = [A(ti )−A(tf )]2

2 and Er
k =

[A(ti )+A(tf )−2A(tr )]2

2 , with A(t) being the laser vector potential
A(t) = − ∫ t

E(t ′)dt ′, respectively. For the case with β = 0, it
can be shown that the maximum value for Ed

k is 2Up, while
for Er

k it is 10Up [1]. These two values appear as cutoffs in the

FIG. 16. (Color online) Numerical solutions of the Newton
equation [Eq. (9)] plotted in terms of the direct and rescattered
electron kinetic energy Ed

k and Er
k , respectively. The laser parameters

are I = 5.0544 × 1014 W/cm2 (E0 = 0.12 a.u), λ = 800 nm, and
φ = 0. We employ a few-cycle laser pulse with four total cycles
(10 fs). The temporal shape of the laser electric field is superimposed
in the top panel. Different panels correspond to various values of β

(see labels). Green filled circles: direct electrons; red empty circles:
rescattered electrons.

energy-resolved photoelectron spectrum as can be observed in
Figs. 2(a) and 3(a).

In Figs. 12–19, we present the numerical solutions of
Eq. (9), which is plotted in terms of the kinetic energy (in
eV) of the direct (green filled circles) and rescattered (red
empty circles) electrons.

Figures 12–15 are for a laser intensity of I = 1.140 ×
1014 W/cm2 (E0 = 0.057 a.u.), meanwhile in Figs. 16–19 the
laser intensity is I = 5.404 × 1014 W/cm2 (E0 = 0.12 a.u.).
Figures 12(16), 13(17), 14(18), and 15(19) are for φ = 0,
φ = π/2, φ = π , and φ = 3π/2, respectively, and for different
values of the β parameter [β = 0 (homogeneous case), β =
0.002, β = 0.003, and β = 0.005, from top to bottom]. We
have included in the top panels of all the figures the temporal
shape of the laser electric field.

From the curves for β �= 0 we can observe the strong
modifications that the nonhomogeneous character of the laser
electric field produces in the kinetic energy of the laser-ionized
electron. Furthermore, it is possible to observe how the kinetic
energy is more sensitive to the CEP. If we analyze, for instance,
the top panels of Figs. 12–15 (i.e., the homogeneous case)
we conclude that the shape of both the kinetic energy of
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FIG. 17. (Color online) Idem Fig. 16 for φ = π/2.

FIG. 18. (Color online) Idem Fig. 16 for φ = π .

FIG. 19. (Color online) Idem Fig. 16 for φ = 3π/2.

the direct and rescattered electron are identical for φ = 0
(φ = π/2) and φ = π (φ = 3π/2). On the other hand, for
the different values of β the kinetic energy has a unique
shape for a given value of φ. A similar behavior, both for
the homogeneous and nonhomogeneous cases, was indeed
observed in the photoelectron spectra calculated using the
3D-TDSE (see Figs. 2 and 3) as well.

The particular features present for β �= 0 are related to the
changes in the laser-ionized electron trajectories (for details
see, e.g., [37–39]). In summary, the electron trajectories are
modified in such a way that now the electron ionizes at an
earlier time and recombines later, and in this way it spends
more time in the continuum acquiring energy from the laser
electric field. Consequently, higher values of the kinetic energy
are attained. This distinct behavior is more evident for E0 =
0.12 a.u. and β = 0.005, but it appears to some extent for all
the studied cases.

A similar behavior was observed recently in the so-called
above-threshold photoemission (ATP) using metal nanotips.
According to the model developed in Ref. [31] the strong
localized fields modify the electron motion in such a way to
allow subcycle dynamics.

In our approach, however, we include the full picture of
the ATI phenomenon, namely both direct and rescattered
electrons are considered (in Ref. [31] only direct electrons
are taken into account) and consequently the characterization
of the dynamics of the photoelectrons is more complex.
Nevertheless, the higher kinetic energy of the rescattered
electrons is a clear consequence of the strong modifications the
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FIG. 20. (Color online) Energy-resolved photoelectron spectra
P (E) calculated using the 3D-TDSE for an hydrogen atom (Ip =
−0.5 a.u.). The laser parameters are E0 = 0.05 a.u. (I = 8.775 ×
1013 W/cm2) and ω = 0.25 a.u. (λ = 182.5 nm). We have used a
sin-squared shaped pulse with a total duration of six optical cycles
(3.7 fs) and φ = π/2. Solid blue line: homogeneous case (β = 0);
dotted red line: β = 0.005. We note that both lines are practically on
top of each other (see text for details).

laser electric field produces in the region where the electron
dynamics takes place, as in the above mentioned case of ATP.

