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Intradot time scales strongly affect the relaxation dynamics in quantum dot lasers
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We analyze an electron-hole asymmetry model for simultaneous two-state operation in semiconductor quantum
dot lasers. From the linearized equations, we determine simple analytical expressions for the relaxation oscillation
(RO) frequencies. Of particular interest is the fact that different expressions for the RO frequencies are obtained
depending on the relative values of the photon lifetime and the basic time scale of the nonlinear intradot interaction.
If comparable, we find only one frequency that depends on a combination of the two-state intensities.

DOI: 10.1103/PhysRevA.87.063827 PACS number(s): 42.60.Rn, 42.55.Px, 78.67.Hc

I. INTRODUCTION

Semiconductor quantum dot (QD) lasers are extensively
studied for applications in future telecommunications systems.
Compared to the advantages of the quantum well laser
that preceded it, improvements in modulation bandwidth,
lasing threshold, relative intensity noise, and temperature
insensitivity have all been observed [1]. The discrete structure
of the energy levels in QD allows simultaneous lasing at the
ground (GS) and excited (ES) states [2]. At low currents,
the recombination of a GS electron-hole pair results in GS
emission. Increasing the injection current leads to a larger
population of the ES, to the appearance of a second threshold,
and to dual (simultaneous) lasing in both the GS and the
ES. The simultaneous lasing has been already investigated
in steady-state operations [3,4], in specific dynamical regimes
[5–7], and mode locking [8,9]. But analytical investigations
such as determining a physically relevant expression for the
relaxation oscillation (RO) frequency is still missing. In this
paper, we propose such an analysis starting from a full rate
equation model that takes care of both the emissions from the
GS and ES.

Damped ROs is a key observation for all semiconductor
lasers as well as for other class B lasers that include solid
state and CO2 lasers [10]. The weak damping of the ROs
compared to the time scale of the oscillations also explains
why the laser is highly sensitive to external perturbations. In
particular, a periodic modulation at a frequency close to the RO
frequency leads to a significant resonant response that is used
for many applications in optical communications, data storage,
environmental monitoring, etc. More resonant frequencies
appear in the multimode regime of operation and result from
the mode-to-mode coupling. These frequencies are known
as antiphase RO frequencies as the perturbed lasing modes
slowly oscillate back to the steady state with phase-shifted
oscillations [11].

The ROs in a single-mode QD laser operating at the GS
were analytically examined in detail [12,13]. In this paper,
we analyze an electron-hole asymmetry model for two-state
lasing which has been first suggested in Ref. [3] and determine
an approximation of the RO based on the natural values of the
laser parameters. We find that the capture and escape processes
between the GS and ES may have a pronounced effect on the
ROs. Specifically, we find a significant increase of the RO

frequency with the appearance of simultaneous lasing at both
GS and ES, as has been previously observed experimentally
[14]. This effect can be important for multiple technological
applications with a high speed modulated optical signal.

The objective of this paper is twofold. We first substantiate
the experimental results in Ref. [14] by finding that the RO
frequency in the two-state lasing regime is not a function
of the total intensity, as we naively could expect. Second,
we emphasize the role of an additional material time scale
provided by the intradot interactions. This time scale needs to
be compared to the carrier lifetimes in order to properly derive
the RO frequency.

The plan of the paper is as follows. The model rate
equations are introduced in Sec. II. The steady-state solu-
tions are determined analytically in Sec. III and a relevant
approximation for the intensities is derived. In Sec. IV, we
investigate the linearized equations and determine two distinct
approximations of the RO frequency. Our approximations
are compared to the numerical solutions obtained from the
linearized equations. The validity of our analysis and future
plans are discussed in Sec. V.

