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Parametric amplification in the field of incoherent light
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A parametric amplification of input signal wave in the field of broadband incoherent light is analyzed at
group-velocity matching of pump and idler waves. It is shown that such group-velocity matching is possible both
in Type-I and Type-II phase-matching nonlinear crystals. The appropriate conditions at which an evolution of
the signal wave in the field of the incoherent pump coincides with an evolution in the field of the monochromatic
pump wave are demonstrated. The large parametric gain of the signal wave which is not sensitive to pump
fluctuations is feasible in Type-II phase-matching nonlinear crystals.
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I. INTRODUCTION

A coherent amplification excited by the incoherent light in
the nonlinear medium is of particular importance. The driving
of a single signal mode by combining action of mutually
incoherent longitudinal pump modes in parametric oscillator
was predicted in Refs. [1,2] and experimentally observed in
Ref. [3]. This feature of parametric interaction also takes place
in parametric oscillators and amplifiers pumped by several
intersecting beams of the same or different frequencies [4–7].
In this case one signal wave is coupled to several pump beams
through separate idler beams, and an incoherence of the
pump beams is transferred to the corresponding idler beams.
The cumulative pump action is also typical for parametric
processes excited by Bessel (or more generally by conical)
beams [8,9]. The wave propagating along the pump cone axis
can be phase matched with an infinite set of pump plane waves
of the same frequencies whose wave vectors are lying on the
pump cone. The pump azimuthal incoherence is transferred
to the idler conical beam.

It was predicted in Ref. [10] that a phase modulation of the
pump pulse is transferred to the idler wave in optical parametric
amplifier (OPA) if the group velocities of the pump and idler
waves are equal (group-velocity matched). In such conditions
the parametric generation process excited by the incoherent
pump wave allows the signal wave to grow efficiently with
a high degree of coherence from the quantum noise level,
and the incoherence of the pump is absorbed by the idler
wave [11–20]. The presence of group-velocity dispersion of
interacting waves supports this phenomenon, provided that
the dispersion parameter of the pump matches the dispersion
parameter of the idler wave [15]. It was shown in Ref. [21]
that the generation of a coherent wave by two incoherent
waves is a characteristic feature of three-wave interaction in
a quadratic nonlinear medium when the angular dispersion of
both incoherent waves is properly chosen.

In this paper we analyze an evolution of input signal wave
in OPA being pumped by a broadband incoherent wave at
the group-velocity matching of pump and idler waves. We
demonstrate that the condition of group-velocity matching
of two (pump and idler) interacting waves is possible at
Type-I and Type-II phase-matching in nonlinear crystals. The
correlation functions and spectra of signal and idler waves
are obtained in analytical form in the case of the first-order
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dispersion approximation. The spectra and parametric gain
of signal and idler waves in the second-order dispersion
approximation are obtained by numerical simulation of
governing equations. It is found that in this case due to
phase-matching conditions the frequency bandwidth of the
idler wave at the output of OPA is essentially determined by
the frequency bandwidth of signal wave.

The paper is organized as follows. In Sec. II we present the
solution of the equations which describe the parametric down-
conversion of incoherent light in the first-order dispersion
approximation. The analysis of the correlation function and
spectrum of signal wave (Sec. III) as well as idler wave
(Sec. IV) in the case of signal seed into OPA is carried out. The
variation of the mean intensity of signal wave being amplified
in OPA by incoherent pump is analyzed in Sec. V. The results
of the numerical simulations of the governing equations in
the second-order dispersion approximation are presented in
Sec. VI. An evolution of the spectrum as well as parametric
gain of signal and idler waves with propagation in a nonlinear
medium is analyzed.

II. GOVERNING EQUATIONS AND THEIR SOLUTION IN
THE FIRST-ORDER DISPERSION APPROXIMATION

We consider the spatiotemporal evolution (z,t) of three
interacting optical waves in a quadratic nonlinear medium
in the first-order dispersion approximation. In this case the
amplitudes Aj (z,t), j = 1,2,3, of three waves obey the
coupled partial differential equations:

∂A1

∂z
+ 1

u1

∂A1

∂t
= σ1A

∗
2A3, (1a)

∂A2

∂z
+ 1

u2

∂A2

∂t
= σ2A

∗
1A3, (1b)

