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We performed light optical diffraction experiments on a nanoparticle-polymer volume holographic grating in
an angular range including far-off-Bragg replay. A comparison of three diffraction theories, on the same level
of complexity, with our experimental results shows that the dynamical theory of diffraction and the first-order
two-wave coupling theory using the beta-value method fit the data very well. In contrast, the prevalent two-wave
coupling theory using the K-vector closure method yields a poor fit with an order of magnitude worse mean
squared error. These findings must be considered for accurate determination of coupling strength and grating
thickness.
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I. INTRODUCTION

It seems that after about 80 years seeing theories of
diffraction from periodic structures everything should have
been said and done. This is even more true since Moharam and
Gaylord in a series of papers published a rigorous theory of
diffraction (rigorous coupled wave analysis, RCWA), which
covers nearly the entire scope of cases that have ever been
relevant [1–10]. However, for practical purposes approximate
theories are still around, which are used instead. While the
optics community has strongly opted for the coupled-wave
approach of Kogelnik (K-vector closure method, KVCM) [11]
and much less for the one introduced by Uchida (beta-value
method, BVM) [12], the neutron and x-ray communities
are using solely the dynamical theory of diffraction (DDT)
[13–19] or Darwin’s early variant [20,21]. Despite the fact
that discussion of diffraction theories for volume gratings
might sound worn out, we will show that it is possible to
experimentally single out a set of analytic theories which is
significantly superior to others.

We identified three problems in the theories when treating
the off-Bragg regime: The first is that the KVCM fails to
correctly account for energy conservation, and the second is
that KVCM and BVM treat only the half-space case, i.e., a
single boundary. Thus boundary conditions for a parallel slab
are not properly included and yield an ambiguity. Finally, with
the DDT, which in principle yields the exact solution to the
wave equation, typically an approximation of the dispersion
surface for small off-Bragg conditions is performed in the
literature [13,19,22], which leads to hyperbolic dispersion
surfaces and is called a hyperbolic approximation in what
follows. It is stated by Syms and Solymar that the differences
between the amplitudes derived from each of the theories
are small [23]. However, for geometrically thin gratings with
large coupling coefficients as for our samples deviations in the
far-off-Bragg regime are observable.

The result of this work is that the first-order two-wave
coupling theory employing the BVM as well as the DDT [22]
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fits the experimental data extremely well, provided that we
refrain from using the hyperbolic approximation for the latter.
The KVCM fits the experimental data much worse.

The paper is organized as follows: We start with a derivation
of the relevant equations for the two-wave coupling theories
KVCM and BVM as well as for the modal DDT without
the hyperbolic approximation. Then the experiment and the
corresponding results are shown together with fits to each
of the theories. We also compare the theories using proper
approximations, discuss the implications, and end with a
conclusion.

II. DIFFRACTION FROM A SINUSOIDAL
VOLUME GRATING

In what follows we summarize the different approaches to
solve the wave equation for sinusoidal transmission volume
gratings and give the results for the diffraction amplitudes
with a particular emphasis on the far-off-Bragg regime, which
is subject to our experiments.

We start with the simplest set of assumptions. Space is
divided into three distinct regions: the input region (free space),
the grating region (periodic material), and the output region
(free space). A sketch of the geometry is provided in Fig. 1. The
grating be lossless, one-dimensional (modulated only along the
x direction), sinusoidal, isotropic, and of the pure phase type.
Thus it can be described by

n(x) = n0 + n1 cos (Kx), (1)

where n0 is the mean refractive index of the material under
investigation, n1 the refractive-index modulation, and K the
spatial frequency of the grating. The scalar wave equation
(Helmholtz equation) for the polarization state perpendicular
to the plane of incidence (s or H mode polarization) in such a
medium is

{ �∇2 + [n(x)k0]2}E(x,z) = 0, (2)

where k0 = 2π/λ with λ the free space wavelength of
light and E(x,z) the normalized electric field amplitude.
It was shown that an exact solution of the wave equation
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FIG. 1. (Color online) Illustration of the geometry and the
boundary condition. �k0, �qR, �qS are the wave vectors of the incident
wave in the input region, the forward diffracted wave, and the
diffracted wave in the grating region. �K, N̂, �, θB denote the grating
vector, the sample surface normal unit vector, the angle of incidence
(external), and the Bragg angle (in the medium).

