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Spontaneous emission in cavity QED with a terminated waveguide
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We investigate the effects of a nanophotonic boundary on the spontaneous emission properties of an excited
two-level atom in cavity quantum electrodynamics (QED) geometry. We show that a boundary provides temporally
delayed interference, which can be either constructive or destructive. Consequently, the decay of the atomic
excitation can be either increased or greatly inhibited. As a concrete example, we investigate the spontaneous
emission process in cavity QED with a terminated line-defect waveguide, and show the rich behavior of the
atomic response due to the boundary. We also show that the output photonic wave form is strongly influenced by
the boundary.
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I. INTRODUCTION

The field of quantum nanophotonics has recently attracted
considerable interest. In quantum nanophotonics, fermionic
degrees of freedom are coupled to bosonic degrees of freedom.
As the fermionic components can be saturated by a finite
number of photons, the interplay between the two degrees
of freedom can fundamentally alter the transport properties
of photons and their correlations. A fermionic component can
be a quantum dot [1,2], a superconducting qubit [3,4], or an
atom [5,6], and is hereafter referred to simply as an “atom.”
By coupling photons to an atom in a waveguide [waveguide
quantum electrodynamics (QED)] [7,8] or in a microcavity
(cavity QED) [9–11], strong atom-photon and photon-photon
interactions can be created. For example, a two-level atom in a
waveguide can completely reflect a resonant photon [12]; it can
also induce photon-photon interaction and create a two-photon
bound state [13]. Moreover, a photon blockade, wherein atomic
excitation due to one photon blocks the transmission of a
subsequent photon, has been demonstrated with a single atom
coupled to an optical cavity [14]. The influence of a cavity on
spontaneous emission has also been investigated [15].

On a separate front, it has been recognized that the specific
properties of the reservoir can affect the atomic decay rate and
therefore provide a route to counteract or control spontaneous
emission by engineering the reservoir. In particular, the effects
of a boundary close to an emitter are well known. For example,
the radiation patterns of an antenna in front of a metallic plate
can be significantly modified depending on the distance from
the plate [16]. The interference of radiation from an ion near
a mirror and its mirror image has also been confirmed [5].
In quantum nanophotonics, there have been important recent
experimental developments making use of a boundary for
dynamic control of photons [17], for bright single-photon
sources [18], and for enhancing photon emission efficiency
in nanowires [19]. Recently, the effects of a variable boundary
on the dynamics of a superconducting qubit have been studied
using input-output formalism [20]. The effects of a mirror on
spontaneous emission have also been investigated [21,22].

Nonetheless, the full capability of controlling the atomic
and photonic degrees of freedom in quantum nanophotonics
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by engineering the reservoir has not been thoroughly explored.
In this paper, we investigate the atomic response and photonic
dynamics in cavity QED with a terminated waveguide. By
introducing a boundary to reflect photons back to the system,
the boundary provides a mechanism for temporally delayed
feedback interference. The boundary could be a physical
end of the waveguide or a heterogeneous interface, including
terminated photonic line-defect waveguides, nanowires, and
the capacitative gaps in microwave transmission lines in
circuit QED. The photonic density of states and the dispersion
relations across the boundary could change substantially
to have a direct impact on the transport properties. As a
result, the transport properties and the correlations between
photons, the output photonic wave forms, and the temporal
response of the atom exhibit completely different charac-
teristics and can be controlled by boundary and dispersion
engineering.

In particular, we show that the temporal behavior of the
excited atom can be qualitatively modified: Following a
very short period of free decay, the boundary can enhance
or suppress the atomic decay rate by orders of magnitude.
Accordingly, the temporal duration of the emitted photons can
be narrowed or broadened, allowing applications in single-
photon wave form engineering [23,24]. We also show that
the scheme is effective by providing a realistic estimate using
parameters from experiments.

The paper is organized as follows. In Sec. II, we discuss
spontaneous emission with a bi-infinite waveguide for both
waveguide and cavity quantum electrodynamics (waveguide
and cavity QED) geometries. In Sec. III, we discuss spon-
taneous emission in the presence of a boundary. We begin
by providing physical intuition for the feedback interference
provided by a boundary and its effects on the spontaneous
emission process. We then describe several physical realiza-
tions of a boundary and their optical properties. Next we
present a general theoretical framework to study spontaneous
emission with a boundary. Using this framework, we inves-
tigate the temporal behavior of the atomic excitation and
emitted photonic wave packets and compare these to the case
of a bi-infinite waveguide. We then discuss the effects of
dissipation on the process. In Sec. IV we provide our outlook
and discuss possibilities for future expansion. The results
of waveguide and cavity QED for cases with and without
boundaries are presented in parallel for comparison. Finally,
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in the Appendix we provide detailed calculations for the results
presented in the paper.

II. SPONTANEOUS EMISSION INTO A BI-INFINITE
WAVEGUIDE

In this paper we consider spontaneous emission in waveg-
uide QED [Fig. 1(a)] and cavity QED [Fig. 1(b)] geome-
tries. Such configurations have been extensively explored
in quantum nanophotonics. In either case, the coupling of
the atom to the bi-infinite waveguide is regarded as a loss
mechanism for the atom and always gives rise to an irreversible
decay of the atomic excitation. Here we highlight the physics
of the spontaneous emission process and assume no other
intrinsic dissipation mechanism for the atom, where intrinsic
dissipation refers to the loss mechanism of a photon to any
nonwaveguided channel. The effects of intrinsic dissipation
are discussed in the Appendix.

A. Waveguide QED

When an excited atom is coupled to the vacuum of the
radiation field, the atom will undergo spontaneous emission
(Weisskopf-Wigner decay). That is, the atom will relax to
its ground state and emit a photon. The atomic excitation is
described by

ė2(t) + g0e2(t) = 0, (1)

where e2(t) is the atomic excitation amplitude at time t and
g0 is the radiative decay rate [25,26]. Equation (1) describes
exponential decay e2(t) ∝ e−g0t , which is characterized by a
single time scale 1/g0. It is likewise well known that when an
excited atom couples to a bi-infinite waveguide in waveguide
QED geometry [Fig. 1(a)], the atom will also spontaneously
decay, and the atomic excitation obeys the same form.

g

g

FIG. 1. Atom coupled to a bi-infinite waveguide. (a) Waveguide
QED. (b) Cavity QED.

B. Cavity QED

The short-term atomic decay can be modified by coupling
the atom to a cavity, as in cavity QED [Fig. 1(b)]. As the atom
relaxes to its ground state, cavity modes can reexcite the atom,
which leads to coherent energy exchange between the cavity
and the atom. Coupling to the waveguide manifests as a loss
mechanism to this process. As a result, the excitation obeys a
damped harmonic oscillator equation [27]

ë2(t) + (� + i�)ė2(t) + g2e2(t) = 0, (2)

where g is the atom-cavity coupling strength, � is the cavity-
waveguide coupling strength, and � = ωc − ω12 is the cavity-
atom frequency detuning. The atomic excitation can undergo
decaying oscillations in the underdamped case (� < 2g) or
monotonic decay in the overdamped case (� > 2g). The long-
time behavior still exhibits exponential decay.

For both of the cases shown in Fig. 1, the critical feature is
that the spontaneously emitted wave always leaks into the
waveguide. This leakage, however, can be slowed by, for
example, introducing interference via a feedback mechanism.
In particular, we show that by using a boundary, the time scale

g
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FIG. 2. (Color online) Atom coupled to a terminated waveguide.
(a) Initial state in waveguide QED. At t = 0, the atom is excited. (b)
At t > 0, the atom relaxes to its ground state and spontaneously emits
into the waveguide. Blue arrows indicate initial, unperturbed emitted
waves. Solid red arrows indicate the photonic modes reflected by the
boundary, which obtain an additional phase ϕ. The reflection is then
partially transmitted and partially reflected (dashed red arrows) due
to coupling with the atom. The secondary reflected wave repeats the
process, providing further feedback. (c) Cavity QED case.
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of the spontaneous emission process can be much longer than
for the case of a bi-infinite waveguide.