∂A3

∂z
+ 1

u3

∂A3

∂t
= −σ3A1A2, (1c)

where uj and σj = defkj/n2
j stand for group-velocity and

nonlinear coupling coefficient of the j wave, respectively, and
are calculated for central frequency ωj0 of the wave. def is the
effective second-order susceptibility, kj = ωjnj/c is a wave
number, ωj = ωj0 + �j is a frequency, nj is a refractive index.
For definiteness we call the first, second, and third waves as
the signal, idler, and pump waves, respectively. We assume
that an initial condition of Eq. (1) at z = 0 for the envelope
Aj0(t) = Aj (0,t) is the stationary Gaussian stochastic process
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with zero mean and Gaussian autocorrelation function,

Bj0(T ) = 〈Aj0(t + T )A∗
j0(t)〉 = 〈

a2
j0

〉
exp

(
− T 2

τ 2
j

)
, (2)

where τj is the correlation time of the j wave. In further
consideration 〈a2

j0〉 = 〈|Aj0|2〉 stands for the normalized mean
intensity of the j wave at the input of the nonlinear medium.
We restrict our analysis to the linear regime of the parametric
interaction and assume that group velocities of the idler and
pump waves are equal (u2 = u3). Then in the reference frame
of the pump wave t → t − z/u3 Eq. (1) can be written as

∂A1

∂z
+ ν

∂A1

∂t
= σ1A

∗
2A30(t), (3a)

∂A2

∂z
= σ2A

∗
1A30(t), (3b)

where ν = 1/u1 − 1/u2 characterizes the walk-off between
the signal and idler (or pump) waves. The exact solution of
Eq. (3) was obtained in Ref. [10]:

A1(z,t) = A10(t − νz) +
∫ νz

0

[
A10(t − t1)

2r

s
I1(s)

+ σ1A30(t − t1)A∗
20(t − t1)

I0(s)

ν

]
dt1, (4a)

A2(z,t) = A20(t) + A30(t)
∫ νz

0

[
σ1σ2A20(t − t1)A∗

30(t − t1)

× 2(νz − t1)

ν2s
I1(s) + σ2A

∗
10(t − t1)

I0(s)

ν

]
dt1,

(4b)

where s = 2
√

(νz − t1)r , r = σ1σ2
ν2

∫ t

t−t1
|A30(t2)|2dt2, and I0,

I1 are the modified Bessel functions. We provide the analysis
for a broadband incoherent pump whose correlation time τ3

obeys an inequality τ3 � |ν|z. It means that the frequency
bandwidth of the pump wave should exceed the frequency
bandwidth ��OPA of OPA pumped by a monochromatic
wave at small gain, ��OPA ∼ 1/(|ν|z). In this case r ≈
σ1σ2t1〈a2

30〉/ν2 and s ≈ 2
√

σ1σ2〈a2
30〉t1(νz − t1)/ν. We intro-

duce into consideration in Eq. (4) new variable ξ = t1/(νz)
and the characteristic length of the nonlinear interaction
Ln = (σ1σ2〈a2

30〉)−1/2. Then in the case of signal seed into OPA
(A10 
= 0, A20 = 0) Eq. (4) for z � τ3/|ν| can be rewritten as

A1(z,t) = A10(t − νz) + b

∫ 1

0
A10(t − νzξ )F1(ξ )dξ, (5a)

A2(z,t) = b

√
σ2

σ1

A30(t)√〈
a2

30

〉
∫ 1

0
A∗

10(t − νzξ )F0(ξ )dξ, (5b)

where b = z/Ln and

F0(ξ ) = I0[2b
√

ξ (1 − ξ )], (6a)

F1(ξ ) =
√

ξ

1 − ξ
I1[2b

√
ξ (1 − ξ )]. (6b)

Furthermore we present some integrals with F0(ξ ) and F1(ξ )
which are found below:∫ 1

0
F0(ξ )dξ = 1

b
sinh(b), (7a)

∫ 1

0
F1(ξ )dξ = 1

b
[cosh(b) − 1]. (7b)

The obtained solution [Eq. (5)] permits an analytical treatment
of the parametric amplification of a coherent as well as an
incoherent signal wave in the field of the broadband incoherent
pump field.