can be obtained by solving an infinite number of coupled
linear differential equations of first order under appropriate
boundary conditions [1] (RCWA). In the rigorous treatment
of the problem the coupled wave analysis and the modal
approach are completely equivalent, i.e., lead to identical
results [2]. For thick volume holograms discussed here only
two diffracted beams of considerable field amplitudes exist
at the same time, e.g., the first and zeroth diffraction order
[24]. In addition, the amplitudes strongly depend on how
well the Bragg condition, 2β sin θB = K , is fulfilled. Here θB

is the Bragg angle and β = k0n0 the propagation constant in
the material. A commonly defined off-Bragg parameter [11] is

ϑ = K

(
sin θ − K

2β

)
, (3)

where θ is the angle of incidence. Our interest is to compare
three common diffraction theories with experimental data
obtained for a wide range of angles, particularly in the
far-off-Bragg regime. In contrast, usually only the very vicinity
of the Bragg peak is considered and a linearization of ϑ is
performed (see also Appendix B), a simplification which is not
applicable in our case. In what follows we give the relevant
equations for each of the three theories that cover also the
far-off-Bragg regime.

A. First-order two-wave coupling:
Kogelnik’s approach (KVCM)

The basic idea of Kogelnik’s coupled wave approach is to
solve Eq. (2) by the ansatz

E(x,z) = R(z) exp (ı �qR · �x) + S(z) exp (ı �qS · �x), (4)

i.e., the sum of two waves whose amplitudes vary when
propagating through the sinusoidal refractive index pattern. By
inserting Eq. (4) into Eq. (2) two coupled differential equations
for the amplitudes R(z), S(z) result that can be solved for
appropriate boundary conditions. In most cases, second-order
derivatives can be neglected because the amplitudes are slowly
varying functions as compared to the exponentials in Eq. (4)
(slowly varying envelope approximation). This simplifies the

FIG. 2. (Color online) Wave-vector diagram for the KVCM
(Kogelnik) in off-Bragg position with β = |�qR| �= |�qS | according to
Ref. [11]. N̂ the surface normal unit vector.

system of differential equations to first order with the cost
that the boundary conditions are to some extent ambiguous
(we end up with a half-space case instead of a slab; i.e., the
output region is not considered). Coupling of the waves arises
via the Bragg condition, which relates the wave vector �qS

of the diffracted beam to the wave vector �qR of the forward
diffracted, frequently called also “transmitted”1 beam. At this
point Kogelnik introduces the relation

�qS = �qR ± �K. (5)

While this is a correct choice from a mathematical point of
view [25], it gives physically meaningful results only if the
Bragg condition is fulfilled exactly. When going off-Bragg,
Eq. (5) predicts either a wavelength change (sort of “inelastic”
scattering) that does, in fact, not occur, or a refractive index that
strongly depends on the off-Bragg parameter. Furthermore, the
direction of the diffracted beam’s wave vector is not correctly
predicted for the off-Bragg case [26]. A wave-vector diagram
for the off-Bragg case using Kogelnik’s choice (KVCM) is
shown in Fig. 2. The diffraction efficiency for the first order,
the quantity measured in our experiment, is given by

ηK = SS∗ = [
νKsinc

√
ν2

K + ξ 2
K

]2
, (6)

νK = κ
d

cR

, (7)

ξK = ϑ
d

2cR

, (8)

with κ = n1π/λ the coupling coefficient, d the hologram
thickness, cR = cos θ , and ∗ denoting the complex conjugate.

B. First-order two-wave coupling: Uchida’s approach (BVM)

The only difference between Uchida’s and Kogelnik’s
approach is the choice of the diffracted wave vector as

�qS = �qR ± �K + �q0N̂ . (9)

The BVM ensures energy conservation, i.e., |�qS | = |�qR| = β,
by introducing a phase-mismatch parameter �q0. The

1For a clarification of subtle differences between the terms see, e.g.,
Ref. [19].
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FIG. 3. (Color online) Wave-vector diagram for the BVM
(Uchida) in off-Bragg position with β = |�qR| = |�qS | according to
Ref. [12].

resulting wave-vector diagram for the off-Bragg case (�q0 �=
0) can be seen in Fig. 3. From geometrical reasoning the
phase mismatch amounts to �q0 = β(cR − cS) with cS =√

cos2 θ + 2ϑ/β = cR

√
1 + 2X and a parameter X = ϑ/

(βc2
R), which is convenient for approximations discussed later

(Appendix B). Solving Eq. (2) with the wave-vector choice of
Eq. (9) yields for the first-order diffraction efficiency

ηB = cR

cS

[
νBsinc

√
ν2

B + ξ 2
B

]2
, (10)

νB = κ
d√
cRcS

, (11)

ξB = = �q0
d

2
. (12)

These equations that have been derived, e.g., in Ref. [27] look
quite similar to the ones obtained for Kogelnik’s approach.
Uchida’s seminal paper already suggested the BVM [12].
However, it was somewhat hidden by the second important
topic addressed: the attenuation of the grating modulation
along the sample depth. The latter is not included in the present
treatment in order to enable a direct comparison of the theories.