B. Multiphoton regime

For the multiphoton case we consider a few-cycle laser
pulse with six complete optical cycles and E0 = 0.05 a.u. (I =
8.775 × 1013 W/cm2) and ω = 0.25 a.u. (λ = 182.5 nm).
In here the Keldysh parameter is γ = 5, indicating the

predominance of the multiphoton process [11]. We have
computed the P (E), two-dimensional electron distributions
and the classical electron energies for all the set of cases
presented in Sec. III A. In this paper, however, we just present
the most extreme case with β = 0.005 and CEP of φ = π/2.
These results are presented in Figs. 20–22 for P (E), two-
dimensional electron distributions, and the classical electron
kinetic energies, respectively. The P (E) exhibits the usual
multiphoton peaks [2,48] and the inhomogeneity of the field
does not play any significant role. In the whole range, the
values of the yields have a difference of less than 5% and in the
logarithmic scale used this is hard to discern and consequently
only one line is visible.

The two-dimensional electron distributions are also the
same in terms of shape and magnitude for the both homo-
geneous and inhomogeneous cases, as shown in both panels
of Fig. 21. It means the differences introduced by the spatial
nonhomogeneous character are practically imperceptible. We
should note that our calculation is basically identical to the
one presented in [11].

The numerical solutions of Eq. (9) as function of the kinetic
energy (in eV) of the direct and rescattered electron is depicted
in Fig. 22. In here we could also observe, in support to our
quantum mechanical calculations, that the inhomogeneity of
the laser field does not change the electron energies in both the
direct and rescattered processes.

In general, we do not find noticeable differences in these
observable quantities for both variations in the CEP and the
strength of the inhomogeneity parameter β. As a result, we
conclude that in the multiphoton regime the modifications
introduced by the spatial inhomogeneities of the laser electric
field do not produce appreciable modifications in the electron
dynamics and consequently in the measurable quantities. In
addition, the laser-ionized electron, in both the direct and
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FIG. 21. (Color online) Two-dimensional electron momentum distributions (logarithmic scale) in cylindrical coordinates (kz,kr ) using
the exact 3D-TDSE calculation for an hydrogen atom. The laser parameters are E0 = 0.05 a.u. (I = 8.775 × 1013 W/cm2), ω = 0.25 a.u.
(λ = 182.5 nm), and φ = π/2. We employ a few-cycle laser pulse with six total optical cycles (3.7 fs). (a) Homogeneous case (β = 0) and
(b) is for β = 0.005.
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FIG. 22. (Color online) Numerical solutions of the Newton
equation [Eq. (9)] plotted in terms of the direct and rescattered
electron kinetic energy Ed

k and Er
k , respectively. The laser parameters

are E0 = 0.05 a.u. (I = 8.775 × 1013 W/cm2), ω = 0.25 a.u. (λ =
182.5 nm), and φ = π/2. We employ a few-cycle laser pulse with
six total cycles (3.7 fs). The temporal shape of the laser electric field
is superimposed in (a). (a) Homogeneous case (β = 0) and (b) is for
β = 0.005. Green filled circles: direct electrons; red empty circles:
rescattered electrons.

rescattered processes, has a very small kinetic energy in the
multiphoton regime due to a lower value of its ponderomotive
energy (Up = 0.01 a.u.). Indeed, in this case the maximum
energy after the rescattering process has taken place is ≈3 eV.
As a result, it is reasonable to have a very small or almost no
differences between the final kinetic energies, when a spatial
inhomogeneity of small strength is present.

IV. CONCLUSIONS AND OUTLOOK

We have extended our previous studies of above-threshold
ionization (ATI) produced by spatially nonhomogeneous fields
using the three-dimensional solutions of the time-dependent
Schrödinger equation (3D-TDSE). We have modified the
3D-TDSE to model the ATI phenomenon driven by spatial
nonhomogeneous fields by including an additional term in the
laser-electron coupling. In the tunneling regime (γ � 1) we
predict an extension in the conventional cutoffs position and
an increase of the yield of the energy-resolved photoelectron
spectra in certain regions. In addition, both the photoelectron
spectra P (E) and the two-dimensional electron momentum
distributions appear to be more sensitive to the carrier envelope
phase of the laser electric field. This feature indicates that the
photoelectrons produced by spatial inhomogeneous field could
be a good candidate for few-cycle laser pulses characterization.
Furthermore, our predictions pave the way for the production
of high-energy photoelectrons, reaching the keV regime, using
plasmon enhanced fields. In the multiphoton regime (γ � 1),
on the other hand, we show that both the P (E) and the
two-dimensional electron distributions are hardly affected
by the spatial nonhomogeneities of the laser electric field.
Our quantum mechanical calculations are supported by the
classical simulations. In particular, the P (E) characteristics are
reasonably well reproduced by simulations based on classical
physics.
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[11] D. G. Arbó, J. E. Miraglia, M. S. Gravielle, K. Schiessl,
E. Persson, and J. Burgdörfer, Phys. Rev. A 77, 013401 (2008).

[12] T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu,
A. L. Cavalieri, G. G. Paulus, and R. Kienberger, Nat. Phys. 5,
357 (2009).

[13] M. F. Kling, J. Rauschenberger, A. J. Verhoef, D. B. M. E.
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