II. RATE EQUATIONS

The electron-hole asymmetry model consists of rate equa-
tions for the electromagnetic field intensities (Ig,ex) and GS
and ES occupational probabilities for electrons and holes
(ng

e,h,n
ex
e,h), and the carriers in a wetting layer (we,h). The

model equations are an extension of the equations formulated
in Ref. [3] that includes contributions from the wetting layer.
In dimensionless form, they are given by
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where the dot means differentiation with respect to t ≡ t ′/τph.
t ′ is the original time and τph is the photon lifetime. η ≡
τphτ

−1 � 1, where τ denotes the carrier recombination time.
The factors 2 and 4 account for the degeneracy in the QD
energy levels. J is the pump current per dot. The gains
2g(ng

e + n
g

h − 1) and 4g(nex
e + nex

h − 1) are defined by the
dot population and a g factor. We define g as the effective
gain factor scaled to the cavity losses, and assume the gain
factors and the cavity losses to be identical for both GS
and ES. The nonlinear interaction Fe,h ≡ Be,hn

ex
e,h(1 − n

g

e,h) −
Ce,hn

g

e,h(1 − nex
e,h) between the different states is provided by

the Pauli blocking factor (1 − n
g,ex
e,h ). Be,h(Ce,h) and Bw

e,h(Re,h)
are defined as the capture (escape) rates to (from) the GS
and the ES, respectively. The charge neutrality remains fully
preserved in the model.

The model (1)–(5) supports the GS intensity decrease
during the simultaneous lasing regime for a specific range of
values of the parameters but is too complicated for analytical
investigations. We consider a number of simplifications which
qualitatively preserve the dynamical properties of the full rate
equations model and which allow us to determine analytical
expressions of physical significance. Specifically, we assume
a direct pumping of the ES from the wetting layer represented
by the rates J , and replace Bw

e,hwe,h(1 − nex
e,h) with J (1 − nex

e,h)
in Eq. (4). The slowness of the recombination processes
motivates neglecting the terms n

g,ex
e n

g,ex
h . We assume that

electrons and holes are captured with the same rates Be =
Bh = B. To determine the escape rates Ce,h, we use the
Kramers relation [15] linking the capture Be,h and the escape
Ce,h rates,

Ce,h = Be,h exp(−�Ee,h/κBT ), (6)

where κB is the Boltzmann constant and T is the plasma
temperature. We assume that the electron mass is ten times
the hole mass, and estimate the hole and electron energy
level spacing as �Eh ≈ 5 meV and �Ee ≈ 50 meV. At
room temperature, κBT = 25 meV, so that �Eh � κBT and
�Ee � κBT . It leads to the approximation Ce = 0 and Ch =
B, and the electron-hole redistribution rate asymmetry [3].
Typical values of the recombination time (1 ns), GS capture
time (10 ps), and the photon lifetime (10 ps) imply η = 0.01
and B = 100.

These assumptions then lead to the following reduced
model:
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FIG. 1. Bifurcation diagram of steady states. A single GS lasing
state emerges at the laser threshold Jth ≈ 1.8 and undergoes a
secondary bifurcation to a two-lasing state at Jgs ≈ 4. Solid and
dashed lines denote stable and unstable solutions. The values of the
parameters are g = 0.75, B = 100, Rh = 0.75, and Re = 1.

The model (7)–(12) fully preserves the intradot interactions
limited by the Pauli blocking factor. Understanding the impact
of these interactions on the dynamical properties of a QD laser
is precisely the objective of our work. Mathematically, our
dynamical problem depends on two small parameters, namely,
η and B−1. Physically, these two parameters are the normalized
photon lifetime τphτ

−1 and the normalized capture time τcτ
−1.

The parameter η ≈ 10−3 − 10−2 describes the slow relaxation
of the carriers with respect to the photon lifetime, which is
a common feature for all semiconductor lasers. The value
of η affects the modulational bandwidth of these devices.
The parameter B−1 ≈ 10−2 measures the effectiveness of
the nonlinear intradot interaction. As we shall demonstrate,
different scalings between η and B−1 may lead to significantly
different RO frequencies.

III. STEADY STATES

In addition to the zero intensity solution, there exist three
nonzero intensity steady states, namely, (i) Ig �= 0, Iex = 0, (ii)
Ig �= 0, Iex �= 0, and (iii) Ig = 0, Iex �= 0. We are interested in
the transition from (i) to (ii) and the bifurcation properties
of the two-state regime (ii). The steady-state solutions can
be determined analytically and admit simple expressions in
the large B limit (fast capture rates). Fast capture rates are
observed for most QD lasers, and this limit will be used when
we determine approximations of the RO frequency in Sec. IV.