III. SPONTANEOUS EMISSION INTO A SEMI-INFINITE
WAVEGUIDE WITH A BOUNDARY

The presence of a boundary provides a delayed feedback
mechanism to modify the temporal behavior of the sponta-
neous emission process. By terminating one end of a bi-infinite
waveguide, a boundary can be formed to reflect photons
[Fig. 2] and generate interference. To illustrate the physics, we
first consider the waveguide QED case in Fig. 2(a). As the atom
decays, it will excite both left- and right-moving waveguided
modes [shown in solid blue in Fig. 2]. When the right-moving
waves are reflected by the boundary, they acquire a reflection
phase ϕ in addition to the propagation phase. The reflected
modes (solid red) are subsequently absorbed or scattered by
the atom, giving rise to secondary transmitted and reflected
modes (dashed red). The secondary reflected modes return
to the boundary and repeat the process. The contributions
of all transmitted waves interfere with the initial left-moving
wave. Consequently, the spontaneous decay rate can be greatly
enhanced for constructive interference or largely suppressed
for destructive interference.

In the same fashion, spontaneous emission in cavity QED
can be fundamentally altered by including a boundary as
in Fig. 2(c). The boundary will provide a feedback channel
analogous to that shown in Fig. 2(b).

Photonic boundaries which can reflect photonic modes can
be formed in many nanophotonic configurations, ranging from
optical [17] to microwave [20,28] frequency regimes. In the
following section, we describe boundary implementations in
several important systems and discuss the resulting reflection
phase.

A. Boundary implementations

One important physical realization of a boundary is a
terminated line-defect waveguide in photonic crystal as shown
in Fig. 3(a), which is formed by removing half a line of air
holes from an otherwise perfect triangular lattice of air holes
in silicon. Such terminated line-defect waveguides have been
both theoretically investigated and experimentally realized in
quantum nanophotonics [17].

Figure 3(b) shows the band diagram for the perfect crystal,
which has a complete band gap over the range 0.4 < f a/c <

0.44, where a is the lattice constant. As shown in Fig. 3(c),
the terminated line-defect waveguide introduces transverse
electric (TE) and transverse magnetic (TM) defect bands
within the band gap. Within a wide frequency range, the
terminated waveguide is a single-polarization-single-mode
(SPSM) waveguide with essentially linear dispersion for the
TE defect mode. We note that an SPSM waveguide is crucial
to the operation of the device, as mode conversion deteriorates
interference effects.

When photons are reflected by the boundary, they acquire
a reflection phase ϕ which, in general, can be a function of
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FIG. 3. (Color online) Photonic crystal realization of a terminated waveguide. (a) The terminated waveguide is formed by a line defect in a
triangular lattice of air holes in silicon (εr = 12.1) [29] with lattice constant a and r = 0.45a. (b) The perfect crystal has a complete photonic
band gap shown in gray. (c) A TE defect mode arises when a line defect is introduced, forming an SPSM waveguide at the operating frequency,
where vg = c/9.89. A TM defect mode is also found. (d) The reflection phase due to the boundary is nearly constant over the bandwidth of
interest.
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frequency. We found numerically that in the frequency range
where the dispersion is linear, the phase is linear in frequency
and can be described by

ϕ(f a/c) = 77.458f a/c − 32.970. (3)

Figure 3(d) plots the reflection phase for the frequency range
0.4245 < f a/c < 0.4255.

For f a/c = 0.425 and an operating wavelength λ =
1.55 μm, the lattice constant is given by a = 0.659 μm.
For a realistic photonic pulse with 1 GHz bandwidth, the
reflection phase change is O(10−4), which is essentially
constant. Consequently, discussions in the following sections
assume a frequency independent reflection phase ϕ.

Other important physical realizations of a photonic bound-
ary include a fiber Bragg grating [30], the tapered region of a
tapered waveguide [31], or a capacitive gap in a superconduct-
ing microwave transmission line [20,28]. In fiber Bragg grating
or tapered waveguide geometries, each frequency component
of the incoming photonic pulse is reflected at a different
spatial point, yielding a different round-trip path length for
each component. As a result, the reflection phase is strongly
frequency dependent and can be controlled by the geometry of
the waveguide. Finally, in circuit QED, a SQUID ring at the
end of a microwave transmission line acts as a boundary and
can be used to control the reflection phase [20].

Further control of the emission process can be obtained
through dynamic control of the reflection phase. In photonic
crystal geometry, this can be achieved by modulating the
refractive index at the boundary, while in circuit QED, one can
modulate the SQUID ring with a time-varying magnetic field.

B. Theoretical framework

There have been different approaches to model a boundary.
For example, in condensed matter physics, a chiral description
using unfolding techniques has been developed [32–34]. This
chiral description has also been employed in photonic systems
[35]. The chiral description, while mathematically equivalent,
describes the situation wherein photons flow unidirectionally
and never get reflected. Here, instead of employing unfolding
techniques, we describe the physical geometry directly. Our
formalism incorporates the physical action of the boundary on
the photonic modes in the terminated waveguide. By including
the boundary term in the Hamiltonian, we obtain the equations
of motion that describe the full spatiotemporal dynamics of the
scattering process. We have found numerically that our method
and unfolding techniques are equivalent.

1. Waveguide QED

In waveguide QED geometry [Fig. 2(a)], the total system
Hamiltonian is

H = Hw + Ha + Hi + Hb. (4)

Hw is the free Hamiltonian of photons propagating in the
terminated waveguide and is given by

Hw = h̄

∫ 0

−∞
dx

{
c
†
R(x)(−ivg∂x)cR(x) + c

†
L(x)(ivg∂x)cL(x)

}
,

(5)

where we integrate over the semi-infinite waveguide from
x = −∞ to x = 0. Here, c

†
R(x) and cR(x) are creation and

annihilation operators for a right-moving photon at position x,
c
†
L(x) and cL(x) are creation and annihilation operators for a

left-moving photon at position x, and vg is the group velocity
of photons in the waveguide. Such a photonic Hamiltonian
for the case of a bi-infinite waveguide has been previously
investigated [12].

Ha is the Hamiltonian for the atom and is given by

Ha = h̄ω1a
†
1a1 + h̄ω2a

†
2a2, (6)

where a
†
i and ai are creation and annihilation operators

for the ith atomic state, which satisfy standard fermionic
anticommutation relations; and h̄ω1 and h̄ω2 are the energies of
the atomic ground state |1〉 and excited state |2〉, respectively.
We note that in quantum optics and atomic physics, a two-level
atom is usually described in terms of Pauli spin operators. An
equivalent atomic Hamiltonian using Pauli spin operators is
presented in the Appendix.

Hi describes the interaction between guided photonic
modes and the atom and is given by

Hi = h̄

∫ 0

−∞
dx V δ(x + d)

[
c
†
R(x)a†

1a2 + c
†
L(x)a†

1a2

+ a
†
2a1cR(x) + a

†
2a1cL(x)

]
, (7)

where V is the coupling strength between the atom and the
photonic field in the waveguide. Hi describes all emission
and absorption processes between the atom and photons. For
example, the term proportional to c

†
R(x)a†

1a2 describes an
atomic transition from the excited |2〉 state to the |1〉 ground
state and the spontaneous emission of a right-moving photon.