We assume that at the input of nonlinear medium the
pump and signal waves are uncorrelated. In this case cal-
culation of correlators 〈A1(z,t)A∗

30(t)〉, 〈A2(z,t)A∗
30(t)〉, and

〈A1(z,t)A∗
2(z,t)〉 by use of Eq. (5) yields zero. So, the

correlation between the interacting waves cannot arise under
propagation in a nonlinear medium if these waves were
uncorrelated at the input. We note that the correlation between
the idler and pump waves appears only in some special cases,
for example, when the pump wave exhibits only pure random
phase fluctuations [13], or group-velocity dispersion is taken
into account [15].

The possibility of group-velocity matching of the pump
and idler waves was analyzed in various nonlinear crystals by
numerical simulation of the equations,

ω1 + ω2 = ω3, k1 + k2 = k3(θ ), u2 = u3(θ ), (8a)

and

ω1 + ω2 = ω3, k1(θ ) + k2 = k3(θ ), u2 = u3(θ ), (8b)

for Type-I and Type-II collinear phase matching, respectively.
The Selmeier equations from Ref. [22] were adopted. As an
example, the obtained results for KDP crystal are presented
in Fig. 1, where the corresponding signal wavelengths (λ1)
are also shown. We note that for fixed wavelength of the
pump wave there can exist two different idler wavelengths and
corresponding two phase-matching angles (θ ) at which group-
velocity matching is possible. The phase-matching curves are
limited by the absorption in KDP crystal at λ ≈ 1.5 μm. In
the case of Type-II phase matching the limitation occurs also
due to noncritical phase matching at θ = 90◦. We note that
in the case of Type-I phase matching the walk-off parameter
ν is small and for this reason the condition |ν|z � τ3 can be
fulfilled only for quite small values of pump correlation time.
In this case the group-velocity dispersion of interacting waves
should be taken into account (Sec. VI).

III. PARAMETRIC AMPLIFICATION OF SIGNAL WAVE

Let us calculate the correlation function B1(T ) = 〈A1(z,t +
T )A∗

1(z,t)〉 of the signal wave being amplified by an incoherent
pump in the nonlinear medium. By use of Eq. (5a) we find

B1(T ) = 〈
a2

10

〉[
exp

(
− T 2

τ 2
1

)

+ b

∫ 1

0

(
exp

{−[T + νz(ξ − 1)]2
/
τ 2

1

}
+ exp

{−[T − νz(ξ − 1)]2/τ 2
1

})
F1(ξ )dξ

+ b2
∫ 1

0

∫ 1

0
exp

{−[T − νz(ξ1 − ξ2)]2
/
τ 2

1

}
×F1(ξ1)F1(ξ2)dξ1dξ2

]
. (9)
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FIG. 1. Group-velocity-matching curves of pump (λ3) and idler
(λ2) waves in KDP crystal (a) and corresponding phase-matching
angles (θ ) for Type-I (b) and Type-II (c) phase matching. Thick and
thin parts of the curves correspond to different phase-matching angles.

The spectrum of the signal wave G1(�) =
2π

∫ ∞
−∞ B1(T ) exp(i�T )dT is obtained by the Fourier

transform of Eq. (9), where � = ω1 − ω10 is the frequency
shift with respect to the central frequency ω10. Furthermore
we omit rather long calculations and present only the exact
final result:

G1(�) = G10(�)|1 + D1(�)|2, (10)

where

D1 = b exp(−i�νz)
∫ 1

0
F1(ξ ) exp(i�νzξ )dξ, (11)

and G10(�) = 2π3/2τ1〈a2
10〉 exp(−�2τ 2

1 /4) is the spectrum of
the signal wave at the input of the nonlinear medium. An
integration in Eq. (11) yields

D1 + 1 = exp(−i�νz/2)

[
cosh

√
b2 − (�νz)2

4

− i
�νz/2√

b2 − (�νz)2

4

sinh

√
b2 − (�νz)2

4

]
. (12)

The substitution of D1 into Eq. (10) gives

G1(�) = G10(�) + G10(�)b2
sinh2

√
b2 − (�νz)2

4

b2 − (�νz)2

4

. (13)

So, the spectrum of the signal wave [Eq. (13)] as well as its
correlation function B1(T ) [Eq. (9)] are the same as in the case
of monochromatic pump with a constant amplitude equal to√
〈a2

30〉. The evolution of the signal wave in the field of the
broadband incoherent pump (τ3 � |ν|z) coincides with the
evolution in the field of the coherent monochromatic pump
wave and the parametric gain for z � τ3/|ν| is not sensitive to
the pump fluctuations. This property of incoherent pump was
also noticed in Ref. [20]. We note that the obtained condition
z � τ3|ν| is necessary but not sufficient (see Sec. VI).

