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Dynamical and phase-diagram study on stable optical pulling force in Bessel beams
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Based on the generalized Lorenz-Mie theory and Maxwell stress tensor formulism, we calculate the transverse
force constant matrix and perform a linear stability analysis on a spherical particle that is subject to negative
longitudinal optical force (NLOF) under the illumination of Bessel beams. Phase diagrams with respect to the
material parameters are presented, which exhibit the possibility of the appearance of NLOF. From dynamical
simulations of the particle performed both in the transverse plane and along the longitudinal direction, an even
clearer picture of the realization of stable NLOF is presented. It is shown that, due to rotation induced by the
orbital angular-momentum of light, higher order Bessel beams cannot stably confine a particle to the beam center
where NLOF occurs in the absence of ambient damping, which largely limits their applications for long-distance,
stable, backward particle transportation. On the other hand, zero-order Bessel beams can achieve stable transverse
confinement of the manipulated particle and act as an optical tractor beam per se. In addition, for a nonmagnetic
particle with relative permeability μ = 1, a Bessel beam with transverse electric polarization is more favorable
for the realization of NLOF than a transverse magnetic beam. Finally, a brief discussion is also presented of the
conditions under which an off-beam-axis particle could be suitable for backward transportation using NLOF.
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I. INTRODUCTION

There has been a surge of interest in negative optical
force [1–11] and negative acoustical force [12–15], where a
particle located in an optical or acoustical beam is subject to a
radiation force opposite to the direction of beam propagation.
The negative forces originate physically from the simultaneous
excitation of multipoles in the particle and the strong forward
scattering produced by the interference of these multipoles [4].
They provide for optical or acoustical manipulation [16–24]
with a novel third handle, optical (acoustical) pulling, in
addition to the conventional well-known optical trapping and
binding. However, nearly all attention has been focused on the
demonstration of negative optical force by searching in beam
and particle parameters, such as the numerical aperture and
polarization of operating beam, as well as the permeability,
permittivity, and size of particle, little has been done to study
the transverse trapping stability of the particle in regions where
negative longitudinal optical force (NLOF) occurs. Actually, if
the particle cannot be confined transversely within the region
where it is subject to NLOF, all the results of NLOF become
meaningless and irrelevant. For instance, regarding a beam
carrying orbital angular momentum (OAM) [25,26], while the
linear momentum of light exerts optical force on particles
under its illumination, the OAM of light can also be delivered
to particles, causing them to rotate, orbiting around the beam
center [24,27,28], which is unfavorable for stable trapping.
If the OAM-induced rotation dominates the restoring force
due, mainly, to the field intensity gradient, then the particle
may not be transversely confined near the point of the field
extrema where NLOF occurs, especially in the absence of
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ambient damping. It may even escape from the transverse trap
eventually, due to the accumulation of angular momentum
(AM) acquired from the beam [28], ruining the practical
scenarios of NLOF. As a result, the stability analysis on NLOF
is of great importance for its practical applications.

In this paper, we present a transverse linear stability
investigation of a spherical particle when it is subject to NLOF
under the illumination of Bessel beams [29–35]. A detailed
analysis is performed based on the phase diagrams with respect
to material parameters and the force constant matrix (FCM)
[28,36,37] as well as the dynamical simulations. The time-
averaged optical force that acts on the particle is calculated
via a surface integral of the time-averaged Maxwell stress
tensor over the surface of the sphere. The electromagnetic
fields involved in the Maxwell stress tensor are computed
by the rigorous and accurate generalized Lorenz-Mie theory
[38–40], where the field quantities are expanded in a series of
vector spherical wave functions (VSWFs) [4,28,36,37,41–45].
The formulations can be considered ab initio within classical
electrodynamics, in the sense that no approximation is required
(up to numerical truncation). Our results show that if one uses
Bessel beams [29–35] as the tractor beam, only a zero-order
Bessel beam can achieve stable on-axis transverse trapping
under both damping and undamping conditions. Although
first-order Bessel beams may provide greater NLOF for a
wider range of particle size and material parameters [4,6],
due to OAM carried by beams the particle cannot be confined
near the beam center without the help of ambient damping,
which may largely limit practical applications. Finally, we
also present a brief discussion on the conditions under which
an off-beam-axis-located particle can be attracted to the beam
center and pulled backward to the light source.

The rest of the paper is organized as follows. In Sec. II,
we briefly describe the formulation for calculation of the
optical force and the FCM based on the Lorenz-Mie theory and
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Maxwell stress tensor formalism. Analytical expressions for
calculation of FCM as well as the optical force are presented.
In Sec. III, we present the numerical results and discussion.
Based on the phase diagrams and dynamical simulations, it
is clearly demonstrated that due to the accompaniment of
OAM, higher order Bessel beams cannot achieve stable NLOF
in a dissipationless ambience, making them unfavorable for
practical applications. Finally, conclusions are summarized in
Sec. IV.

II. FORMULATIONS

In this section, we briefly recapitulate the generalized
Lorenz-Mie theory and Maxwell tensor formulism for cal-
culation of the optical force of a particle illuminated by Bessel
beams. Emphasis is placed on the calculation of the FCM and
its application to the linear stability analysis.