Hb describes the action of the boundary on photonic modes
and is given by

Hb = h̄

∫ 0+

−∞
dx δ(x)

[
i2vge

iϕc
†
L(−x)cR(x)

− i2vge
−iϕc

†
R(−x)cL(x)

]
. (8)

Here, the boundary is located at x = 0 and the first term
describes the event that an incoming right-moving photon is
reflected into a left-moving outgoing photon and acquires a
phase ϕ, while the second term ensures that the Hamiltonian
is Hermitian. The validity of the boundary term is established
in the Appendix.

The Hamiltonian in Eq. (4) is general and is applicable
to a state with an arbitrary number of photons. Here we
restrict ourselves to one-photon processes, which includes
spontaneous emission. The general one-photon state of the
system is

|ψ〉 =
∫ 0

−∞
dx φR(x,t)e−iω1t c

†
R(x)a†

1|0〉

+
∫ 0

−∞
dx φL(x,t)e−iω1t c

†
L(x)a†

1|0〉 + e2(t)e−iω2t a
†
2|0〉,

(9)

where φR(x,t) and φL(x,t) are amplitudes of right- and left-
moving photonic modes in the waveguide and e2(t) is the
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excitation amplitude of the atom. In Eq. (9), the phase due to
the temporal evolution of the atomic states (e−iω1t and e−iω2t ) is
written explicitly for convenience, so that φR(x,t) and φL(x,t)
contain only the temporal response of the photons.

Solving the Schrödinger equation ih̄∂t |ψ〉 = H |ψ〉 with the
given Hamiltonian and state yields the equations of motion

i∂tφR(x,t) = −ivg∂xφR(x,t) − i2vge
−iϕφL(−x,t)δ(x)

+V δ(x + d)e2(t)e−iω12t , (10a)

i∂tφL(x,t) = +ivg∂xφL(x,t) + i2vge
iϕφR(−x,t)δ(x)

+V δ(x + d)e2(t)e−iω12t , (10b)

i∂t e2(t) = V [φR(−d,t) + φL(−d,t)]eiω12t , (10c)

where ω12 = ω2 − ω1 is the frequency separation between the
atomic states |1〉 and |2〉. The full system dynamics can be
obtained by solving these equations of motion. For an arbitrary
set of initial conditions, the system evolves in time according
to the equations of motion to trace out the full spatiotemporal
dynamics of the process. In general, the set of equations must
be solved numerically. For this purpose, we have developed
an efficient pseudospectral method operating on a nonuniform
grid [36].

The spontaneous emission process is described by spec-
ifying e2(t = 0) = 1 and all other initial amplitudes equal
to zero, i.e., the atom is initially excited and no photon is
present. Numerical results will be presented in Sec. III C 1.
For spontaneous emission, it turns out that the photonic degree
of freedom can be completely eliminated, yielding a single
intuitive first-order delay-differential equation for the atomic
excitation amplitude

ė2(t) + g0e2(t) + g0θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ = 0.

(11)

Here, θ (·) is a Heaviside step function, g0 = V 2/vg is the decay
rate for the no-boundary case, and T ≡ d/vg is the propagation
time between the atom and the boundary in the waveguide
with group velocity vg and d the spatial separation between
the boundary and the atom. Compared to the no-boundary
case [Eq. (1)], there is an additional term representing the
delayed, phase-shifted feedback introduced by the boundary.
The delay amount 2T is the round-trip propagation time in
between the atom and the boundary. Similarly, the phase
consists of the round-trip propagation phase 2ω12T and the
boundary induced reflection phase ϕ. Compared with the
set of Equations (10), which necessitates a two-dimensional
computation in space and time, Eq. (11) requires only a
one-dimensional computation and can easily be computed
with an order of magnitude efficiency improvement. To get
information on the photonic modes, however, one must solve
the full set of Equations (10) or use the explicit spectral
representation provided in the Appendix. A detailed derivation
of Eq. (11) is presented in the Appendix.

2. Cavity QED

In cavity QED geometry [Fig. 2(c)], the total Hamiltonian
is

H = Hw + Ha + Hc + Hwc + Hac + Hb. (12)

The waveguide, atom, and boundary terms Hw, Ha , and Hb are
identical to those given in Sec. III B1. Hc is the Hamiltonian
for cavity modes, and is given by

Hc = h̄ωca
†
cac, (13)

where a
†
c and ac are creation and annihilation operators for

cavity modes, and ωc is the resonant frequency of the cavity.
Hwc describes the coupling between guided photonic modes

in the waveguide and cavity modes, and is given by

Hwc = h̄

∫ 0

−∞
dx δ(x + d)Vc

{
c
†
R(x)ac + c

†
L(x)ac

+ a†
ccR(x) + a†

ccL(x)
}
, (14)

where Vc gives the coupling strength between waveguided and
cavity modes.

Hac describes the coupling between the atom and cavity
modes, and is given by

Hac = h̄g(a†
2a1ac + a†

ca
†
1a2), (15)

where g is the atom-cavity coupling strength.
The general one-photon state is

|ψ〉 =
∫ 0

−∞
dx φR(x,t)e−iω1t c

†
R(x)a†

1|0〉

+
∫ 0

−∞
dx φL(x,t)e−iω1t c

†
L(x)a†

1|0〉

+ ec(t)e−i(ωc+ω1)t a†
ca

†
1|0〉 + e2(t)e−iω2t a

†
2|0〉, (16)

where φR(x,t) and φL(x,t) are again amplitudes of right- and
left-moving photonic modes in the waveguide, ec(t) is the
cavity mode excitation amplitude, and e2(t) is the excitation
amplitude of the atom. In Eq. (16), the phase due to the
temporal evolution of the atomic and cavity states is written
explicitly for convenience.

Solving Schrödinger’s equation with the given Hamiltonian
and state yields the equations of motion

i∂tφR(x,t) = −ivg∂xφR(x,t) − i2vge
−iϕφL(−x,t)δ(x)

+Vcδ(x + d)ec(t)e−iωct , (17a)

i∂tφL(x,t) = +ivg∂xφL(x,t) + i2vge
iϕφR(−x,t)δ(x)

+Vcδ(x + d)ec(t)e−iωct , (17b)

i∂t ec(t) = Vc[φR(−d,t) + φL(−d,t)]eiωct + ge2(t)ei�t ,

i∂t e2(t) = gec(t)e−i�t , (17d)

where � ≡ ωc − ω12 gives the frequency detuning of the atom
and the cavity. The equations of motion (17) are general,
and describe all one-photon processes. Spontaneous emission
is described by setting e2(t = 0) = 1 and all other initial
amplitudes equal to zero, and the state evolves in time
according to Eqs. (17).

Similarly, in this case, the photonic and cavity degrees
of freedom can again be eliminated to produce an intuitive
second-order delay-differential equation for the atomic exci-
tation amplitude

ë2(t) + (� + i�)ė2(t) + �θ (t − 2T )ė2(t − 2T )ei2ω12T +iϕ

+g2e2(t) = 0, (18)
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which can be computed efficiently. Here, � = V 2
c /vg is the

decay rate of the cavity in the free case. The additional term is
again delayed by an amount 2T and has an accumulated phase
due to the round-trip propagation (2ω12T ) and reflection by
the boundary (ϕ). A detailed derivation of Eq. (18) is provided
in the Appendix.

C. Numerical results and discussion

In this section, we discuss the effects of a boundary
on the temporal behavior of the atomic excitation and the
corresponding effects on the emitted photonic wave packet.
Due to the feedback provided by a boundary, the large-time
excitation can be either reduced or significantly increased,
depending on the nature of the interference. The temporal
response of the atomic excitation in such a situation cannot
be described by a single characteristic time scale. Hereafter,
we use “lifetime” to refer to the value of the atomic excitation
in the large-time limit. The emitted photonic wave packet is
correspondingly modified, and the emitted photons can be
temporally very narrow or very broad. We also discuss the
effect of atomic dissipation, which can weaken the effect of a
boundary on the spontaneous emission process.