C. Two-wave modal approach: Dynamical theory
of diffraction (DDT)

The modal approach to solve Eq. (2) is well known in
solid state physics for electrons in a periodic potential (band
structure, e.g., Refs. [28,29]) and also for diffraction of x
rays (e.g., Refs. [16,18,19,30]) or neutrons [13] by crystal
lattices. In volume holography it has been much less prominent
[22,31,32]. The reason might be that it can be usefully applied
only for highly idealized gratings [22]. In the modal approach
the solution is taken rigorously in the form of a sum of m

Bloch waves (eigenmodes) with a grating periodic amplitude
function E�k:

Em(�x) =
∑

�k
Em

�k eı�k�x, Em
�k eıs �K = Em

�k+s �K with s ∈ Z. (13)

Fourier transforming Maxwell’s equations and inserting
Eqs. (13) and (1) yields a system of coupled algebraic
equations for the amplitudes Em

�k . Details can be found in
Appendix A and Ref. [22]. For sinusoidal volume holograms
we know that only four of the amplitudes, two for each
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FIG. 4. (Color online) Dispersion surface in the off-Bragg ge-
ometry. Top: Overview including the four permitted wave vectors
�q (0);(1)
R;S . The orange lines represent part of the dispersion surface. An

approximate version of the latter, as usually assumed in literature, is
shown in dotted gray line style. Bottom: A closeup of the dispersion
surface in the vicinity of the Bragg condition with the mismatch �q.
�q0 is the difference between the gray asymptotic lines (viz., spheres)
along the N̂ direction, i.e., horizontal.

eigenmode, have appreciable magnitude and thus a linear
system of two equations for each eigenmode remains. To
obtain consistent and nontrivial solutions to the systems,
conditions for the magnitudes of the permitted wave vectors
in the grating region arise:

(2βκ)2 = (β2 − |�qR|2)(β2 − |�qS |2). (14)

The latter is the decisive equation in the DDT and represents
the so-called dispersion surface, i.e., the surface of permitted
wave vectors. The dispersion surface and the wave vectors of
the eigenmodes in the grating region are shown in Fig. 4. These
permitted wave vectors can easily be found geometrically by
following the three steps below:

(1) Starting from the origin of the reciprocal space �0 draw
the incident wave vector with length k0 at the (external) angle
of incidence �.

(2) Phase matching at the boundary requires that the
tangential compontents of the wave vectors are identical, i.e.,
k0,x = qR,x . Thus draw a line along the sample surface normal
N̂ and find the points of intersection A,B with the dispersion
surface (typically called “tie points,” two in the transmission
geometry).

(3) The permitted wave vectors of propagation are now
constructed by forming the vectors

−→
AK = �q (0)

S ,
−→
BK = �q (1)

S ,−→
A0 = �q (0)

R ,
−→
B0 = �q (1)

R .
The circles with radius β around the reciprocal lattice points
�0, �K represent the surface of permitted wave vectors in the
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FIG. 5. (Color online) Experimental setup scheme: L, P, BE,
D, BS, S, PD denote the He-Ne laser, polarizer, beam expander,
diaphragm, beam splitter, sample, and photodiodes, respectively. The
amplifier is symbolized by the triangle (top). Sample geometry for
measuring the diffraction efficiency (left bottom) and the background
(right bottom), rotation axis was always y.

medium without a grating, viz., κ = 0. They approximate the
permitted wave vectors of propagation in a grating very well
unless in the very vicinity of the Bragg condition. This latter
situation is shown in the closeup of the dispersion surface in
the lower part of Fig. 4.