A. Calculation of optical force

A spherical particle of radius r placed in vacuum is
considered, which has relative dielectric permittivity ε and
relative magnetic permeability μ. It is illuminated by a Bessel
beam of order l and propagating along the z axis of the beam
coordinate system, with the electric field described by [30]

Ei(ρ,φ,z) = ic1 M (c)
l (ρ,φ,z) + c2 N (c)

l (ρ,φ,z), (1)

where (ρ,φ,z) denote the cylindrical coordinates and time
dependence e−iωt has been assumed and suppressed. The
vector cylindrical wave functions (VCWFs) M (c)

l (ρ,φ,z) and
N (c)

l (ρ,φ,z) are defined by [30]

M (c)
l (ρ,φ,z) =

[
il

ρ
Jl(aρ)eρ − aJ ′

l (aρ)eφ

]
eilφ+ibz,

(2)

N (c)
l (ρ,φ,z) = a2

k
Jl(aρ)eze

ilφ+ibz + ib

k
ez × M (c)

l ,

with Jl(x) and J ′
l (x) denoting, respectively, the Bessel function

of order l and the derivative with respect to its argument.
The coefficients c1 and c2 describe the complex amplitude
of the transverse electric (TE; with the electric field polar-
ized transverse to the propagation direction) and transverse
magnetic (TM; with the magnetic field polarized transverse
to the propagation direction) wave components, respectively.
Superposition of the TE and TM modes provides a general
propagation-invariant Bessel beam with complex polarizations
[30,32,34]. When decomposed into plane-wave components,
the Bessel beams given by Eq. (1) all have wave vectors of
plane waves lying on a cone surface characterized by the cone
angle α [30,32,34], with

a = k sin α and b = k cos α (3)

denoting the transverse and longitudinal wave numbers,
respectively, and k = ω/c being the wave number in vacuum.

Based on the generalized Lorenz-Mie theory, the incident
electromagnetic field illuminating the spherical particle is
expanded in terms of VSWFs centered at the particle, instead
of at the origin of the beam coordinate system. So the electric

field of the Bessel beam is cast into [46]

Ei = −
∑
n,m

in+1γmn

[
pmn N (s1)

mn + qmn M (s1)
mn

]
, (4)

where pmn and qmn are known as the partial wave expansion
coefficients of the incident beam [36,41–45]. Throughout this
paper,

∑
n,m denotes the summation of n from 1 to ∞ and of

m from −n to n, and

γmn =
[

2n + 1

n(n + 1)

(n − m)!

(n + m)!

]1/2

. (5)

The VSWFs N (s1)
mn and M (s1)

mn are based on spherical Bessel
functions [36,41–44] and centered at the particle. For the
incident Bessel beam, the partial wave expansion coefficients
can be obtained by expanding VCWFs in terms of VSWFs. To
study the case when the particle is located off the beam axis,
VCWFs should be expanded in terms of VSWFs that have a
different expansion center. The expansions have been worked
out recently [45] based on the angular spectrum representation
of an optical beam [47,48]. They are given by

M (c)
l (ρ,φ,z) =

∑
n,m

in+1γmn

[
p(b)

mn N (s1)
mn + q(b)

mn M (s1)
mn

]
,

(6)
N (c)

l (ρ,φ,z) =
∑
n,m

in+1γmn

[
q(b)

mn N (s1)
mn + p(b)

mn M (s1)
mn

]
,

where [45]

p(b)
mn = i−m Jl−m(aρ0) ei(l−m)φ0 π̃mn(cos α) eibz0 ,

(7)
q(b)

mn = i−m Jl−m(aρ0) ei(l−m)φ0 τ̃mn(cos α) eibz0 ,

with (ρ0,φ0,z0) denoting the cylindrical coordinates of the
particle center in the beam coordinate system. The z0 depen-
dence appearing as eibz0 has no effect on the optical force
and manifests the propagation-invariant property of Bessel
beams [34]. In the following, the z0 dependence is omitted for
simplicity. Two auxiliary functions in Eq. (7) are related to the
associated Legendre function of the first kind by

π̃mn(cos α) = γmn

mP m
n (cos α)

sin α
,

(8)

τ̃mn(cos α) = γmn

dP m
n (cos α)

dα
,

with

P m
n (x) = 1

2nn!
(1 − x2)m/2 dn+m

dxn+m
[(x2 − 1)n],

(9)

P −m
n (x) = (−1)m

(n − m)!

(n + m)!
P m

n (x).

It follows from Eqs. (1) and (6) that the partial wave expansion
coefficients in Eq. (4) read

pmn = −ic1p
(b)
mn − c2q

(b)
mn, qmn = −ic1q

(b)
mn − c2p

(b)
mn. (10)

The scattered field from the particle is also expanded in terms
of VSWFs centered at the particle

Es =
∑
n,m

in+1γmn

(
amn N (s3)

mn + bmn M (s3)
mn

)
, (11)

where N (s3)
mn and M (s3)

mn are VSWFs with their radial functions
characterized by spherical Hankel functions of the first
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kind [36,41–44] and centered at the particle. The scattering
coefficients amn and bmn are given by

amn = anpmn, bmn = bnqmn, (12)

with an and bn denoting the Mie coefficients [42] of the
particle.