1. Atomic excitation

The temporal behavior of the atomic excitation in waveg-
uide QED geometry is shown in Fig. 4, which was generated
by solving Eq. (11) with e2(0) = 1. As dictated by causality,
the excitation follows exponential decay as for a bi-infinite
waveguide [Eq. (1)] for t < 2T . For t > 2T , reflected modes
have had a chance to return to the atom, where they
interfere with the emitted modes as described previously.
Destructive interference (2ω12T + ϕ = 2π [n + 1/2]) inhibits

g

g

g

g
g

g

g

FIG. 4. (Color online) Atomic excitation for the waveguide
QED case as in Fig. 2(a), showing effects of destructive [2ω12T +
ϕ = (2n + 1)π ], constructive (2ω12T + ϕ = 2nπ ), and intermedi-
ate [2ω12T + ϕ = (2n + 1/2)π ] interference between reflected and
emitted photonic modes. (a) g0T = 0.05. (b) g0T = 0.25. In each
figure, ω12 is chosen such that 2ω12T = (2n + 1)π and ϕ is varied.
Alternatively, the same figure can be obtained by fixing ϕ and varying
ω12.

emission into guided modes, giving rise to very long-lived
atomic excitation. Compared to the no-boundary case, such
destructive interference can lead to an excitation lifetime that
is practically only limited by dissipation. For example, for
g0T = 0.05 [Fig. 4(a)], destructive interference gives rise to
an atomic excitation probability |e2(g0t)|2 that is more than an
order of magnitude greater than the no-boundary response
at g0t = 1.5. On the other hand, constructive interference
(2ω12T + ϕ = 2πn) enhances the rate of decay into guided
modes, so the atom relaxes to its ground state more quickly.

Figure 5 shows the temporal behavior of the atomic
excitation in cavity QED geometry, which was computed
by solving Eq. (18) with e2(0) = 1 and ė2(0) = 0, where
the second initial condition is equivalent to no initial cavity
excitation [i.e., ec(0) = 0] by Eq. (17d). Again, the atomic
excitation must follow the no-boundary harmonic oscillator
solutions given by Eq. (2) for t < 2T . While the excitation does
depart from the no-boundary solution for t > 2T , the departure
is generally smoother than for the waveguide QED case (i.e.,
there will not be a cusp at t = 2T ), due to the buffering effect
of the cavity. Mathematically, this is a direct consequence
of the order of the governing differential equation in each
case. The interference due to the relative phase 2ω12T + ϕ

again determines the nature of the deviation. The atomic
response just after t = 2T , however, is very different from
that in the waveguide QED case: Destructive interference
causes a short-term (i.e., just after t = 2T ) enhancement of
atomic decay, while constructive interference causes a short-
term suppression of the atomic decay. Due to the additional
dynamics introduced by the cavity, the long-term (t � 2T )
effect on the temporal behavior cannot be described simply
by an enhanced or suppressed decay rate. Rather, constructive
interference causes the excitation to appear more overdamped
(less oscillatory, with slower decay as the effective damping
increases), while destructive interference drives the system
toward underdamped (more oscillatory).

Cavity-atom frequency detuning � also suppresses atomic
decay, as the cavity cannot efficiently support the modes
emitted by the atom. For a given atom-cavity coupling strength
g, detuning has a stronger influence when the effective
damping is small (i.e., � is small or the system exhibits
destructive interference).

2. Emitted photonic modes

As the presence of a boundary changes the temporal
response of the atom, the emitted photonic wave packet
is correspondingly modified. Figure 6(a) shows the emitted
photonic wave forms for the waveguide QED case. With no
boundary, the emitted photons will always have an exponential
envelope [Fig. 6(a1)], corresponding to the exponential decay
of the atomic excitation. When a boundary is introduced,
the emitted pulse, which has the form φL(t + x/vg), fol-
lows the exponentially decaying no-boundary profile for
0 < t + x/vg < 2T . For t + x/vg > 2T , the amplitude is
much higher for constructive interference or near zero for
destructive interference. For constructive interference [Figs.
6(a), 2 and 6(a), 5], the enhanced emission for t > 2T

will produce a second photonic peak at t + x/vg = 2T . For
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FIG. 5. (Color online) Atomic excitation for the cavity QED case [Fig. 2(c)], showing effects of interference, cavity-waveguide coupling
strength, and cavity-atom detuning. Left column: underdamped (�/g = 0.5). Center column: critically damped (�/g = 2). Right column:
overdamped (�/g = 3.5).

destructive interference [Figs. 6(a), 4 and 6(a), 7], the temporal
width of the photon can be strongly suppressed.

Figure 6(b) shows the emitted photonic profiles for the
cavity QED case. Without a boundary, the general behavior
corresponds to the atomic excitation behavior with a cavity:
An underdamped system leads to oscillatory photonic profiles,
while an overdamped system leads to photonic profiles
which resemble a smoothed exponential decay [Fig. 6(b), 1].
When a boundary is present, constructive interference [Figs.
6(b), 2 and 6(b), 5] causes them to look more overdamped
(nonoscillatory), while destructive interference [Figs. 6(b), 4
and 6(b), 7] generally causes the emitted photons to look more
underdamped (oscillatory).

3. Dissipation

When atomic dissipation γ0 is included in the waveguide
QED case [Fig. 2(a)], Eq. (11) becomes

ė2(t) + (g0 + γ0)e2(t) + g0θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ

= 0, (19)

where γ0 is added to g0 in the nonfeedback term. Figure 7
shows the atomic excitation in the presence of dissipation.
There is still a period of free exponential decay for t < 2T ,
though the decay rate is now g0 + γ0. For t > 2T , constructive
interference still leads to faster decay, while destructive

interference still retards decay. In each case, however, the
effect is degraded by the presence of dissipation. For small
dissipation [Fig. 7(b)], the feedback from the boundary can still
keep the atom excited for much longer than the no-boundary
case. As dissipation further increases [Figs. 7(c) and 7(d)], all
effects from the boundary are dominated by dissipation.

When dissipation is included in the cavity QED case
[Fig. 2(c)], Eq. (18) becomes

ë2(t) + (� + i� + γc + γ )ė2(t)

+�θ (t − 2T )ė2(t − 2T )ei2ω12T +iϕ

+ [g2 + γ (� + i� + γc)]e2(t)

+ γ�θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ = 0, (20)

where γ and γc are the atomic and cavity dissipation
parameters, respectively. Figure 8 shows atomic excitation
with a cavity in the presence of dissipation. From the point
of view of the atom, cavity dissipation and cavity leakage
into the waveguide appear as the same mechanism except
that modes escaping through dissipation do not contribute to
feedback from the boundary. As shown in Fig. 8, increasing
γc makes the excitation appear more overdamped and reduces
the effect of boundary-induced interference. When γc > �,
the effects of interference become almost negligible. Atomic
dissipation γ , on the other hand, has the same effect as coupling
to free space. That is, increasing γ causes the excitation
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FIG. 6. Output photonic modes with a boundary. (a) Waveguide QED. (b) Cavity QED, for both �/g = 3.5 (overdamped) and �/g = 0.5
(underdamped).

to resemble exponential decay, regardless of the cavity and
boundary parameters.
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FIG. 7. (Color online) Atomic excitation for the waveguide QED
case [Fig. 2(a)], showing effects dissipation. (a) γ0/g0 = 0. (b)
γ0/g0 = 0.1. (c) γ0/g0 = 1. (d) γ0/g0 = 5. g0T = 0.05 for all plots.