The moduli of the permitted wave vectors of propagation
in the grating region are obtained by using Bragg’s condition

�qS = �qR ± �K and solving Eq. (14) for �qR:∣∣�q (m)
R

∣∣2 = β[ϑ + β ±
√

ϑ2 + (2κ)2]. (15)

This means that for each propagation direction under consid-
eration (�q = �0, �K) there are two eigenmodes m = 0,1 with
corresponding propagation constants, viz., energies or, as
initially pointed out by Ewald, a sort of birefringence.

Usually the region in the vicinity of the Bragg condition
is approximated; i.e., the spheres around the reciprocal
lattice points �0, �K with radius β are approximated by planes
(asymptotic gray lines in Fig. 4), and the dispersion surfaces are
hyperbolae. We disregard this simplification so that the theory
can be applied for the far-off-Bragg region, too. For neutrons
the corresponding equations for the diffracted intensities were
established in Refs. [33,34]. The amplitudesEm

�k are determined
by taking into account the boundary conditions and can be
expressed by the grating parameters. Then the first-order
diffraction efficiency according to the DDT takes the form

ηD = (2κ)2

(2κ)2 + ϑ2
sin2

(
1

2
�qd

)
, (16)

where �q = q
(1)
Rz − q

(0)
Rz . This is the function used for the fits

to the experimental data in Sec. III.

III. EXPERIMENTAL AND RESULTS

The diffraction experiments were performed on a SiO2

nanoparticle-polymer grating [35] with a grating spacing

FIG. 6. (Color online) Dependence of the first-order diffraction efficiency on the Off-Bragg parameter ϑ [see Eq. (3)] for a nanoparticle-
polymer grating. The plus and minus first-order data (symbols) were fitted using either the KVCM (green line), BVM (red line), or the DDT
(black line). Fitting results including the weighted χ2 are given in the inset. For further details, see text.
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� = 2π/| �K| = 500 nm using an s-polarized He-Ne laser
beam at a wavelength λ of 632.8 nm. The sample is the
same as used for the experiments concerning the direction
of the diffracted beam discussed in Ref. [26]. A schematic of
the setup is shown in Fig. 5. The beam was prepared using
a standard beam expansion system (microscope objective
lens, pinhole, magnification lens) followed by a diaphragm
with a diameter of about 5 mm. The sample is placed on
a rotation stage (resolution 1/1000◦) and is rotated around
an axis (vertical) parallel to the y axis while measuring the
zero and first-order diffracted powers, i.e., rocking curves are
recorded. To get reliable values in the far-off-Bragg regime
we measured the diffraction powers using Si photodiodes
which were plugged into a light amplifier allowing linear
amplification in the 105-order signal range. To ensure most
reliable results we took at least five power values at each
angular position θ thus being able to evaluate a standard error
of the mean. Furthermore, a background measurement was
conducted by first rotating the sample by 90◦ around the sample
surface normal, and then recording a rocking curve again, this
time the grating vector �K being parallel to the rotation axis y.
By attaching an opaque circular mask (diameter 5 mm) to the
sample’s front surface, it was assured that the incident beam
passed the identical sample volume for both, the diffraction
experiment and the background measurement. The results of
the diffraction experiments are shown in Fig. 6. A simultaneous
least-squares fit to the weighted and background-corrected
diffraction efficiency for the minus and plus first order were
performed in the angular range |θ − θB | � 0.15 rad, therefore
including the far-off-Bragg region with 18-side minima. It is
obvious from the plot that while the KVCM does not fit the
experimental data, BVM and DDT do. This is quantified by the
χ2

K value being nearly an order of magnitude larger than other
approaches. The most striking difference is observed in the
positions of the minima. In Fig. 7 the experimental minimum
positions are compared to those obtained from the theories.
From the angular dependence of the residuals we conclude
that the KVCM strongly deviates in the far-off-Bragg region.

FIG. 7. (Color online) Comparison of the minimum positions
between the experimental data and the three models. The deviation
of the measured minimum positions from the three fitted models
(residuals) is shown.

IV. DISCUSSION

As already said in the introduction, typically the dispersion
surface in the DDT is approximated in the vicinity of the Bragg
condition so that the dispersion surfaces are hyperbolae. This,
of course, is not applicable for the far-off-Bragg region. On
the other hand, a direct comparison of analytical formulas is
only possible if proper approximations are applied, which is
done in Appendix B.