With the partial wave expansion coefficients pmn and qmn

as well as the scattering coefficients amn and bmn, the time-
averaged optical force f = fxex + fyey + fzez acting on the
illuminated particle can be evaluated via a surface integral of
the time-averaged Maxwell stress tensor over the surface of
the particle [36,37,44,49–53]. When the background medium
is lossless, the integration can be performed at infinity, due
to conservation of momentum. This leads to much simplified
expressions [36,43,44,54–58], which read, using the notations
in the present paper,

fx = Re[F1], fy = Im[F1], fz = Re[F2]. (13)

The complex functions F1 and F2 are given by

F1 = 2πε0

k2

∑
n,m

[
c11F

(1)
1 + c12F

(2)
1 + c13F

(3)
1

]
,

(14)

F2 = −4πε0

k2

∑
n,m

[
c21F

(1)
2 + c22F

(2)
2

]
,

where ε0 is the permittivity of the lossless background medium,
and

F
(1)
1 = ãmnb̃

∗
m1n

+ b̃mnã
∗
m1n

− p̃mnq̃
∗
m1n

− q̃mnp̃
∗
m1n

,

F
(2)
1 = ãmnã

∗
m1n1

+ b̃mnb̃
∗
m1n1

− p̃mnp̃
∗
m1n1

− q̃mnq̃
∗
m1n1

,

F
(3)
1 = ãmn1 ã

∗
m1n

+ b̃mn1 b̃
∗
m1n

− p̃mn1 p̃
∗
m1n

− q̃mn1 q̃
∗
m1n

, (15)

F
(1)
2 = ãmnã

∗
mn1

+ b̃mnb̃
∗
mn1

− p̃mnp̃
∗
mn1

− q̃mnq̃
∗
mn1

,

F
(2)
2 = ãmnb̃

∗
mn − p̃mnq̃

∗
mn,

with m1 = m + 1, n1 = n + 1, a superscript asterisk denoting
the complex conjugate, and

ãmn = amn − 1
2pmn, p̃mn = 1

2pmn,
(16)

b̃mn = bmn − 1
2qmn, q̃mn = 1

2qmn.

The coefficients in Eq. (14) read

c11 =
[

(n − m)(n + m + 1)

n2(n + 1)2

]1/2

,

c12 = −
[

n(n + 2)(n + m + 1)(n + m + 2)

(n + 1)2(2n + 1)(2n + 3)

]1/2

,

c13 =
[
n(n + 2)(n − m)(n − m + 1)

(n + 1)2(2n + 1)(2n + 3)

]1/2

, (17)

c21 =
[
n(n + 2)(n − m + 1)(n + m + 1)

(n + 1)2(2n + 1)(2n + 3)

]1/2

,

c22 = m

n(n + 1)
.

B. Linear stability analysis

When a particle is located on the beam axis of the incident
Bessel beam, it is subject to a nonzero longitudinal optical
force, either being pushed along the beam propagation path
with fz > 0 or being pulled backward to the light source
with fz < 0 [2–11]. In the transverse plane, the particle is
in equilibrium due to the transverse field gradient. But this
transverse equilibrium can be stable, unstable, or quasistable
[28,36]. To realize any practical scenario for the application
of NLOF, stable transverse trapping must be fulfilled. In the
following, we summarize the basic formulism of a linear
stability analysis which is efficient in judging the stability
of a trapped particle.

Assume that a particle illuminated by a general optical beam
propagating along z is placed at its transverse equilibrium
with fx = fy = 0. When the particle deviates slightly from
the transverse equilibrium, the transverse optical force f t and
ambient damping force f d appear, which satisfies f = f t +
f d = K̂ 
x − γ d
x/dt , with 
x the small displacement of
the particle from the equilibrium and γ the ambient damping
constant. Due to the symmetry, x and y can be decoupled from
z. As a result, the submatrix K̂′ is a 2 × 2 transverse FCM in
the form

K̂′ =
[

k11 k12

k21 k22

]
, (18)

where all elements, given by kij = ∂fi/∂(
xj ), are real
numbers. Here fi = fx and fy and 
xi = 
x and 
y for
i = 1 and =2, respectively. When the diagonal elements,
k11 and k22, are both negative, they describe two restoring
forces, usually taken as the two transverse stiffness constants
in conventional approach. The off-diagonal element k12 (k21)
characterizes the optical force along the x (y) direction as
the particle is displaced along y (x). These forces cause the
particle to rotate around the beam axis [24,28,36]. For optical
beams carrying OAM, the light energy moves forward spirally
along the beam axis, giving rise to a rotating energy flux in
the transverse plane. The rotating energy flux will deliver a
torque on the particle, yielding the nonzero off-diagonal matrix
components k12 and k21 [24,28,36]. As a result, the stability
analysis for optical trapping should be started with the FCM,
rather than the scheme based solely on the diagonal elements
in the conventional approach [6].