Here we show that temporally delayed interference is
effective in controlling atomic decay by providing a realistic
estimate using parameters from some state-of-the-art exper-
iments. In waveguide QED, it has been demonstrated that
the atom can emit photons preferentially into the waveguide.
Values of γ0/g0 as low as 0.18 over a large bandwidth of
10 THz have been theoretically predicted for a quantum dot
coupled to a photonic crystal waveguide [8], and even lower
values of γ0/g0 = 0.12 have been experimentally measured,
albeit over a smaller bandwidth [7]. These ratios are close to
those in Fig. 7(b), indicating that the atom can be controlled
effectively under current experimental conditions. In cavity
QED, strong coupling of an atom to a cavity has been
experimentally demonstrated. Moreover, to efficiently control
spontaneous emission when a waveguide is coupled to the
cavity, optimal coupling between the cavity and the waveguide
is also crucial. In Ref. [37], strong coupling between the
quantum dot and the cavity has been shown (g/2π = 21 GHz
and γ /2π = 6.3 GHz) but the cavity is undercoupled to the
waveguide (�/2π = 3.4 GHz and γc/2π = 52.6 GHz). Ref-
erence [38] demonstrates that the waveguide-cavity coupling
can be greatly improved (i.e., lower γc, with �/2π = 5.2 GHz
and γc/2π = 4.2 GHz), leading to a situation close to the
one in Fig. 8 with γ /g = 0.1, γc/g = 0.1, and �/g = 0.5.
Therefore, within current experimental reach, our scheme
based on delayed feedback interference is effective to control
the decay of atomic excitation and achieve a much longer
photon storage time in both waveguide QED and cavity QED.

IV. CONCLUSION

In this paper we have presented the theory of single-
photon scattering by a two-level atom in the presence of
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FIG. 8. (Color online) Atomic excitation in cavity QED [Fig. 2(c)], showing effects of dissipation. For all plots, gT = 0.05 and � = 0.

a nanophotonic boundary in cavity QED. In particular, we
applied this theoretical machinery to one of the most fun-
damental nanophotonic processes, spontaneous emission, and
showed that a boundary can radically modify the temporal
behavior of the process and change the time scale of the
process by orders of magnitude. The theoretical framework,
however, describes all such single-photon processes and can
equally be used to investigate, for example, efficient photon
capture using a two-level atom near a boundary. Furthermore,
additional control of spontaneous emission could be achieved
by modulating the boundary to control the reflection phase. By
slowly modulating the boundary, one could switch between
inhibition and acceleration of spontaneous emission without
significantly perturbing the short-term behavior of the process.
On the other hand, by quickly modulating the reflection
phase, one could introduce new frequency components to
the reflected photon, providing a higher degree of control
over the interference. It remains as an interesting question
whether arbitrary single-photon wave forms can be engineered
by properly modulating the boundary. Finally, the theory
presented here can be readily extended to describe multiphoton
scattering in cavity QED. The ability to handle multiple-photon
processes would allow us to investigate the effects of a
boundary on other fundamental processes such as stimulated
emission, or to design active control schemes, whereby the
emission from an excited atom is delayed or triggered by an

input photon. Spatially extended entanglement of photon pairs
could also be created with a two-level atom near a boundary
due to the prolonged atom-photon interaction time afforded by
a boundary.

APPENDIX

1. Atomic Hamiltonian using Pauli spin operators

Here we present the atomic Hamiltonian given by Eq. (6) in
the main text in terms of Pauli spin operators. The equivalent
Hamiltonian is

Ha = h̄
(
ωa1 + 1

2ω12σz

)
, (A1)

where ωa = (ω1 + ω2)/2, 1 is the identity operator, and ω12 =
ω2 − ω1 is the atomic transition frequency. The operator σz is

σz = a
†
2a2 − a

†
1a1, (A2)

so σz acts on the atomic ground and excited states (|1〉 and |2〉,
respectively) with σz|1〉 = −|1〉 and σz|2〉 = +|2〉. We note
that the two equivalent atomic Hamiltonians yield identical
results when acting on the atomic states.

2. Boundary Hamiltonian

Here we develop the boundary Hamiltonian given in Eq. (8).
We begin by considering the free Hamiltonian for a bi-infinite
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waveguide with no atom, analogous to that given by Eq. (5),

Hfree =
∫ ∞

−∞
dx h̄

{
c
†
R(x)(−ivg∂x)cR(x)

+c
†
L(x)(+ivg∂x)cL(x)

}
, (A3)

so

|ψ〉free = eikxc
†
R(x)|0〉 + e−ikxc

†
L(x)|0〉 (A4)

is an eigenstate of the free Hamiltonian, satisfying

Hfree|ψ〉free = h̄vgk|ψ〉free. (A5)

With a boundary, the state

|ψ〉 = θ (−x)eikxc
†
R(x)|0〉 + θ (−x)e−ikx+iϕc

†
L(x)|0〉 (A6)

will be an eigenstate of the total Hamiltonian, which will be a
sum of free and boundary terms

H = Hfree + Hb, (A7)

satisfying

H |ψ〉 = h̄vgk|ψ〉, (A8)

so

Hb|ψ〉 = (h̄vgk − Hfree)|ψ〉. (A9)

The action of the free Hamiltonian on the bounded
eigenstate is

Hfree|ψ〉 =
( ∫ ∞

−∞
dx ′ h̄{c†R(x ′)(−ivg∂x ′ )cR(x ′)

+ c
†
L(x ′)(+ivg∂x ′ )cL(x ′)}

)
(θ (−x)eikxc

†
R(x)|0〉

+ θ (−x)e−ikx+iϕc
†
L(x)|0〉), (A10)

= −ih̄vg∂x[θ (−x)eikx]c†R(x)|0〉 + ih̄vg∂x[θ (−x)

× e−ikx+iϕ]c†L(x)|0〉, (A11)

= h̄vgk[θ (−x)eikxc
†
R(x)|0〉 + θ (−x)e−ikx+iϕ

× c
†
L(x)|0〉] + ih̄vgδ(x)eikxc

†
R(x)|0〉

− ih̄vgδ(x)e−ikx+iϕc
†
L(x)|0〉, (A12)

= h̄vgk|ψ〉 + ih̄vgδ(x)eikxc
†
R(x)|0〉 − ih̄vgδ(x)

× e−ikx+iϕc
†
L(x)|0〉, (A13)

so

Hb|ψ〉 = h̄vgk|ψ〉 − Hfree|ψ〉, (A14)

= −ih̄vgδ(x)eikxc
†
R(x)|0〉

+ ih̄vgδ(x)e−ikx+iϕc
†
L(x)|0〉. (A15)

Now, we check the action of the proposed form of Hb

[Eq. (8)] on the bounded eigenstate

Hb|ψ〉 = h̄

∫ 0+

−∞
dx ′ δ(x ′)[i2vge

iϕc
†
L(−x ′)cR(x ′)

− i2vge
−iϕc

†
R(−x ′)cL(x ′)][θ (−x)eikxc

†
R(x)|0〉

+ θ (−x)e−ikx+iϕc
†
L(x)|0〉], (A16)

= h̄

∫ 0+

−∞
dx ′ δ(x ′)[i2vge

iϕc
†
L(−x ′)cR(x ′)]θ (−x)eikxc

†
R(x)|0〉

+ h̄

∫ 0+

−∞
dx ′ δ(x ′)[−i2vge

−iϕc
†
R(−x ′)cL(x ′)]θ (−x)

× e−ikx+iϕc
†
L(x)|0〉, (A17)

= −ih̄2vgδ(x)θ (x)eikxc
†
R(x)|0〉 + ih̄2vgδ(x)θ (x)

× e−ikx+iϕc
†
L(x)|0〉, (A18)

so with δ(x)θ (x) → 1
2δ(x), one has

Hb|ψ〉 = −ih̄vgδ(x)eikxc
†
R(x)|0〉+ ih̄vgδ(x)e−ikx+iϕc

†
L(x)|0〉,

(A19)

so the proposed boundary Hamiltonian given by Eq. (8)
satisfies the condition given in Eq. (A15).