Let us start our discussion with mentioning that �q

(appearing in DDT) is equivalent to �q0 (appearing in the
BVM) in the limit of zero coupling (κ = 0). In the wave-vector
diagram (Fig. 3) a background refractive index n0 is implicitly
assumed to describe the permitted wave vectors of propagation
in the medium. On the other hand, we know that at the exact
Bragg condition a wave experiences a different refractive index
within the limits n0 ± n1. This is only reflected in the DDT,
where, in the frame of the two-mode case, two waves with
slightly different refractive indices propagate towards each of
the two reciprocal lattice points �0 and �K shown in Fig. 4.
The value of �q0 is the difference between the two crossing
asymptotic gray lines (i.e., actually circles) along the sample
surface normal shown in the closeup of Fig. 4.

In Ref. [26] the effective thickness of the grating, for the
same sample, was estimated to be d0 = 58.5 ± 0.05 μm by
fitting Eq. (10) to the angular dependence of the diffraction
efficiency shown in Fig. 6. The discrepancy to the value
determined in the present work originates from three facts:
(1) here we used experimentally measured values weighted
by their standard error of the mean (no weighting in
Ref. [26]), (2) the angular range was extended to the far-off-
Bragg region which has particular influence on the obtained
thickness via the phase function through its minima, and
(3) the background was thoroughly subtracted. Browsing
through the literature of evaluating the refractive-index mod-
ulation of volume holographic gratings, we find mainly two
approaches: (1) measuring a rocking curve and calculating
n1 and d by using the KVCM in the linearized version and
(2) just assuming the grating thickness to be the measured
mechanical sample thickness and calculating n1 from the
diffraction efficiency at the (supposedly) Bragg angle. While it
is evident that the latter can serve only as a rough estimate, the
results of the former are usually taken as serious parameters.
When fitting of the data shown in Fig. 6 (without weighting) is
performed on this basis, i.e., less thorough, values around the
Bragg peak contribute the most to the result. This paradoxically
leads to fitting parameters which are much closer to the ones
obtained by BVM and DDT (deviations of about 1% for n1

and d). The latter, however, is due only to the fact that we have
an almost ideal grating very accurately described by Eq. (1).

We are left with the question: Are we able to decide if any
of the theories is superior? Our experiment and the sample
under investigation provide almost ideal conditions, i.e., the
assumptions about the grating taken in the models are fulfilled.
We identify the KVCM as less reliable due to the significantly
higher χ2

K 
 χ2
B,D (see Fig. 6). A decision on the basis of

χ2 alone to recommend either the BVM or the DDT is not
evident. However, when it comes to less perfect gratings, e.g.,
taper with an attenuation of the grating modulation along the
sample depth [36] due, for example, to non-negligible linear
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absorption during recording [37], there is no known way to
apply the modal approach that leads to the DDT. In contrast,
it has been successfully proven that the problem can even be
analytically treated using a coupled wave analysis [12].

V. CONCLUSION

Diffraction by a one-dimensional volume holographic
grating with a relatively thick film (about 57 μm) and
high refractive-index modulation (n1 about 0.003) allows us
to demonstrate a significant difference between diffraction
theories. For now we conclude that both coupled wave
approaches, KVCM and BVM, and the corresponding dif-
ferential equations are approximations to the DDT. While
the KVCM fails to give the correct phase function for the
diffraction efficiency, the BVM differs by a factor cR/cS in the
amplitude. We finally comment that from a practical point of
view most of the gratings are not that perfect, and thus the BVM
including the attenuation along sample depth as discussed in
Ref. [12] should be the first choice.
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APPENDIX A: DERIVATION OF THE DISPERSION
SURFACE [EQ. (14)]

We follow the derivations given by Batterman and Cole for
x rays [19] and Russell for light [22].

We start with the Helmholtz equation (2). The refractive
index from Eq. (1) is a real quantity and periodic with the
reciprocal lattice vector �K = (K,0,0); the relative permittivity
of the medium is defined as usual, i.e., n2 = ε ∈ R. Hence,

ε(�x) = ε0 + 1

2

∑
g∈N,g>0

εg(eı �Kg �x + e−ı �Kg �x), (A1)

where �Kg ≡ g �K,g ∈ N. Further, it is known that solutions to
the wave equation for periodic media have a particular form

Em(�x) =
∑

�k
Em

�k eı�k�x, (A2)

where Em
�k are functions with the periodicity of the medium.