The linear stability analysis is performed by diagonalizing
the FCM in Eq. (18) to obtain two eigenvalues:

λ± = (k11 + k22) ±
√

(k11 − k22)2 + 4k12k21

2
. (19)

They give the eigen–force constants (EFCs; or effective
transverse trap stiffnesses). In general, the eigenvalues can be
complex. If either of the eigenvalues has a positive real part,
then the transverse equilibrium is unstable. The stable equilib-
rium corresponds to two real and negative eigenvalues, where
transverse trapping can be simply characterized by two stiff-
ness constants along the principal axes that are determined by
the eigenvectors of K̂′. If, however, the eigenvalues turn out
to be a conjugate pair of complex numbers with negative real
part, then transverse trapping may not be naively characterized
by two real force constants. The occurrence of complex EFCs

063812-3



NENG WANG, JUN CHEN, SHIYANG LIU, AND ZHIFANG LIN PHYSICAL REVIEW A 87, 063812 (2013)

implies that the particle will orbit around the beam center with
accelerating angular speed and, eventually, escape from the
transverse trap in the absence of ambient dissipation, ruining
the applicability of NLOF.

The linear stability analysis is made simple with the ana-
lytical expressions of the partial-wave expansion coefficients
for general Bessel beams, given by Eqs. (7) and (10). Based
on these analytical expressions, their partial derivatives with
respect to x and y can be easily obtained:

p(b)
mn,x = ∂p(b)

mn

∂x
= −a i−m ei(l−m)φ0

×
[
J ′

l−m(aρ0) cos φ0 − i(l − m)

aρ0
Jl−m(aρ0) sin φ0

]
× π̃mn(cos α),

p(b)
mn,y = ∂p(b)

mn

∂y
= −a i−m ei(l−m)φ0

×
[
J ′

l−m(aρ0) sin φ0 + i(l − m)

aρ0
Jl−m(aρ0) cos φ0

]
× π̃mn(cos α),

q(b)
mn,x = ∂q(b)

mn

∂x
= −a i−m ei(l−m)φ0

×
[
J ′

l−m(aρ0) cos φ0 − i(l − m)

aρ0
Jl−m(aρ0) sin φ0

]
× τ̃mn(cos α),

q(b)
mn,y = ∂q(b)

mn

∂y
= −a i−m ei(l−m)φ0

×
[
J ′

l−m(aρ0) sin φ0 + i(l − m)

aρ0
Jl−m(aρ0) cos φ0

]
× τ̃mn(cos α).

(20)

where the z0 dependence eibz0 has been omitted. Then the
analytical expressions for the FCM follow straightforwardly
from Eqs. (13)–(17), considerably simplifying the linear
stability analysis in the next section.

III. RESULTS AND DISCUSSION

With the formulations given in the previous section, we
are ready to evaluate the optical force and FCM for a particle
located arbitrarily in a Bessel beam. Recently, Siler et al. [59]
discussed the behavior of a Rayleigh particle in a high-order
Bessel beam. And the motion of the particle in the transverse
plane was studied in their work. Here we study the behavior of
a particle of arbitrary size in both zero- and high-order Bessel
beams. The trajectories in both the transverse plane and the
longitudinal direction are shown.

A. Bessel beams carrying AM

We focus on the case where the particle is near the transverse
equilibrium at the beam axis. Due to the cylindrical symmetry
of Bessel beams, one has k11 = k22 and k12 = −k21. The
eigenvalues of the FCM reduce to

λ± = k11 ± ik12. (21)

Rewritten in radial and azimuthal components, the transverse
optical force near the beam axis becomes

f t = eρ fρ + eφ fφ = eρ k11d + eφ k12d for kd � 1,

(22)

where d = |
x| is the displacement of the particle from the
beam axis, and eρ and eφ denote the unit vectors in the radial
and azimuthal directions, respectively.

The transverse force given in Eq. (22) provides a transparent
method for stability analysis. If k11 > 0, the particle will be
driven away from the beam axis by the radial optical force
fρ > 0 upon any perturbation. This transverse equilibrium is
unstable and the NLOF near the beam axis in this case is
therefore useless. When k11 < 0 and k12 �= 0, the radial force
plays the role of restoring the force, dragging the particle
back to the beam axis when it drifts away. Nonvanishing
azimuthal force, however, induces and accelerates particle
rotation around the beam axis. If the ambient damping is not
large enough to dissipate the rotation energy, the particle will
deviate away from the beam axis due to the accumulation of
AM acquiring from the beam, adding considerably to the com-
plexity of optical pulling and largely limiting the applications.
The critical damping constant for realizing transverse trapping
is given by Refs. [28,36] γcritical = √

mp|Im(λ±)|/√|Re(λ±)|,
where mp is the mass of the particle, which means that for
γ > γcritical the particle can be bound to the beam axis. The
favorable case corresponds to k11 < 0 and k12 = 0, where only
negative radial optical force exists, and the particle will be
bound to the beam axis irrespective of the ambient damping.

The nonzero azimuthal optical force, which makes the
transverse equilibrium quasistable, is an inevitable result of
the existence of rotating energy flux [28,36]. For optical
vortex beams carrying AM, the resulting rotating energy flux
will exert a torque on the particle and result in a nonzero
k12. Furthermore, the polarization state of the beam can also
influence the value of k12 and we find that only a zero-order TE
or TM polarized beam can induce zero azimuthal optical force.
For Bessel beams, the rotating energy flux is independent of
φ, reading

〈Sφ〉 = 1

2
Re(E × H∗)φ = 1

2
J 2

l (aρ)

×
[

la2

kρ
(|c1|2 + |c2|2) − 2a3b

k2
Im (c1c

∗
2)D(1)

l (aρ)

]
,

(23)

where D
(1)
l (aρ) is the logarithmic derivative of the Bessel

function, given by J ′
l (aρ)/Jl(aρ). In some cases, as in Fig. 1(b)

with l = 0, c1 = c2 = 1, although the rotating energy flux
vanishes, the azimuthal optical force still exists.