IV. PARAMETRIC AMPLIFICATION OF IDLER WAVE

The correlation function B2(T ) of idler wave is

B2(T ) = σ2

σ1
b2

〈
a2

10

〉
exp

(−T 2
/
τ 2

3

)
×

∫ 1

0

∫ 1

0
exp

(−[T − νz(ξ1 − ξ2)]2
/
τ 2

1

)
×F0(ξ1)F0(ξ2)dξ1dξ2. (14)

The Fourier transform of Eq. (14) yields the spectrum of the
idler wave:

G2(�)

= σ2

σ1

τ13

τ1
G10(0) exp

(−�2τ 2
13

/
4
)
b2

∫ 1

0

∫ 1

0
F0(ξ1)F0(ξ2)

× exp
(−ν2z2(ξ1 − ξ2)2

/(
τ 2

1 + τ 2
3

)
+ i�νz(ξ1 − ξ2)τ 2

3

/(
τ 2

1 + τ 2
3

))
dξ1dξ2, (15)

where τ13 = τ1τ3/
√
τ 2

1 + τ 2
3 . Furthermore we analyze the

spectrum of the idler wave for τ1 � τ3. In this case we find

G2(�) ≈ σ2

σ1

τ3

τ1
G10(0) exp

(−�2τ 2
3

/
4
)
b2

∫ 1

0

∫ 1

0
F0(ξ1)F0(ξ2)

× exp
(−ν2z2(ξ1 − ξ2)2

/
τ 2

1

)
dξ1dξ2. (16)

So, the idler wave acquires the profile of the pump spectrum
and its bandwidth does not depend on the propagation length in
the nonlinear medium. For the narrow-band signal (τ1 � |ν|z)
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we obtain

G2(�) ≈ σ2

σ1

τ3

τ1
G10(0) exp

(−�2τ 2
3

/
4
)

sinh2(z/Ln). (17)

For the broadband signal (τ1 � |ν|z) the exponent exp
(−ν2z2(ξ1 − ξ2)2/τ 2

1 ) in Eq. (16) can be evaluated as√
π τ1

|ν|z δ(ξ1 − ξ2), where δ is a Dirac delta function and, as
a result, we find

G2(�) ≈ √
π

σ2

σ1

zLp

L2
n

G10(0) exp
(−�2τ 2

3

/
4
) ∫ 1

0
F 2

0 (ξ )dξ,

(18)

where Lp = τ3/|ν| is the characteristic correlation length of
the pump wave. In the case of large gain (b � 1) we find∫ 1

0 F 2
0 (ξ )dξ ≈ 1

4
√

π
b−3/2 exp(2b). Then Eq. (18) can be written

as

G2(�) ≈ 1

4

σ2

σ1

Lp√
Lnz

G10(0) exp
(−�2τ 2

3

/
4
)

exp(2z/Ln),

(19)

and the ratio of the spectral intensities of the idler and signal
waves is

G2(0)

G1(0)
= σ2

σ1

Lp√
Lnz

. (20)

V. MEAN INTENSITIES OF SIGNAL AND IDLER WAVES

The normalized mean intensities of the signal and idler
waves 〈a2

1〉 = 〈|A1|2〉 and 〈a2
2〉 = 〈|A2|2〉 obey the relation,

σ2
〈
a2

1

〉 − σ1
〈
a2

2

〉 = σ2
〈
a2

10

〉 − σ1
〈
a2

20

〉
, (21)

which does not depend on the properties of the pump wave.
This relation can be directly obtained from Eq. (3). By
elimination of pump amplitude A30(t) in Eq. (3) we find

σ2( ∂a2
1

∂z
+ ν

∂a2
1

∂t
) = σ1

∂a2
2

∂z
. This equation can be rewritten as

σ2
∂
∂z

a2
1(z,t ′) = σ1

∂
∂z

a2
2(z,t), where t ′ = t + νz. In the case of

stationary stochastic processes the averaging of intensities a2
1 ,

a2
2 and an integration yields Eq. (21).