The single-mode GS regime (i) is stable up to a second
threshold where the ES lasing regime emerges. The GS
intensity increases with the injection current, as shown in
Fig. 1. It satisfies the following quadratic equation:

− Ig

2B

(
2J − 1

4g
Ig + Re

)

+
(

2g
J − 1

4g
Ig

J + Rh

− 1

)(
J − 1

4g
Ig

)
= 0. (13)
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Inserting Ig = 0 into Eq. (13) leads to the first laser
threshold given by

J = Jth ≡ Rh

2g − 1
. (14)

In the large B limit, a simple expression for Ig can be
determined from Eq. (13). We find

Ig ≈ 2 (2g − 1) (J − Jth) � 0. (15)

Equation (15) indicates that the intensity is an O(1) quantity
independent of B. Using Eq. (15), we determine approxima-
tions for n

g

e,h and nex
e,h from their exact expressions. They are

given by

nex
e = J + Rh

2g (J + Re)
, (16)

nex
h = n

g

h = 1

2g
, (17)

ng
e = 1 − 1

4gBnex
e

Ig. (18)

We note that nex
e depends on J , but quickly saturates at the

nex
e = 1/(2g) as J increases. nex

h and n
g

h are both independent
of J , in the first approximation. ng

e is close to 1, but the O(B−1)
correction term in (18) is important for the correct estimation
of the RO frequency in Sec. IV.

The two-state lasing regime (ii) strongly depends on all the
material parameters, namely, the gain factor g, and the capture
and escape rates B and Re,h. The two intensities are given by

Ig = B
4g − 3 − 2ε1

(2 + ε1)

1( 4g(2+ε2)
1+4g

+ 1
) > 0, (19)

Iex = 4gJ − 1 + 4g

(2 + ε2)
(J + Re) − Ig � 0, (20)

where ε1 ≡ Rh−Re

J+Re
and ε2 ≡ Re−Rh

J+Rh
. The second threshold

J = Jge is defined as the critical point where the two-state
regime appears as we progressively increase J from Jth. It
satisfies the conditions Iex = 0 and Ig > 0, which can be
solved analytically. Figure 2 shows Jge as a function of g

for two different values of B. All curves emerge from a critical
point (g,J ) = (gc,Jc) (dot in the figure) where the GS and
GS-ES thresholds coalesce. gc is given by

gc = 3Re + √
9R2

e + 8Re (Rh − Re)

8Re

, (21)

and Jc = Jth(gc) is given by (14). Jge increases almost linearly
with g and the slope increases with B. While both ε1,2 are
vanishing with J , Ig is proportional to 4g − 3 − 2ε1, which
is the main factor controlling the inequality in Eq. (19). It
underlines the effect of g and the difference |Re − Rh| which
appears in ε1.

If g = 3/4, Ig and Iex, given by (19) and (20), become

Ig = 1( 3(2+ε2)
4 + 1

) −2ε1B

(2 + ε1)
> 0, (22)

Iex = 3J − 4(J + Re)()

(
1

2 + ε2

)
− Ig � 0, (23)

which requires the condition ε1 < 0. Moreover, we note from
(22) that Ig is an O(1) quantity if |ε1| is O(B−1) small. This

FIG. 2. Second threshold. The critical pump rate Jge is shown
as a function of g for B = 100 and B = 200 (lines are labeled by
the value of B). The two curves emerge from a critical point where
Iex = Ig = 0 (dot in the figure). The values of the fixed parameters
are Rh = 0.75 and Re = 1.

implies that |Rh − Re| = O(B−1). In this case, Eqs. (22) and
(23) reduce to the expressions

Ig ≈ 2

5
B

Re − Rh

(J + Re)
, (24)

Iex ≈ J − 2Re − Ig > 0. (25)

In the large B limit, Eqs. (24) and (25) show that the GS
output intensity Ig decreases with J and vanishes in the limit
of large pumping currents. On the other hand, the ES output
Iex steadily increases.