If we expand the time-averaged optical force up to dipole
order, we can obtain [4]

F = Fp + Fm + Fpm . . . , (24)

where

Fp = 1
2 Re{(∇E∗) · p}, Fm = 1

2 Re{(∇B∗) · m},

Fpm = − k4

12πε0c
Re{p × m∗}.

(25)
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FIG. 1. (Color online) Azimuthal force fφ versus displacement
kd of the particle from the beam axis when it is illuminated by
a Bessel beam with (a) l = 1, c1 = 1, c2 = 0, ε = 6, kr = 2.6;
(b) l = 0, c1 = 1, c2 = 1, ε = 2, kr = 3; (c) l = 0, c1 = 1, c2 =
i, ε = 1.8, kr = 3; and (d) l = 1, c1 = 1, c2 = i, ε = 3.5, kr = 1.8.
The cone angle α of the incident Bessel beam is α = 70◦ and
the particle has permeability μ = 1. Also shown, by color, is the
longitudinal force fz on the particle, with the (blue) color on the
leftward portion of the curves denoting NLOF (fz < 0) and that
(red) on the rightward portion denoting PLOF (fz > 0). Solid lines
represent the radial optical force fρ < 0, corresponding to quasistable
equilibrium due to fφ �= 0, while dashed lines indicate fρ > 0,
corresponding to unstable equilibrium at the beam axis.

The dipole moments are related to the incident field,

p = αeE, m = αmB, (26)

where αe = i6πε0a1/k3 and αm = i6πb1/(k3μ0), with
(a1,b1) the Mie coefficients. Then the φ component of the
optical force can be calculated as

(Fp)φ = 3πε0

k3

l

r
|E|2Re{a1}, (27a)

(Fm)φ = 3π

k3μ0

l

r
|B|2Re{b1}, (27b)

(Fpm)φ = − 3π

k2c
Re{a1b

∗
1 S̃φ}, (27c)

where

S̃φ = (E × H∗)φ = la2

kρ
(|c1|2 + |c2|2)J 2

l − 2ia3b

k2
c∗

1c2J
′
l Jl .

It therefore follows that for higher order Bessel beams (with
l > 0), the azimuthal optical force does exist. As a result, a
higher order Bessel beam cannot act as a tractor beam per
se without the presence of ambient dissipation. Similarly, a
nonzero k12 can also result from the polarization state of the
beam. Since the Mie coefficients are complex numbers, the
azimuthal optical force vanishes only when both the beam
order l and |c1c

∗
2| are 0, namely, l = 0 plus c1 = 0 or c2 = 0

as indicated in Eq. (23). So to work in an arbitrary ambience,
a favorable tractor beam per se is a zero-order Bessel beam
with pure TM or TE polarizations.

First, we demonstrate some typical cases where NLOF is
achieved near the beam axis, but with a nonzero azimuthal
force fφ that results from OAM for a beam with l > 0 or
aspin AM (SAM) for a beam with l = 0 but |c1c

∗
2| �= 0. The

results are shown in Fig. 1, where the azimuthal force fφ is
plotted as a function of the displacement kd of the particle
from the beam axis and normalized by ε0E

2
0r

2, with ε0 the
vacuum permittivity, E0 the amplitude of the incident beam,
and r the particle radius. The blue curves indicate that NLOF is
exerted on the particle, while the red curves correspond to the
cases when positive longitudinal optical force (PLOF) occurs.
Therefore, we can find that when a particle is placed near the
beam axis it is subject to NLOF; as it deviates from the beam
axis, PLOF finally appears. Solid lines correspond to negative
radial forces, fρ < 0, while dashed lines suggest positive radial
force, fρ > 0. Accordingly, the case shown in curve a (Fig. 1)
corresponds to an unstable equilibrium since the positive radial
force fρ > 0 will drive the particle away from the beam axis.
As a result, the NLOF near the beam axis (shown in blue) in this
case does not allow for any practical application. For cases b to
d, the radial force is negative (denoted by solid lines), playing
the role of restoring force. One may naively believe that this
corresponds to stable transverse confinement of the particle
within the NLOF regime (shown in blue). This, however,
is not the case, since the nonvanishing azimuthal force fφ

will stimulate a rotation of the particle around the beam axis
once it deviates from the equilibrium at the beam axis. In a
dissipationless environment, the rotation of the particle will be
constantly accelerated, until it eventually moves to the PLOF
regime (shown in red). This also prevents the application of
NLOF near the beam axis, despite the presence of the restoring
force fρ < 0. In some cases, the azimuthal optical forces
may change sign as the displacement kd from the beam axis
increases, as shown by curves b and d in Fig. 1. One may
expect that the rotation of the particle around the beam axis
may be first accelerated and then decelerated, leading to a
complex trajectory near fφ = 0 but still confined within the
region of NLOF. However, our numerical results show that this
is not the case either, because the longitudinal forces always
become positive before the azimuthal force change its sign.
This is typically shown in Fig. 1 by curves b and d, where
the curves change from blue to red, indicating that the particle
enters the PLOF regime before fφ changes its sign. So the
particle may at best be stabilized transversely in the region
with PLOF, spoiling the phenomenon of optical pulling.