The mean intensity 〈a2
1〉 of the signal wave can be found by

use of Eq. (9) for T = 0. We have〈
a2

1

〉
〈
a2

10

〉 − 1 = 2b

∫ 1

0
exp

(−ν2z2(ξ − 1)2
/
τ 2

1

)
F1(ξ )dξ

+ b2
∫ 1

0

∫ 1

0
exp

(−ν2z2(ξ1 − ξ2)2
/
τ 2

1

)
×F1(ξ1)F1(ξ2)dξ1dξ2. (22)

So, the mean intensity of signal wave depends on the corre-
lation time of signal wave τ1. In the case of the narrow-band
signal (τ1 � |ν|z) its intensity gain is〈

a2
1

〉
〈
a2

10

〉 − 1 = sinh2

(
z

Ln

)
. (23)

For the broadband signal (τ1 � |ν|z) we find〈
a2

1

〉
〈
a2

10

〉 − 1 = √
π

zLs

L2
n

[
1 +

∫ 1

0
F 2

1 (ξ )dξ

]
, (24)

FIG. 2. Dependence of mean intensity gain of signal wave on
ratio z/Ls for different values b = z/Ln.

where Ls = τ1/|ν| is the characteristic correlation length of
the signal wave. The dependence of mean intensity gain of the
signal wave on ratio z/Ls for different values of b = z/Ln was
obtained numerically and is shown in Fig. 2. The parametric
gain of mean intensity depends on the correlation length Ls .
The largest gain is obtained for the narrow-band signal when
Ls � z. The mean intensity of the idler wave can be found by
use of Eq. (21).

VI. NUMERICAL SIMULATION OF THE GOVERNING
EQUATIONS IN THE SECOND-ORDER

DISPERSION APPROXIMATION

Here we simulate the system of equations which includes
the group-velocity dispersion coefficients gj :

∂A1

∂z
+ 1

u1

∂A1

∂t
+ i

g1

2

∂2A1

∂t2
= σ1A

∗
2A3, (25a)

∂A2

∂z
+ 1

u2

∂A2

∂t
+ i

g2

2

∂2A2

∂t2
= σ2A

∗
1A3, (25b)

∂A3

∂z
+ 1

u3

∂A3

∂t
+ i

g3

2

∂2A3

∂t2
= −σ3A1A2. (25c)

The amplitudes of input signal (j = 1) as well as pump (j = 3)
waves which obey the correlation function of Eq. (2) can be
written as [23]

Aj0 =
√〈

a2
j0

〉 1√
Ns

Ns∑
s=1

exp[iωsj t + iϕsj ], (26)

where ωsj are the normally distributed random numbers
with variance ��j0/

√
2, where ��j0 = 2/τj stands for the

frequency bandwidth of the j th wave at the input. ϕsj are
the random phases and quantity Ns has to be sufficiently
large. In our calculations Ns = 200. Equations (25) were
simulated N � 1 times and the averaged values were fixed.
The simulations were performed by the use of the symmetrized
split-step Fourier method [24]. Where it was possible, the
obtained solutions were compared to the theoretical ones.
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First, we verified the theoretical results presented in
Secs. II–V which essentially were based on the assumption
that an inequality τ3 � |ν|z is valid. The results of theoretical
analysis as well as of numerical simulations are shown in
Fig. 3 in the case of Type-II KDP crystal for pump and
signal wavelengths λ30 = 0.41 μm and λ10 = 0.806 μm,
respectively. The correlation time τ3 of the pump wave was
chosen rather large (τ3 = 100 fs) in order to avoid the group-
velocity dispersion of the pump. For l = 2-cm-long Type-II
KDP crystal we have |ν|l ≈ 3 ps and the inequality τ3 � |ν|l is
valid. A good agreement between the theoretical and numerical
results was obtained (Fig. 3). The spectral intensity of the
amplified signal wave in the field of incoherent pump can
considerably exceed the spectral intensity of the pump wave
(Fig. 4). The depletion of the pump wave is observed and for
this reason curve (1) if Fig. 4(b) differs from the theoretical
curve (2) which was obtained by use of Eq. (13) in the case of
the undepleted pump wave.