If g �= 3/4, we find from (19) and (20) that both Ig and Iex

are O(B) large quantities in the large B limit, regardless of
the values of ε1 and ε2. Because of the inequality in (20), we
also need to assume J = O(B). If |Rh − Re| = O(B−1), we
may neglect ε1 and ε2 in (19) and (20) and formulate simpler
expression for the two intensities. They are given by

Ig = B

(
1 + 4g

1 + 12g

)(
4g − 3

2

)
> 0, (26)

Iex = 4g − 1

2
J − 4g + 1

2
Re − Ig � 0. (27)

The fact that J = O(B) implies that the second threshold
J = Jge increases to higher values as g progressively deviates
from g = 3/4 (g > 3/4). Moreover, Ig will progressively
become flatter. Figure 3 illustrates this evolution by showing
the diagram of the stable steady states for two different values
of g. This tendency is similar to the excitonic models of the
two-state lasing [2]. We find that larger values of the g factor
prevent the decrease of the GS output. It may explain that the
experimentally observed decrease of the GS for operation at
1.3 μm [2,3] is not reported for an operating wavelength of
1.5 μm [16]. The QD materials operating at 1.5 μm reportedly
possess a stronger gain (≈30 cm−1) compared to the gain
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FIG. 3. Bifurcation diagrams of the stable steady states.
B = 100, Rh = 0.75, and Re = 1. If g = 0.75, the secondary
bifurcation appears at J ≈ 4 and Ig decreases with J . If g > 0.75,
the secondary bifurcation point moves to higher amplitudes and Ig

approaches a constant.

(≈15 cm−1) of the QD materials with the wavelength centered
at 1.3 μm.

IV. RELAXATION OSCILLATIONS

The two RO frequencies of a two-mode class B laser
are known to exhibit some general properties [10,17].
Specifically, the largest frequency is determined by the total
intensity and the second frequency characterizes the energy
exchange between the two modes. Antiphase dynamics in
lasers resulting from the energy exchange has been observed
in numerous devices. The minimal requirements to observe
antiphase effects were derived in Ref. [18] and suggest a
strong spectral and spatial overlapping between the lasing
modes. The GS and ES lasing transitions, in the QD problem,
differ by � = 55 meV and the overlapping of the modes is
negligible. It is confirmed by experimentally observed weak
antiphase fluctuations at a low sub-MHz frequency [5]. The
frequency range of these antiphase fluctuations compared to
the GHz frequency range of RO suggests an extremely weak
cross coupling, which can be addressed to inhomogeneous

broadening. For these reasons, the dynamical properties of our
two-state QD laser are quite different from the one observed
for a conventional two-mode laser.

Our analysis distinguishes two cases. We first consider the
limit η → 0 (B fixed) which applies for all class B lasers
[11]. For the single GS lasing (Ig �= 0 and Iex = 0), the linear
stability analysis leads to an expression for the RO frequency
which is similar to the excitonic model [13],

ω = √
2Igη. (28)

Solving numerically the full characteristic equation, we find
a pair of complex eigenvalues with an imaginary part close
to the approximation (28) but only for very low values of
η (η = 10−4 and B = 102). If η = 10−2 and B = 102, we
numerically find a different frequency. For the two lasing states
(Ig �= 0 and Iex �= 0), the limit η → 0 (B fixed) leads to two
separated equations describing harmonic oscillations with the
frequencies

ωg,ex = √
2Ig,exη. (29)

Despite the fact that the two RO frequencies can be
sufficiently different, neither of the two frequencies can
be associated with an energy exchange between modes, as
we observe for conventional multimode lasers. Again, we
numerically find these frequencies only if η is sufficiently
small compared to B.

The approximations of (27) and (28) are correct if ηB is
sufficiently small but are not appropriate for the more realistic
experimental range where ηB = O(1). To properly analyze
this case, we need to relate the two small parameters η and
B−1. Specifically, we propose to scale η as η = B−1η1 where
η1 = O(1) and explore the limit B large of the linearized
equations. These scalings suggest that the photon lifetime τph

is similar to the capture time τcap, which is verified for most
QD lasers.

We introduce yg,ex and x
g,ex
e,h as the small deviations of

Ig,ex and n
g,ex
e,h from their steady-state values, respectively.