To gain further insight into the stability of NLOF, a dy-
namical simulation of the particle trajectory is necessary and,
also, sufficient to provide a clear picture of the evolution of the
particle in Bessel beams. The dynamic simulations integrate
the equation of motion, mpd2
x/dt2 = f light − γ d
x/dt ,
using an adaptive time step Runge-Kutta-Verner algorithm
[36]. In Fig. 2, we present corresponding results where the
motion of the particle in both the transverse plane and along
the longitudinal direction is simulated. For the cases shown in
Figs. 2(a)–2(d), the particle is illuminated by a Bessel beam
with l = 0, c1 = 1, c2 = 1, indicating a beam with SAM and
without OAM, corresponding to the curve in Fig. 1(b). As
shown in Fig. 2(a), the particle is driven far away from its initial
location near the beam axis in a dissipationless environment.
As a result, the particle is pulled backward to the source due to
NLOF when it is close to the beam axis in the early stage and
then it drifts into the region of PLOF and is finally pushed away
from the light source when the particle deviates away from the
beam axis, whichis clearly illustrated in Fig. 2(b). This is in
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FIG. 2. (Color online) Dynamical simulation of the trajectories
for a dielectric particle with kr = 3 and ε = 2 (a)–(d) and kr = 1.8
and ε = 3.5 (e)–(h) in the transverse plane (a), (c), (e), (g) and in
the z direction (b), (d), (f), (h), when it is illuminated by a Bessel
beam with l = 0, c1 = 1, c2 = 1 (a)–(d) and l = 1, c1 = 1, c2 = i

(e)–(h), corresponding to curves b and d in Fig. 1, respectively.
In the dynamical simulations, (a), (b), (e), and (f) correspond to
cases without ambient damping; (c) and (d), cases with the damping
constant γ /γcritical = 1.2; and (g) and (h), cases with the damping
constant γ /γcritical = 0.8. The cone angle of the Bessel beam is
α = 70◦ and the particle is initially located at kd = 0.001 with zero
velocity. Arrows indicate the directions of the motion. The density of
the particles is ρp = 1050 kg/m3, the wavelength is λ = 1 μm, and
E0 = 1 V/m.

agreement with curve b in Fig. 1 in that the azimuthal force fφ

due to SAM leads to quasistable NLOF. But the situation may
change in the presence of damping, as illustrated in Figs. 2(c)
and 2(d) with damping constant γ /γcritical = 1.2, where the
ambient damping dissipates the rotation energy that the particle
acquires from the beam carrying SAM. Therefore, the particle
is attracted back to the beam axis after a complicated orbiting
trajectory in the transverse plane and then fixed there so
that a stable NLOF can be obtained. In Figs. 2(e)–2(h), we

also present the dynamical simulation of the same particle
illuminated with a Bessel beam with l = 1, c1 = 1, c2 = i,
corresponding to curve d in Fig. 1, so that both OAM and SAM
are delivered to the particle. It is shown that in the absence of
ambient damping, the particle initially located very close to the
beam axis will eventually run away, as displayed in Fig. 2(e).
As the particle deviates away from the beam axis, it enters the
region of PLOF and, finally, is pushed away from the light
source, as shown in Fig. 2(f). However, when the damping
constant γ /γcritical = 0.8 is considered, although the particle
deviates from the beam axis, after a complicate trajectory it is
confined in the NLOF region as shown in Fig. 2(g), resulting
in a stable NLOF. Accordingly, as in the case in Fig. 2(d), it
also moves longitudinally in the direction opposite to the beam
propagation due to the optical pulling force, rendering NLOF
applicable for long-distance backward particle transportation.
This may be termed “optohydrodynamic” optical pulling,
namely, the optical pulling is stabilized by ambient damping,
analogous to optohydrodynamic trapping by an optical beam
carrying AM [28].

The need for ambient damping, which depends on the
particle itself as well as the surrounding medium, adds
considerably to the difficulty of analysis on optical pulling
using beams carrying AM, either OAM or SAM. We leave this
discussion to a separate publication. In the following, we focus
our study on Bessel beams carrying no AM.

B. Bessel beams carrying no AM

In this section, we focus on the stability analysis of a
particle illuminated by zero-order Bessel beams of pure TM
(c1 = 0) or TE (c2 = 0) polarization, so that the Bessel beams
do not induce any azimuthal optical force. The advantages
of using such Bessel beams are obvious: (i) the environment
is no longer the critical aspect for obtaining stable NLOF
since the restoring force itself is capable of realizing trans-
verse equilibrium, simplifying the analysis; and (ii) due to
the absence of azimuthal optical force, the trajectory of the
particle will be much simpler, which makes it easily visualized
in the dynamical simulation.