3. Derivation of delay-differential equations for atomic response

In this section, we derive Eqs. (11) and (18) for the atomic
excitation in the waveguide QED [Fig. 2(a)] and cavity QED
[Fig. 2(c)] cases, respectively. Equations (11) and (18) describe
the temporal behavior in a manner that can be computed very
efficiently when compared with the full equations of motion
(10) or (17).

a. Waveguide QED

Here we derive Eq. (11) for the atomic excitation in the
waveguide QED case. When there are no initial photonic
modes and the atom is initially excited, right-moving modes
will exist only in the region −d < x < 0, while left-moving
modes will exist in two distinct functional forms in the
regions x < −d and −d < x < 0. Since the waveguide is
nondispersive, the functions describing the photonic modes
in each region will be functions only of t − x/vg (for right-
moving modes) or t + x/vg (for left-moving modes). So, the
photonic amplitudes φR(x,t) and φL(x,t) can be written

φR(x,t) = [θ (x + d) − θ (x)]fR(t − x/vg), (A20)

φL(x,t) = [θ (x + d) − θ (x)]fL(t + x/vg)

+ θ [−(x + d)]gL(t + x/vg), (A21)

where θ (·) is a step function and fR(t − x/vg), fL(t + x/vg),
and gL(t + x/vg) describe photonic modes moving to the right
(−) or left (+) in each region.

Using the forms given by Eqs. (A20) and (A21) in Eq. (10a),
one has

i[θ (x + d) − θ (x)]
∂

∂t
fR(t − x/vg)

= −ivg[δ(x + d) − δ(x)]fR(t − x/vg)

− ivg[θ (x + d) − θ (x)]
∂

∂x
fR(t − x/vg)

− i2vge
−iϕδ(x){[θ (x + d) − θ (x)]fL(t + x/vg)

+ θ [−(x + d)]gL(t + x/vg)} + V δ(x + d)e2(t)e−iω12t ,

(A22)
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but by the chain rule, ∂
∂t

= ∂
∂(t−x/vg ) and ∂

∂x
= − 1

vg

∂
∂(t−x/vg ) , so

the left-hand side of Eq. (A22) cancels the second term on the
right-hand side, yielding

ivg[δ(x + d) − δ(x)]fR(t − x/vg)

= −i2vge
−iϕδ(x){[θ (x + d) − θ (x)]fL(t + x/vg)

+ θ [−(x + d)]gL(t + x/vg)} + V δ(x + d)e2(t)e−iω12t .

(A23)

Now, considering terms proportional to δ(x + d) in Eq. (A23),
one obtains

fR(t + d/vg) = − iV

vg

e2(t)e−iω12t , (A24)

so

fR(t) = − iV

vg

e2(t − d/vg)e−iω12(t−d/vg ), (A25)

and considering terms proportional to δ(x) in Eq. (A23), one
obtains

fR(t) = e−iϕfL(t), (A26)

so

fL(t) = − iV

vg

e2(t − d/vg)e−iω12(t−d/vg )+iϕ (A27)

or

fL(t − d/vg) = − iV

vg

e2(t − 2d/vg)e−iω12(t−2d/vg )+iϕ.

(A28)

Now, using the forms given by Eqs. (A20) and (A21) in
Eq. (10b), one obtains

i[θ (x + d) − θ (x)]
∂

∂t
fL(t + x/vg) + iθ [−(x + d)]

∂

∂t
gL(t + x/vg)

= ivg[δ(x + d) − δ(x)]fL(t + x/vg) + ivg[θ (x + d) − θ (x)]
∂

∂x
fL(t + x/vg) − ivgδ(x + d)gL(t + x/vg)

+ ivgθ [−(x + d)]
∂

∂x
gL(t + x/vg) + i2vge

iϕ[θ (x + d) − θ (x)]fR(t − x/vg) + V δ(x + d)e2(t)e−iω12t . (A29)

Again, using the chain rule, the left-hand side of Eq. (A29) cancels with the right-hand side terms proportional to ∂/∂x, yielding

−ivg[δ(x + d) − δ(x)]fL(t + x/vg) + ivgδ(x + d)gL(t + x/vg)

= i2vge
iϕ[θ (x + d) − θ (x)]fR(t − x/vg) + V δ(x + d)e2(t)e−iω12t . (A30)

Considering terms proportional to δ(x) in Eq. (A30) will only
recover Eq. (A26). Considering terms proportional to δ(x + d),
one has

−ivgfL(x − d/vg) + ivggL(t − d/vg) = V e2(t)e−iω12t ,

(A31)

so combining Eqs. (A28) and (A31), one has

gL(t − x/vg) = − iV

vg

e2(t − 2d/vg)e−iω12(t−2d/vg )+iϕ

− iV

vg

e2(t)e−iω12t . (A32)

Finally, using the forms given by Eqs. (A20) and (A21) in
Eq. (10c), one has

iė2(t) = V {[θ (0) − θ (−d)]fR(t + d/vg)

+ [θ (0) − θ (−d)]fL(t − d/vg)

+ θ (0)gL(t − d/vg)}eiω12t . (A33)

So, using θ (0) = 1/2 and combining Eqs. (A33), (A24), (A28),
and (A32), one obtains a single first-order delay-differential
equation for the atomic excitation

ė2(t) + g0e2(t) + g0θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ = 0,

(A34)

where θ (·) comes in as a consequence of the round-trip
propagation delay and T = d/vg is the propagation time
between the atom and the boundary. This delay-differential
equation encapsulates in a much simpler way the spontaneous
emission behavior of the system when compared with the full
equations of motion (10). Note that the governing equation
(1) for a bi-infinite waveguide can be recovered by setting the
delayed term to zero.

b. Cavity QED

For the cavity QED case, we begin by differentiating both
sides of Eq. (17d) with respect to time to get

ë2(t)ei�t + i�ė2(t)ei�t = −igėc(t). (A35)

The photonic modes can again be written as

φR(x,t) = [θ (x + d) − θ (x)]fR(t − x/vg), (A36)

φL(x,t) = [θ (x + d) − θ (x)]fL(t + x/vg)

+ θ [−(x + d)]gL(t + x/vg), (A37)

so following a procedure analogous to that given in the
previous section, one obtains

fR(t + d/vg) = − iVc

vg

ec(t)e−iωct , (A38)
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fL(t − d/vg) = − iVc

vg

ec(t − 2d/vg)e−iωc(t−2d/vg )+iϕ, (A39)

gL(t − d/vg) = − iVc

vg

ec(t − 2d/vg)e−iωc(t−2d/vg )+iϕ

− iVc

vg

ec(t)e−iωct , (A40)

and using the forms given by Eqs. (A36) and (A37) in
Eq. (17c), one has

iė2(t) = Vc{[θ (0) − θ (−d)]fR(t + d/vg)

+ [θ (0) − θ (−d)]fL(t − d/vg)

+ θ (0)gL(t − d/vg)}eiωct + ge2(t)ei�t . (A41)

So, using θ (0) = 1/2 and combining Eqs. (A38), (A39), (A40),
and (A41), one has

iėc(t) = −i�ec(t) − i�θ (t − 2T )ec(t − 2T )ei2ωcT +iϕ

+ ge2(t)ei�t , (A42)

where � = V 2
c /vg . Now, rearranging Eq. (17d) yields

ec(t) = i

g
ė2(t)ei�t . (A43)