Equations (7)–(12) depend on many parameters and we limit
our linear stability analysis to the case g = 3/4 and ε1 =
O(B−1). The steady-state intensities Ig and Iex are then given
by Eqs. (24) and (25) in the large B limit. The linearized
equations are given by

ẏg = 2g
(
xg

e + x
g

h

)
Ig, (30)

ẏex = 4g
(
xex

e + xex
h

)
Iex, (31)

ẋg
e = η

[
2Bxex

e

(
1 − ng

e

) − 2Bnex
e xg

e

− (
ng

e + n
g

h − 1
)
yg − (

xg
e + x

g

h

)
Ig

]
, (32)

ẋex
e = η

[−Jxex
e − Rex

ex
e − Bxex

e

(
1 − ng

e

)
+Bnex

e xg
e − (

nex
e + nex

h − 1
)
yex−

(
xex

e + xex
h

)
Iex

]
,

(33)

ẋ
g

h = η
[
2B

(
xex

h − x
g

h

) − (
ng

e + n
g

h − 1
)
yg−

(
xg

e + x
g

h

)
Ig

]
,

(34)

ẋex
h = η

[−Jxex
h − Rhx

ex
h − B

(
xex

h − x
g

h

)
−(

nex
e + nex

h − 1
)
yex − (

xex
ex + xex

h

)
Iex

]
, (35)
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where Ig ,nex
e . . . now denote their steady-state values. In these

equations, we note that B multiplies (i) xex
e (1 − n

g
e ), (ii) x

g
e , (iii)

(xex
h − x

g

h ), and (iv) x
g

h . The first term is proportional to B−1

because of (18) and is O(1) if multiplied by the coefficient B.
The three other terms, however, need to be proportional to B−1

in order to counterbalance the effect of the large B coefficient.
To this end, we introduce the following variables:

xg
e = B−1zg

e , (36)

xex
h = u + B−1zex

h , (37)

x
g

h = u + B−1z
g

h. (38)

Inserting Eqs. (36)–(38) into Eqs. (30)–(35) leads to the
following problem:

ẏg = 2g
(
B−1zg

e + u + B−1z
g

h

)
Ig, (39)

ẏex = 4g
(
xex

e + u + B−1zex
h

)
Iex, (40)

B−1żg
e = η

[
xex

e

Ig

2gnex
e

− 2nex
e zg

e − yg

2g

− (
B−1zg

e + u + B−1z
g

h

)
Ig

]
, (41)

ẋex
e = η

[
−Jxex

e − Rex
ex
e − xex

e

Ig

4gnex
e

+nex
e zg

e − yex

4g
− (

xex
e + u + B−1zex

h

)
Iex

]
, (42)

u̇ + B−1ż
g

h = η

[
2
(
zex
h − z

g

h

) − yg

2g

− (
B−1zg

e + u + B−1z
g

h

)
Ig

]
, (43)

u̇ + B−1żex
h = η

[
− (J + Rh)

(
u + B−1zex

h

) − (
zex
h − z

g

h

)

−yex

4g
− (

xex
e + u + B−1zex

h

)
Iex

]
. (44)

Using (43) and (44), we determine an equation for zex
h − z

g

h.
We obtain

B−1
(
żex
h − ż

g

h

)

= η

[
− (J + Rh) u − 3

(
zex
h − z

g

h

) + 1

2g
yg + uIg

− 1

4g
yex − (

xex
e + u

)
Iex + O(B−1)

]
. (45)

Provided Bη is sufficiently large, we may eliminate x
g
e and

zex
h − z

g

h from Eqs. (40) and (44), respectively. The linearized
problem then reduces to four equations for the variables yg ,
yex, xex

e , and u. Neglecting all B−1 small terms and formulating
an equation for v ≡ yg + yex, we note that our four variable
equations can be reduced to the following three variable
equations for v, xex

e , and u:

v̇ = (2gIg + 4gIex)u + 4gIexx
ex
e , (46)

ẋex
e = η

[
− (J + Re + Iex) xex

e − v

4g
−u

(
Iex + Ig

2

)]
, (47)

u̇ = η

[
−2

3

(
J + Rh + Iex + 1

2
Ig

)
u− v

6g
− 2

3
xex

e Iex

]
. (48)