The Em(�x) are eigenmodes of the wave equation labeled by
m (indicating different energies numbered in increasing order)
and are called Bloch waves. By inserting Eqs. (A1) and (A2)
into Eq. (2) we end up with an infinite number of algebraic
equations for the infinite number of coefficients Em

�k :

∑
�k

[(
ε0k

2
0 − |�k|2)Em

�k eı�k�x + k2
0

2

∑
g∈N,g>0

εg

(
eı(�k+ �Kg )�x + eı(�k− �Kg )�x)Em

�k

]
= 0,

∑
�k

[
(β2 − |�k|2)Em

�k + k2
0

2

∑
g∈N,g>0

εg

(
Em

�k+ �Kg
+ Em

�k− �Kg

)] = 0. (A3)

This is effectively the Fourier transformed version of the wave
equation in a periodic medium.

Assuming that only two of the coefficients considerably
differ from zero, say, Em

�q , Em

�q+ �K , the system of equations
reduces to

(β2 − |�q|2)Em
�q + k2

0

2
ε1Em

�q+ �K = 0 for �k = �q,

k2
0

2
ε1Em

�q + (β2 − |�q + �K|2)Em

�q+ �K = 0 for �k = �q + �K.

Nontrivial solutions to this system of equations require the
determinant of the coefficient-matrix Em

�k , i.e., the characteristic
polynomial, to vanish. This leads to a quartic equation in |�q|:

(β2 − |�q|2)(β2 − |�q + �K|2) =
(

k2
0

2
ε1

)2

, (A4)

which gives the moduli q(m) of the m permitted wave vectors
for propagation in a periodic medium. The latter is Eq. (14)
when using the relations κ = k0n1/2,ε1 = 2n1n0 and the
notation �q = �qR,�q + �K = �qS .

Finally, we find the total field in the grating as a sum over
all eigenmodes:

E(�x) =
∑
m

vm

∑
�k=�q(m),�q(m)+ �K

Em
�k eı�k�x, (A5)

where the coefficients vm must be determined considering the
boundary conditions. We express the ratio

Em
�q

Em

�q+ �K
= 2κ

ϑ ±
√

ϑ2 + (2κ)2
(A6)

and assume that the incident wave at the entrance boundary has
an amplitude equal to unity so that Eq. (A5) yields conditional
equations for the vm:

v0 =
E1

�q+ �K
E1

�q+ �KE
0
�q − E1

�qE0
�q+ �K

, v1 = −v0

E0
�q+ �K

E1
�q+ �K

.

The field amplitude of the waves traveling towards the
reciprocal lattice point �K is

E−1(�x) = v0E0
�q+ �Keı(�q(0)+ �K)�x + v1E1

�q+ �Keı(�q(1)+ �K)�x (A7)
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so that for the geometry used in the experiment discussed here
(Fig. 5) the diffracted amplitude E−1(z = d) amounts to

E−1 = (|�q (0)|2 − β2)(|�q (1)|2 − β2)

2βκ(|�q (1)|2 − |�q (0)|2)

(
eıq

(0)
z d − eıq

(1)
z d

)
. (A8)

Using the definition η = |E−1(z = d)/1|2 we end up with
Eq. (16).

APPENDIX B: “PROPER” APPROXIMATION IN THE DDT
FOR COMPARISON WITH KVCM AND BVM

To obtain an equation similar to the form of Eqs. (6) and (10)
also for the DDT, we approximate �q using Eq. (15):

q
(m)
Rz − qRz ≈

√
β(ϑ + β cos2 θ )

[
1 ±

√
ϑ2 + (2κ)2

2(ϑ + β cos2 θ )

]
,

�q ≈
√

β

√
ϑ2 + (2κ)2

ϑ + βc2
R

. (B1)

Then the functional form of the diffraction efficiency, an
amplitude term A multiplied by an oscillatory phase term
sin2 �, looks similar to that of Eqs. (6) and (10), yielding

ηD = AD sin2 �D, (B2)

AD = (2κ)2

ϑ2 + (2κ)2
= (2κ)2(

βc2
RX

)2 + (2κ)2

= ν2
K

ξ 2
K + ν2

K

, (B3)

�D =
√

1

1 + X

√(
βc2

RX
)2 + (2κ)2

d

2cR

=
√

1

1 + X

√
ν2

K + ξ 2
K. (B4)

For the experimental angular range θB − 0.155 . . . θB +
0.166 rad (angles in the medium) and κ = 2.08 × 10−2μm−1

(as obtained from the fit) the deviation of Eq. (B2) from
Eq. (16) is less than about 0.3%. Rewriting Eq. (6) for
comparison in terms of X,νK,ξK , we have

ηK = AK sin2 �K, (B5)

AK = AD, (B6)

�K = �D

√
1 + X. (B7)

Thus, the phase term of the KVCM differs from that of the
DDT by a factor

√
1 + X while the amplitudes are identical.