Combining Eqs. (A42) and (A43), one has

ėc(t) = − i�

g
ė2(t)ei�t − i�

g
θ (t − 2T )ė2(t − 2T )ei�t+i2ω12T +iϕ

− ige2(t)ei�t . (A44)

Finally, combining Eqs. (A35) and (A44), one obtains

ë2(t) + (� + i�)ė2(t) + �θ (t − 2T )ė2(t − 2T )ei2ω12T +iϕ

+g2e2(t) = 0, (A45)

where T = d/vg .

c. Dissipation

Dissipation can be included in the waveguide QED case
by setting Ha → Ha − ih̄γ0a

†
2a2 in Eq. (6), which leads to

a term −iγ0e2(t) on the right-hand side of Eq. (10c). From
there, repeating the procedure in Appendix A 3a recovers the
governing delay-differential equation (19) for the waveguide
QED case with a boundary

ė2(t) + (g0 + γ0)e2(t) + g0θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ

= 0. (A46)

The effect of dissipation for the waveguide QED case without
a boundary is then obtained by setting the delayed term to
zero:

ė2(t) + (g0 + γ0)e2(t) = 0. (A47)

The total decay rate is simply a sum of the rates of decay into
the waveguide g0 and decay into nonguided modes (as well
as nonradiative decay) γ0 since they are the same mechanism
from the point of view of the atom.

For the cavity QED case, dissipation is included by setting
Ha → Ha − ih̄γ a

†
2a2 as for the waveguide QED case and

Hc → Hc − ih̄γca
†
cac in Eq. (13), which will introduce the

terms −iγ e2(t) and −iγcec(t) on the right-hand sides of
Eqs. (17d) and (17c), respectively. Repeating the procedure

in the previous section with the modified equations of motion
produces the governing equation (20) for the cavity QED case
with a boundary

ë2(t) + (� + i� + γc + γ )ė2(t)

+�θ (t − 2T )ė2(t − 2T )ei2ω12T +iϕ

+ [g2 + γ (� + i� + γc)]e2(t)

+ γ�θ (t − 2T )e2(t − 2T )ei2ω12T +iϕ = 0. (A48)

The effect of dissipation for the cavity QED case without a
boundary is obtained by again setting the delayed terms to
zero:

ë2(t) + (� + i� + γc + γ )ė2(t)

+ [g2 + γ (� + i� + γc)]e2(t) = 0. (A49)

4. Spectral representation of atomic response

When the atom is initially excited with no photon present,
the state at time t = 0 in either the waveguide or cavity QED
case will be

|ψ(t = 0)〉 = a
†
2|0〉. (A50)

The time evolution of the state is then obtained by applying
the time evolution operator e−i(H/h̄)t :

|ψ(t)〉 = e−i(H/h̄)t |ψ(0)〉, (A51)

in each case. In the following, we project the initial state onto
the normalized energy eigenstates for both waveguide and
cavity QED cases to evaluate the action of the time evolution
operator.

a. Waveguide QED

For waveguide QED as shown in Fig. 2(a), the energy
eigenstate of the system is given by

|ψ+〉 =
∫ 0

−∞
dx φ+

R (x,t)e−iω1t c
†
R(x)a†

1|0〉

+
∫ 0

−∞
dx φ+

L (x,t)e−iω1t c
†
L(x)a†

1|0〉

+ e+
2 (t)e−iω2t a

†
2|0〉. (A52)

For |ψ+〉 to be an eigenstate requires the time dependencies

φ+
R (x,t) = φ+

R (x)e−iωt , (A53)

φ+
L (x,t) = φ+

L (x)e−iωt , (A54)

e+
2 (t) = e2(ω)e−i(ω−ω12)t , (A55)

so that all terms in the state oscillate with the same frequency.
Here, the total energy is h̄(ω + ω1), corresponding to a photon
with frequency ω and the atomic ground state. Now we make
the ansatz on the spatial form of the scattering states

φ+
R (x) = ei(ω/vg )xθ [−(x + d)]

+ t1(ω)ei(ω/vg)x(θ [x + d] − θ [x]), (A56)

φ+
L (x) = t2(ω)e−i(ω/vg)x+iϕθ [−(x + d)]

+ t1(ω)e−i(ω/vg)x+iϕ(θ [x + d] − θ [x]), (A57)
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where t1(ω), t2(ω), and e2(ω) are transmission and excitation
amplitudes. Solving the equations of motion (10) with the
specified scattering states yields the transmission and excita-
tion amplitudes

t1(ω) = (ω − ω12)

(ω − ω12) + ig0(1 + ei(2ωT +ϕ))
, (A58)

t2(ω) = (ω − ω12) − ig0(1 + e−i(2ωT +ϕ))

(ω − ω12) + ig0(1 + ei(2ωT +ϕ))
, (A59)

e2(ω) =
√

vgg0(1 + ei(2ωT +ϕ))e−iωT

(ω − ω12) + ig0(1 + ei(2ωT +ϕ))
. (A60)

The normalized eigenstate |ψ̂+〉 will then be

|ψ̂+〉 = 1

〈ψ+|ψ+〉1/2
|ψ+〉, (A61)

where the quantity 〈ψ+|ψ+〉 is given by

〈ψ+|ψ+〉 = L + 2d|t1(ω)|2 + |e2(ω)|2, (A62)

where the x domain has been artificially restricted to [−L/2,0]
for convenience while computing the normalized eigenstate.
The semi-infinite waveguide will be recovered by letting L →
∞ at the end of the calculation.

At the artificial boundary x = −L/2, the boundary condi-
tion

φ+
R (x = −L/2) = φ+

L (x = −L/2) (A63)

is enforced, resulting in the condition

e−i(ω/vg )L/2 = t2e
i(ω/vg )L/2+iϕ, (A64)

so

t2e
i(ω/vg )L+iϕ = 1 = ei2πn, (A65)

where n ∈ Z. Furthermore, since |t2(ω)|2 = 1, t2 can be
written as

t2(ω) = eiς(ω), (A66)

where ς (ω) is given by

ς (ω) = 2 arctan

(
ω̂2

12 − 2g0ω̂ sin a − 2g2
0 cos a − g2

0(1 + cos 2a)

ω̂2
12 − 2g0ω̂12 sin a + 2g2

0(1 + cos a) − 2g0ω̂12 − 2g0ω̂12 cos a + 2g2
0 sin a + g2

0 sin 2a

)
, (A67)

where the shorthand ω̂12 ≡ (ω − ω12) and a ≡ 2ωT + ϕ have
been used for convenience.

Now, from Eq. (A65)

ei(ω/vg )L+iϕ+iς(ω) = ei2πn, (A68)

so

(ω/vg)L + ϕ + ς (ω) = 2πn, (A69)

so the derivative dn
dω

is given by

dn

dω
= 1

2π

(
L/vg + dς

dω

)
, (A70)

= 1

2πvg

(
L + 2d|t1(ω)|2 + |e2(ω)|2) , (A71)

= 1

2πvg

〈ψ+|ψ+〉. (A72)

Now, this result can be used to project the initial state given
in Eq. (A50) onto the normalized eigenstate

|ψ(0)〉 =
(∑

n

|ψ̂+
o 〉〈ψ̂+

o |
)

|ψ(0)〉, (A73)

=
∑

n

1

〈ψ+|ψ+〉〈ψ
+
o |ψ(0)〉|ψ+

o 〉, (A74)

=
∫

dn
1

〈ψ+|ψ+〉〈ψ
+
o |ψ(0)〉|ψ+

o 〉, (A75)

= 1

2πvg

∫
dn

dω

dn
〈ψ+

o |ψ(0)〉|ψ+
o 〉, (A76)