From the Jacobian of the last three equations, we determine
the characteristic equation for the growth rate λ. It is given by

λ3 − T1λ
2 + T2λ − T3 = 0, (49)

where

T1 = −(J + Re + Iex)η − 2

3

(
J + Rh + Iex + 1

2
Ig

)
η,

(50)

T2 = η

3
(Ig + 5Iex) + η2 2

3

[
(J + Re)

(
J + Rh + Iex + 1

2
Ig

)

+Iex (J + Rh)

]
, (51)

T3 = −η2

3
[2Iex(J + Rh) + (Ig + 2Iex)(J + Re)]. (52)

The Routh-Hurwitz conditions for a stable steady state are
T1 < 0, T3 < 0, and T1T2 − T3 < 0, which we have verified.
Equation (49) admits a pair of complex-conjugate eigenvalues.
The imaginary part provides the frequency of the decaying
oscillations. In the limit η → 0, it is given by

ω =
√

1

3
η(Ig + 5Iex). (53)

In summary, we found only one RO frequency for the full
range of pump currents, and, therefore, no energy exchange
between the two modes. The two modes are dynamically
identical. The appearance of the ES emission leads only to
the dramatic change of slope for the RO frequency versus
pump current, as shown in Fig. 4. We also analyzed the case
of the GS (Ig �= 0 and Iex = 0) and found (53) with Iex = 0
as the approximation of the RO frequency. In Fig. 4, we
compare the approximation (53) with their values obtained by
simulating numerically the linearized equations. Expression
(53) reveals a significant difference from the approximations

FIG. 4. (Color online) RO frequency. The RO frequency deter-
mined numerically (curve n) from Eqs. (7)–(12) is compared to
the frequency obtained analytically (curve a) from (53). The fixed
parameters are the same as in Fig. 1.
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(28) and (29). First, we note that ω = √
ηIg/3 if Iex = 0,

which is quantitatively different from (28). Second, the RO
frequency (53) is not a direct function of the total intensity
(Ig + Iex), as we may naively expect. The linear combination
of the GS and ES intensities (Ig + 5Iex) in (53) is different from
the total intensity by a factor 5. Our analysis distinguishes
two contributions to the factor, namely, the electron-hole
asymmetry, and the higher degeneracy in the ES energy levels.
The RO frequency (53) can be reformulated as

ω =
√

η
[

1
6 (2Ig + 4Iex) + 1

4 (4Iex)
]
. (54)

The role of the asymmetry relates to the difference between the
redistribution rates of the two types of carriers, which results
in the faster depopulation of the ES electron level. Therefore,
the two types of carriers contribute differently to the laser
relaxation process, which results in two terms in (54). The first
term ≈(2Ig + 4Iex) accounts for the relaxation of the holes.
The second term ≈(4Iex) relates to the relaxation dynamics
of the ES electrons. Both terms explicitly appear in (46).
The electron-hole asymmetry provides the most significant
contribution to the change of slope for the RO frequency versus
pump current.

On the other hand, the higher degeneracy generates a larger
ES differential gain, implying a higher contribution to the RO
frequency. The difference in the differential gains reveals itself
in the factors 2 and 4 in (2Ig + 4Iex), which naturally originate
from the degeneracy factors.

V. CONCLUSIONS

We analyze intradot interactions in a QD laser operat-
ing simultaneously at the GS and ES. The small values
of two dimensionless parameters, namely, the normalized
photon lifetime η = τphτ

−1 and the normalized capture time
B−1 = τcτ

−1, allowed us to determine approximations of the
RO frequency from a six-variable linear stability problem.
If ηB (B fixed) is sufficiently small, the two states are
lasing with independent frequencies that are determined by
their individual intensities. On the other hand, if ηB small
approaches O(1) quantities, a unique frequency appears which
depends on a linear combination of the two-state intensities.
This combination is not symmetric and reveals the complex
nature of the nonlinear intradot interactions. In future work,
we plan to consider the case ηB = O(1) in more detail
and evaluate both the RO frequencies and their damping
rates.
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