The condition τ3 � |ν|z is necessary but not sufficient
to obtain a good agreement between the theoretical and
numerical results. A numerical simulation of Eq. (25) has
shown that an inequality τ3 � |ν|Ln also should be valid. That
is demonstrated in Fig. 5. All parameters are the same as in
the case of Fig. 3 with one exception for nonlinear interaction
length Ln. We have |ν|Ln = 0.75 ps (Fig. 5) and |ν|Ln = 3
ps (Fig. 3). The averaging of the pump fluctuations is not
sufficient in the case of the smaller value of Ln. For this reason
an increase of spectral intensity of the signal and idler waves
due to pump fluctuations is observed. It means that in this
case at the output of the nonlinear medium an increase of
signal wave fluctuations in comparison with the ones at the
input is unavoidable. So, a large parametric gain of the signal
wave which is not sensitive to pump fluctuations is possible at
z � Ln � τ3/|ν| if the group-velocity dispersion of the pump
wave can be neglected.

Next, we shall obtain the phase-matching curve of three
interacting waves in nonlinear medium when group-velocity
dispersion is taken into account. In the case of group-velocity
matching of pump and idler waves (u2 = u3) this curve is a
solution of the equation system:

ω1 + ω2 = ω3, k(ω1) + k(ω2) = k(ω3), (27)

where ωj = ωj0 + �j , j = 1,2,3. We assume that an orien-
tation of nonlinear crystal corresponds to the phase matching
of the central frequencies ωj0 of interacting waves, so ω10 +
ω20 = ω30, k10 + k20 = k30, where kj0 = kj (ωj0). By use of
Taylor series in the second-order dispersion approximation
Eq. (27) yields

�1 + �2 = �3, (28a)

2ν�1 + g1�
2
1 + g2�

2
2 = g3�

2
3, (28b)

where ν = 1/u1 − 1/u2. In the first-order dispersion approx-
imation the group-velocity dispersion coefficients gj can be
neglected, and a solution of Eq. (28) is �1 = 0, �2 = �3.
It means that only the central frequency of the signal wave
obeys the phase-matching conditions, and the idler wave
acquires the spectrum profile of the pump wave. In this
case the down-conversion of an incoherent pump stimulates
the generation of coherent signal wave [13,14].

FIG. 3. Output spectra of the signal (a) and idler (b) waves at
z = 2 cm. Dependence of spectral intensity of the signal (c) as well
as idler (d) wave on the propagation length. Average of N = 500
numerical simulations [curves (1), black]. Theoretical results are
represented by gray curves (2). Type-II KDP crystal, λ30 = 0.41 μm,
λ10 = 0.806 μm (u2 = u3). Ln = 2 cm, crystal length l = 2 cm,
τ1 = 10 ps, τ3 = 100 fs, 〈a2

10〉/〈a2
30〉 = 10−6, |ν|l = 3 ps.
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FIG. 4. (a) Input (gray, 1,2) and output (black, 3,4) spectra of the
signal (1,3) and pump (2,4) waves at z = 4 cm. (b) Numerical (1)
and theoretical (2) dependence of spectral intensity of the signal
wave on the propagation length. Average of N = 500 numerical
simulations (curves 3,4). Type-II KDP crystal, λ30 = 0.41 μm, λ10 =
0.806 μm (u2 = u3). Ln = 2 cm, l = 4 cm, τ1 = 10 ps, τ3 = 100 fs,
〈a2

10〉/〈a2
30〉 = 10−2, |ν|l = 3 ps. At z = l ratio 〈a2

1〉/〈a2
30〉 = 0.11.

The insertion of Eq. (28a) into Eq. (28b) gives a phase-
matching curve:

p1

(
�1

��10

)2

+ p2

(
�2

��10

)2

+ 2
�1

��10

�2

��10

− 2p3
�1

��10
= 0, (29)

where p1 = g3−g1

g3
, p2 = g3−g2

g3
, p3 = ν

g3��10
, and ��10 =

2/τ1 stands for the frequency bandwidth of the signal wave at
the input. In the case of KDP crystal the Type-I phase-matching
curve (ellipse) for pump and signal wavelengths λ30 =
0.48 μm and λ10 = 0.73 μm, respectively, is shown in Fig. 6
for two values of signal correlation time τ1. The obtained
curve is not symmetric with respect to the coordinate axes,
and, as a result, the spectrum of the signal and idler waves
being amplified in the field of incoherent pump should be
asymmetric. The shape of the phase-matching curve [Eq. (29)]
does not depend on the correlation time τ3 of the pump wave.
The pump frequency bandwidth ��30 = 2/τ3 can only limit in
some cases the frequency bandwidth of signal and idler waves
because the condition −��30 � �1 + �2 � ��30 should be
fulfilled [see Eq. (28a)]. In general, the frequency bandwidth