= 1

2πvg

∫
dω〈ψ+

o |ψ(0)〉|ψ+
o 〉, (A77)

where |ψ+
o 〉 ≡ |ψ+(t = 0)〉. Additionally, one has

〈ψ+
o |ψ(0)〉 = e∗

2(ω), (A78)
so

|ψ(0)〉 = 1

2πvg

∫
dω e∗

2(ω)|ψ+
o 〉. (A79)

The state will then evolve according to Eq. (A51):

|ψ(t)〉 = e−i(H/h̄)t |ψ(0)〉, (A80)

= 1

2πvg

∫
dω e∗

2(ω)e−i(H/h̄)t |ψ+
o 〉. (A81)

Acting on an eigenstate, H |ψ〉 = h̄(ω + ω1)|ψ〉, so the
time-dependent state becomes

|ψ(t)〉 = 1

2πvg

∫
dω e−i(ω+ω1)t e∗

2(ω)|ψ+
o 〉. (A82)

Finally, the time-domain atomic excitation is

e2(t) = 〈0|a2|ψ(t)〉eiω2t , (A83)

= 1

2πvg

∫
dω e−i(ω−ω12)t |e2(ω)|2 , (A84)

= 1

2πvg

∫
dω e−i(ω−ω12)t

×
∣∣∣∣∣

√
vgg0(1 + ei(2ωT +ϕ))e−iωT

(ω − ω12) + ig0(1 + ei(2ωT +ϕ))

∣∣∣∣∣
2

, (A85)
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= 1

2π

∫
dω e−i(ω−ω12)t 2g0 [1 + cos(2ωT + ϕ)]

(ω − ω12)2 − 2g0(ω − ω12) sin(2ωT + ϕ) + 2g2
0 [1 + cos(2ωT + ϕ)]

. (A86)

So the time-domain excitation when the atom is initially
excited is essentially related to the ω-domain excitation am-
plitude through the Fourier transform, as would be expected,
but it is the transform of the square amplitude of the excitation
spectrum that gives the correct time-domain excitation.

b. Cavity QED

For the cavity QED case as in Fig. 2(c), the energy
eigenstate of the system is given by

|ψ+〉 =
∫ 0

−∞
dx φ+

R (x,t)e−iω1t c
†
R(x)a†

1|0〉

+
∫ 0

−∞
dx φ+

L (x,t)e−iω1t c
†
L(x)a†

1|0〉

+ e+
c (t)e−i(ωc+ω1)t a

†
1a

†
c |0〉 + e+

2 (t)e−iω2t a
†
2|0〉. (A87)

As for the waveguide QED case, |ψ+〉 being an eigenstate
requires

φ+
R (x,t) = φ+

R (x)e−iωt , (A88)

φ+
L (x,t) = φ+

L (x)e−iωt , (A89)

e+
c (t) = ec(ω)e−i(ω−ωc)t , (A90)

e+
2 (t) = e2(ω)e−i(ω−ω12)t , (A91)

where the total energy is again h̄(ω + ω1). Here, φ+
R (x) and

φ+
L (x) are again given by

φ+
R (x) = ei(ω/vg )xθ [−(x + d)] + t1(ω)ei(ω/vg)x(θ [x + d]

− θ [x]), (A92)

φ+
L (x) = t2(ω)e−i(ω/vg)x+iϕθ [−(x + d)]

+ t1(ω)e−i(ω/vg)x+iϕ(θ [x + d] − θ [x]), (A93)

which, when used to solve the equations of motion (17),
yields

t1(ω) = (ω − ω12)(ω − ωc) − g2

(ω − ω12)[(ω − ωc) + i�(1 + ei2ωT +iϕ)] − g2
,

(A94)

t2(ω) = (ω − ω12)[(ω − ωc) − i�(1 + e−i2ωT −iϕ)] − g2

(ω − ω12)[(ω − ωc) + i�(1 + ei2ωT +iϕ)] − g2
,

(A95)

ec(ω) =
√

vg�(ω − ω12)(1 + ei2ωT +iϕ)e−iωT

(ω − ω12)[(ω − ωc) + i�(1 + ei2ωT +iϕ)] − g2
,

(A96)

e2(ω) = g
√

vg�(1 + ei2ωT +iϕ)e−iωT

(ω − ω12)[(ω − ωc) + i�(1 + ei2ωT +iϕ)] − g2
.

(A97)

By using the same boundary conditions as in
Appendix A 4a, but with the cavity QED case eigenstate and
scattering and excitation amplitudes, the projection of the
initial state onto the normalized eigenstates is again found
to be

|ψ(0)〉 = 1

2πvg

∫
dω e∗

2(ω)|ψ+
o 〉, (A98)

so

|ψ(t)〉 = 1

2πvg

∫
dω e−i(ω+ω1)t e∗

2(ω)|ψ+
o 〉. (A99)

Finally, the time-domain atomic excitation for the cavity QED
case is

e2(t) = 〈0|a2|ψ(t)〉eiω2t , (A100)

= 1

2πvg

∫
dω e−i(ω−ω12)t |e2(ω)|2 , (A101)

= 1

2πvg

∫
dω e−i(ω−ω12)t

∣∣∣∣∣ g
√

vg�(1 + ei2ωT +iϕ)e−i(ωT

(ω − ω12)[(ω − ωc) + i�(1 + ei2ωT +iϕ)] − g2

∣∣∣∣∣
2

, (A102)

= 1

2π

∫
dω e−i(ω−ω12)t 2g2� [1 + cos(2ωT + ϕ)]

(g2 − ω̂12ω̂c)2 + 2�ω̂12(g2 − ω̂12ω̂c) sin(2ωT + ϕ) + 2�2ω̂2
12 [1 + cos(2ωT + ϕ)]

. (A103)

Again, the time-domain excitation is analogous to
the Fourier transform of the steady state excitation
amplitude.

5. Derivation of expressions for output photonic modes

The emitted wave forms can be found by projecting onto
the normalized energy eigenstates and then evolving the state
in time, as in the previous section.
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a. Waveguide QED

The overall time dependence of the state when the atom
is initially excited is given in Eq. (A82). The left-moving
photonic wave form is therefore given by

φL(x,t) = 〈0|cL(x)a1|ψ(t)〉eiω1t (A104)

= 1

2πvg

∫
dω e∗

2(ω)e−iωt e−iωx/vg+iϕ{t2θ [−(x + d)]

+ t1(θ [x + d] − θ [x])}. (A105)

Taking “emitted” photonic modes as those to the left of the
atom, one has

φout(x,t) = φL(x < −d,t). (A106)

The photonic output is then

φout(t + x/vg) = eiϕ

2πvg

∫
dω e−iω(t+x/vg )e∗

2(ω)t2(ω)

(A107)

= eiϕ

2πvg

∫
dω e−iω(t+x/vg )

√
vgg0(1 + e−i(2ωT +ϕ))eiωT

(ω − ω12) + ig0(1 + ei(2ωT +ϕ))
,

(A108)

which can be used to compute the emitted photonic wave forms
for the waveguide QED case as presented in Sec. III C2.

b. Cavity QED

Again defining the emitted photonic modes to be left-
moving modes to the left of the cavity and using the
transmission and excitation amplitudes from Appendix A 4b,
the emitted photonic wave form is

φout(t + x/vg) = eiϕ

2πvg

∫
dω e−iω(t+x/vg )e∗

2(ω)t2(ω)

(A109)

= eiϕ

2πvg

∫
dω e−iω(t+x/vg )

× g
√

vg�(1 + e−i(2ωT +ϕ))eiωT

(ω − ω12)[(ω − ωc) + i�(1 + ei(2ωT +ϕ)] − g2
,

(A110)

which can be used to compute the emitted photonic wave forms
for the cavity QED case.
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