The phase diagram is a powerful means to acquire knowl-
edge of NLOF, thus in Fig. 3, we present the phase diagrams

FIG. 3. (Color online) Phase diagrams of NLOF with respect to
the permittivity and the permeability of a particle located on the beam
axis of a zero-order incident Bessel beam with α = 70◦, c1 = 1, and
c2 = 0 (TE beam). The size of the particle is kr = 3 (a) and kr = 4.5
(b), respectively. White and dark (red) regions denote PLOF and
NLOF, respectively.
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FIG. 4. (Color online) Phase diagrams with respect to the particle
size kr and the permittivity, which illustrate NLOF [dark (red)
regions], PLOF (white regions), and unstable phase [light (yellow)
regions] for a particle under the illumination of a zero-order incident
Bessel beam with α = 70◦ when it is placed on the beam axis. Other
parameters are (a) c1 = 0, c2 = 1, μ = 1; (b) c1 = 1, c2 = 0, μ = 1;
(c) c1 = 0, c2 = 1, μ = 1.5; and (d) c1 = 1, c2 = 0, μ = 1.5.

with respect to the permittivity and the permeability of a
particle when it is illuminated by a zero-order Bessel beam of
pure TE polarization. As shown in Fig. 3(a), dark (red) areas
indicate the parameter space where NLOF occurs when the
particle is placed on the beam axis. White regions correspond
to the parameter space where PLOF appears. We can also find
that NLOF exists mostly in regions of ε > μ, indicating that
a TE beam is more favorable for achieving NLOF than a TM
beam for a conventional nonmagnetic dielectric particle with
μ = 1. In addition, particle size also has an obvious influence
on NLOF, as shown in the phase diagram in Fig. 3(b), where a
larger particle with kr = 4.5 is considered. Compared to that
in Fig. 3(a), the NLOF region shrinks considerably for large
particles.

Based on the phase diagram, we can also obtain information
on the stability of NLOF as well as the polarization depen-
dence. For this purpose, we present in Fig. 4 the phase diagrams
of NLOF with respect to the particle size and permittivity,
where dark (red) regions denote the parameter spaces for the
occurrence of NLOF, while white regions correspond to PLOF
when the particle is under the on-axis illumination of either
TM [Figs. 3(a) and 3(c)] or TE [Figs. 3(b) and 3(d)] beams. The
stability of the phase is also illustrated in Fig. 4, where the light
(yellow) regions indicate parameter spaces corresponding to
positive eigenvalues for the FCM, suggesting unstable on-axis
equilibrium. Unshaded regions correspond to the stable phase;
that is, the particle can be confined around the beam axis due
to the negative radial force fρ < 0 in the transverse plane.
Accordingly, the dark (solid red) regions represent parameter
spaces for stable NLOF, so that long-distance optical pulling is
achievable. Since magnetic moments play an important role for
NLOF [4], the NLOF phase induced by a TM polarized beam

FIG. 5. (Color online) The radial optical force fρ (arbitrary units)
is plotted as a function of the particle position in the transverse plane
when it is illuminated by a zero-order TM Bessel beam with α =
70◦. The particle has permittivity ε = 7, permeability μ = 1, and
particle size kr = 2.7. Colored areas denote fρ < 0, and white areas
denote fρ > 0. Regions hatched with (red) lines represent locations
for realization of PLOF, while unhatched regions in central areas
denote locations for realization of NLOF.

for nonmagnetic particles is much weaker and more sensitive to
the particle permittivity as shown in Fig. 4(a). But for magnetic
particles, NLOF induced by a TM polarized beam will be
strengthened, and the permittivity for NLOF will decrease as
shown in Fig. 4(c). In contrast, for a TE polarized beam, a
magnetic response (μ = 1.5) has a relatively weaker influence
on NLOF by comparing Figs. 4(b) and 4(d). Although the
instability in transverse equilibrium, which occurs even for the
PLOF phase, prevents much of the NLOF phase from being
used in practical applications for optical pulling, it suggests
another application for optical sorting and selection [33,60,61].
In addition, from the phase diagrams in Fig. 4 we also find
different tendencies of permittivity for the stable transverse
equilibrium. For the TE polarized beam, stable NLOF is likely
achieved when the particle permittivity is small, while for
the TM polarized beam, a particle with wide ranges of large
permittivity can be captured. This property guides us to choose
suitable Bessel beams for particle operations.

However, in practical situations, a particle is usually located
at an off-axis position. The stability of NLOF in this case
should be appropriately analyzed. To this end, we calculate
the radial optical force fρ acting on a particle as a function
of the particle position in the transverse plane. A typical
result is shown in Fig. 5 for a nonmagnetic particle under the
illumination of a zero-order TM Bessel beam. The negative
radial force, fρ < 0, is shown in color, while white regions
display the areas for fρ > 0. In regions hatched with solid
(red) lines, the particle is subject to PLOF, fz > 0, and
in unhatched regions, which appear around the beam axis,
the particle is subject to NLOF. In the outer hatched white
regions, the particle is subject to PLOF and positive radial
force simultaneously. Thus, it will be driven away from the
beam axis and, finally, escape. However, for a particle placed
in the middle hatched color regions, the situation is a little
bit complicated. The negative radial force tends to drag the
particle back to the beam axis, resulting in a transition of
the longitudinal force from PLOF in the hatched regions to
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FIG. 6. (Color online) Trajectories of a nonmagnetic particle with
kr = 2.7 and ε = 7 under illumination of a zero-order TM Bessel
beam. Longitudinal components along the z direction for an envi-
ronment without damping (a) and with damping (b). (a) The dashed
(blue) line and solid (red) line correspond to particle trajectories with
initial positions at kd = 0.5 and kd = 1.5, respectively. (b) The solid
(blue) line in the inset denotes the corresponding trajectory in the
transverse plane. The density of the particle is ρp = 1050 kg/m3,
λ = 1 μm, E0 = 1 V/m.