FIG. 5. Output spectra of signal (a) and idler (b) waves at
z = 2 cm. Dependence of spectral intensity of the signal (c) as well
as idler (d) wave on the propagation length. Average of N = 500
numerical simulations [curves (1), black]. Theoretical results are
represented by gray curves (2). Type-II KDP crystal, λ30 = 0.41 μm,
λ10 = 0.806 μm (u2 = u3). Ln = 5 mm, l = 2 cm, τ1 = 10 ps,
τ3 = 100 fs, 〈a2

10〉/〈a2
30〉 = 10−6, |ν|l = 3 ps.
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FIG. 6. Phase-matching curve. τ1 [fs]: 100 (1), 20 (2). Type-I
KDP crystal, λ30 = 0.48 μm, λ10 = 0.73 μm (u2 = u3). The possible
values of phase-matched idler wave frequencies (thick straight line)
are shown for τ1 = 20 fs.

of the idler wave in rather long crystal is determined by
the frequency bandwidth of the signal wave. An increase of
the coherence of the signal wave under propagation in the
nonlinear crystal is possible only to some extent due to the
filtration of the spectral components (�1 > 0) of the signal
wave which do not obey the phase-matching condition (Fig. 6).

We note that in the special case g2 = g3 (p2 = 0) the
solution of Eq. (29) is �1 = 0, and the generation of a
coherent signal wave by down-conversion of the incoherent
pump becomes possible also under group-velocity dispersion
of interacting waves [15].

The spectra of the signal and idler waves at the output
of the OPA pumped by the incoherent wave with a short
correlation time are shown in Fig. 7(a) (Type-I interaction).
The correlation time τ3 = 5 fs of the pump wave is much
smaller in comparison with the products |ν|l = 230 fs and
|ν|Ln = 57.5 fs. So, the averaging of the pump fluctuations
is proper [compare curves (2) and (3) in Fig. 7(b)]. In the
case of group-velocity dispersion of the pump wave the
phases of pump spectral components vary with propagation
length z as ϕ3(�,z) = ϕ3(�,0) − g3�

2z/2, and the mean
value 〈ϕ3(�,z)〉 = −g3�

2z/2 is not zero. As a result, the
optimum phase difference between the interacting waves is
violated, and a small gain of the signal wave is observed [curve
1 in Fig. 7(b)]. The frequency bandwidths of signal as well as
idler waves tend with a propagation to the constant values
[Fig. 7(c)], and that is predetermined by the phase-matching
curve of the signal and idler waves.

The parametric gain of the signal and idler waves increases
with increase of the correlation time of the pump wave (Fig. 8).
It was assumed that the spectral intensity G3(0) of the pump
wave does not depend on its correlation time. In this case an
increase of the correlation time τ3 corresponds to a decrease
of the pump frequency bandwidth ��30 = 2/τ3 as well as
pump intensity 〈a2

30〉 ∝ G3(0)��30 and to an increase of
the nonlinear interaction length Ln ∝ 〈a2

30〉−1/2 ∝ τ
1/2
3 . The

product |ν|Ln (in fs) is 41 (1), 58 (2), 70 (3); here the numbers
in the parentheses number the curves shown in Figs. 8(a)–8(d).

FIG. 7. (a) Output spectra of the signal (1) and idler (2) waves
at z = 4 cm. (b) Numerical (1,2) and theoretical (3) dependencies of
spectral intensity of the signal wave on the propagation length. Curve
(2) is obtained neglecting group-velocity dispersion coefficients. (c)
Spectral bandwidths of the signal (1) and idler (2) waves. Average of
N = 500 numerical simulations. Type-I KDP crystal, λ30 = 0.48 μm,
λ10 = 0.73 μm (u2 = u3). Ln = 2 cm, l = 4 cm, τ1 = 100 fs, τ3 =
5 fs, 〈a2

10〉/〈a2
30〉 = 10−6, |ν|l = 230 fs.