We proceed with Eq. (10) in terms of X, which yields

ηB = AB sin2 �B, (B8)

AB = 1√
1 + 2X

(2κ)2

(2κ)2 + [
βc2

R(1 − √
1 + 2X)

]2√
1 + 2X

,

(B9)

�B = d

2cR

√[
βc2

R(1 − √
1 + 2X)

]2 + (2κ)2

√
1 + 2X

. (B10)

FIG. 8. (Color online) �(θ ) for each approach according to
Eqs. (B4), (B7), and (B10). Roots of the diffraction efficiency occur
at angles for which �(θs) = sπ , i.e., where the dotted horizontal lines
intersect the functions.

Despite the formal similarity of the expressions Eqs. (6)
and (10) for KVCM and BVM, respectively, we need to take a
further approximation for a direct comparison. We recall that
we are interested in the far-off-Bragg region, where the theories
might significantly differ from one another. Then ϑ 
 (2κ)
and we neglect κ in Eqs. (B2)–(B10) in comparison to ϑ and
X. The approximate phase functions then read

�0,D = |X|
√

1

1 + X

βcRd

2
, (B11)

�0,B = |1 − √
1 + 2X|βcRd

2
, (B12)

�0,K = |ϑ | d

2cR

= |X|βcRd

2
. (B13)

Higher order minimum positions are given by �(θs) = sπ

with s ∈ N. Figure 8 shows �(θ ) for each of the theories. BVM
and DDT lead to identical results in the phase function up to
second order in θ − θB , whereas KVCM is equivalent only in
the very vicinity of the Bragg condition. For the amplitude part
of the diffraction efficiency, the situation is different. Assuming
again ϑ 
 2κ (for the far-off-Bragg angular range) we get

A0,D =
(

2κ

βc2
RX

)2

,

A0,B = 1√
1 + 2X

(2κ)2(
βc2

R[1 − √
1 + 2X]

)2√
1 + 2X

, (B14)

A0,K = A0,D.

In Fig. 9 the amplitude functions A(θ ) are shown. This
time the DDT is identical to the KVCM and differs from
BVM, namely, by a factor

√
1 + 2X. The relative deviation of

1 − √
1 + 2XAB/AD is less than 0.7% in the range discussed.

To summarize: For the diffraction efficiency,
(1) The phase term of the DDT agrees to that of the BVM

excellently; the KVCM differs by a factor of (1 + X)−1/2,
while
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FIG. 9. (Color online) The amplitude functions A(θ ),
Eqs. (B3), (B6), and (B9) and A0(θ ), Eqs. (B14), in the off-Bragg
region for each model.

(2) The amplitude term of the DDT is equal to that of
KVCM, whereas now that of the BVM differs by a factor of
(1 + 2X)1/2.
While the first statement is fully confirmed by the experimental
data and can be seen in Figs. 6 and 7, the second statement can
hardly be verified from the data set. One reason could be that
the side wings of the amplitude function are also influenced
by absorption, an issue not considered here.

1. Approximate theories and their interrelation

As said above, the equation for the dispersion surface
Eq. (14) discussed in nearly any publication is approximated
to form hyperbolic sheets in the vicinity of the Bragg
incidence; i.e., the quartic equation in β is transformed in
a quadratic one with the approximation β2 − (�q)2 ≈ (β −
|�q|)2β. Then the magnitudes of the permitted wave vectors are
given by

∣∣�q (m)
R

∣∣ = β + 1
2 [ϑ ±

√
ϑ2 + (2κ)2]. (B15)

The approximate version of the dispersion surface is shown in
Fig. 4 as dotted gray lines. Such an approximation leads to the
identical diffraction efficiency for the DDT and the KVCM as
given by Eq. (6) [22,38]. Using the approximation of Eq. (B1)
and truncating the expansion of the phase correction factor
(1 + X)−1/2 ≈ 1 + O[X] in Eq. (B2) with the constant term,
we arrive at the same result.

In addition, the off-Bragg parameter is frequently linearized
as in Ref. [11], so that ϑ(θ ) = K cos θB(θ − θB), which then
should give even worse results and anyhow is valid only close
to the Bragg angle θB .
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