NLOF in the regions around the beam axis shown in Fig. 5
by the inner unhatched color region. Then, due to the inertia
of the particle, it will move away from the beam center and
a transition from NLOF to PLOF occurs. Therefore, in the
transverse plane the particle will oscillate around the beam
axis and it will locate alternatively in NLOF and PLOF
regions.

Dynamical simulations can provide further insight into the
phenomenon by observing the particle motion. In Fig. 6, we
present the trajectory of a particle in an undamping and a
damping environment in Figs. 6(a) and 6(b), respectively. The
dashed (blue) line and the solid (red) line correspond to the
longitudinal trajectories for a dielectric particle with initial
positions at kd = 0.5 and kd = 1.5, respectively. As shown in
Fig. 5, the initial longitudinal optical force is NLOF and PLOF,
respectively, for the two cases, resulting in stable longitudinal
motion along the negative and positive directions. It is noted
that although the negative radial force can drag the particle
to the NLOF region, the particle keeps moving along the
positive direction as shown by the solid (red) line in Fig. 6(a).
Differently, in the damping environment the oscillation of the
particle is weakened quickly so that it is finally confined in the
NLOF region as shown by the solid (blue) line in the inset in
Fig. 6(b). Accordingly, the particle first experiences a motion
along the positive direction and then moves backward to the
source along the negative direction as indicated by the solid
(red) line in Fig. 6(b). Ambient damping can induce stable
NLOF once again as in the case discussed for Fig. 2 for a
beam with AM by dissipating the undesirable energy. At any
rate, stable NLOF per se in the absence of ambient damping
occurs only in the unhatched color region around the beam
center in Fig. 5 due to the confinement of the particle by the
negative radial optical force fρ < 0.

For convenience, we define the radius of the unhatched
color region in Fig. 5 as rc. Inside this region, stable NLOF can

FIG. 7. (Color online) Phase diagrams with respect to the particle
size kr and the permittivity for a nomagnetic particle under the
illumination of zero-order TM (a) and TE (b) Bessel beams with
α = 70◦. Colored areas show the parameter spaces in which the NLOF
phase occurs when the particle is placed on the beam axis, which are
the same as those shown in Figs. 4(a) and 4(b), respectively. Solid
(red) regions denote the stable NLOF phase when the particle deviates
from the beam axis at krc = 0.4 and krc = 0.8; striped (yellow)
regions denote the unstable NLOF phase.

be realized in the absence of ambient damping. To determine
what particle can be stably pulled back by a specified Bessel
beam with a required rc, we present the phase diagrams in
Fig. 7, where the colored stripes are the same as those shown
in Figs. 4(a) and 4(b), given here for comparison, while the
unhatched darker (red) regions in Figs. 7(a) and 7(b) show,
respectively, the stable off-axis NLOF phase for a TM beam
with krc = 0.4 and a TE beam with krc = 0.8. The phase
diagram suggests a possible application, namely, if one shines
a zero-order Bessel beam on an aggregate of particles made
of different materials, then a particle with parameters in the
dark (red) region of the phase diagram will be stably confined
in the NLOF region when its distance d from the beam center
satisfies kd < krc. For particles with the parameters in the
hatched region, however, the Bessel beam exerts NLOF on the
particle when it is on the beam axis, but optical pulling may
not work due to transverse instability.

IV. SUMMARY

To summarize, based on the generalized Lorenz-Mie theory
and the Maxwell stress tensor formulism, we have derived
analytical expressions for the optical force and FCM for a
particle illuminated by a Bessel beam of arbitrary order
and polarization. By calculating the phase diagrams, we can
discriminate the NLOF phase from the PLOF phase within
a specified parameter space associated with the particle. In
addition, by considering the radial optical force in the trans-
verse plane we can also search out the stable NLOF phase for a
particle placed on or off the beam axis. Dynamical simulations
have been performed as well to depict the trajectories of
a particle from its initial position under the illumination of
a Bessel beam. Our numerical results show that a particle
cannot be stably confined in the NLOF region by higher
order Bessel beams in the absence of ambient damping. The
physics lies in the fact that AM carried by the higher order
Bessel beam will stimulate and accelerate the rotation of the
particle around the beam axis, and eventually drive the particle
away. As ambient damping plays an important role in the
realization of stable NLOF for higher order Bessel beams,

063812-8



DYNAMICAL AND PHASE-DIAGRAM STUDY ON STABLE . . . PHYSICAL REVIEW A 87, 063812 (2013)

the phenomenon of optical pulling based on higher order
Bessel beams may be termed “optohydrodynamic pulling,”
analogous to “optohydrodynamics trapping” using an optical
vortex [36], to identify its non-purely-optical characteristics
like thermal photophoretic forces [62]. A zero-order Bessel
beam with pure TM or TE polarization can implement stable
transverse confinement, acting as an optical tractor beam per
se, irrespective of the ambience. This corresponds to the
stable NLOF phase in the phase diagrams. In addition, for
a nonmagnetic particle, a TE Bessel beam is more suitable for

realizing NLOF than a TM beam. Finally, a brief discussion
has also been presented on the backward transportation of a
particle located either on or off the beam axis using NLOF.
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