So, for a ratio |ν|Ln/τ3 we obtain 4.1 (1), 2.9 (2), 2.3 (3).
Obviously, the condition τ3 � |ν|Ln is not fulfilled, and the
pump fluctuations cannot be averaged in a proper way. In this
case an increase of the parametric gain of signal and idler waves
observed in Fig. 8 is mainly caused by pump fluctuations and
only partially by decrease of an influence of group-velocity
dispersion of pump wave. In comparison, the parametric gain
of signal wave in the case of monochromatic interacting waves
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FIG. 8. Output spectra of the signal (a) and idler (b) waves at
z/Ln = 4. Dependencies of the spectral intensities of the signal (c)
and idler (d) waves on ratio z/Ln. Average of N = 500 numerical
simulations. Type-I KDP crystal, λ30 = 0.48 μm, λ10 = 0.73 μm
(u2 = u3). τ1 = 20 fs, 〈a2

10〉/〈a2
30〉 = 10−6. τ3 [fs]: 10 (1), 20 (2), 30

(3). Ln [cm]: 1/
√

2 (1), 1 (2),
√

3/2 (3). (e) Dependence of the spectral
bandwidth of signal (1) and idler (2) waves on the propagation length
at τ3 = 20 fs.

is G1(0)/G10(0) = cosh2(z/Ln) and at z/Ln = 4 we obtain
G1(0)/G10(0) ≈ exp(8)/4 ≈ 750; compare to parametric gain
at z/Ln = 4 in Fig. 8(a) (curves 1–3).

The question arises: Is it possible to obtain in OPA pumped
by incoherent wave a large gain of the signal wave which is
not sensitive to pump fluctuations? The needed condition can
be formulated as

Ld � Ln � τ3/|ν|, (30)

where Ld = τ 2
3 /(2g3) is a characteristic dispersion length of a

pump wave. Then Eq. (30) can be rewritten as Ld � 100τ3/|ν|
and τ3 � 200g3/|ν|. In the case of Type-I phase-matching
KDP crystal (Figs. 7 and 8) we have |ν| = 57.5 fs/cm, g3 =
7.9 × 10−28 s2/cm and τ3 � 28 ps, Ln � 5 m. So, the proper
averaging of pump fluctuations at a large gain in the Type-I
nonlinear crystal requires a very large nonlinear interaction
length Ln. In the case of Type-II phase-matching KDP crystal
(Figs. 3–5) the walk-off parameter ν is much larger. We have
|ν| = 1.5 ps/cm, g3 = 9.6 × 10−28 s2/cm and τ3 � 130 fs,
Ln � 8.6 mm. As a result, the large parametric gain can be
matched with an averaging of pump fluctuations in Type-II
phase-matching nonlinear crystal.

VII. CONCLUSIONS

An evolution of the input signal wave in OPA pumped
by broadband incoherent wave has been analyzed at group-
velocity matching of pump and idler waves. We demonstrate
that the group-velocity-matching of pump and idler waves
is possible both for Type-I and Type-II phase matching in
nonlinear crystals.

The correlation functions and spectra of signal and idler
waves are obtained in analytical forms in the case of the
first-order dispersion approximation. It is shown that when
the parametric gain is not sensitive to the pump fluctuations
the evolution of the signal wave in the field of incoherent
pump coincides with an evolution in the field of the coherent
monochromatic wave. That is possible if the pump correlation
time τ3 is much smaller than the products |ν|Ln, |ν|l, where
ν, Ln, and l are the group-velocity mismatch parameter, the
nonlinear interaction length, and crystal length, respectively.
We demonstrate that the spectral intensity of the amplified
signal wave can considerably exceed the spectral intensity of
the pump wave.

In the case of second-order dispersion approximation
the spectra of signal and idler waves were obtained by
numerical simulation of governing equations. We demonstrate
that the bandwidth of the idler wave at the output of OPA
due to phase-matching conditions is mainly determined by
the bandwidth of signal wave. In OPA pumped by incoherent
wave a large gain of signal wave which is not sensitive to pump
fluctuations preferably can be obtained in nonlinear crystals at
Type-II phase matching. That is caused by a rather large group-
velocity mismatch of signal and pump waves in comparison
with a group-velocity mismatch in crystals at Type-I phase-
matching.

We note that similar conditions of a three-wave interaction
when the group velocity of one wave is mismatched with the
group velocities of the other two waves occur in the case of
stimulated Brillouin scattering (SBS) or stimulated Raman
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scattering (SRS); see Refs. [25,26]. So, the results obtained
for OPA can be applied also to SBS and SRS excited by the
incoherent broadband pump.
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