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We theoretically investigate how phase-only spatial light modulation can enable controlling and focusing the
second-harmonic light generated in transparent nonlinear random structures. The studied structures are composed
of domains with random sizes and antiparallel polarization, which accurately model widely used ferroelectric
crystals such as strontium barium niobate. Using a first-principles Green-function formalism, we account for the
effect that spatial light modulation of the fundamental beam introduces into the second-order nonlinear frequency
conversion occurring in the considered class of structures. This approach provides a complete description of the
physical origin of the second-harmonic light generation in the system, as well as the optimization of the light
intensity in any arbitrary direction. Our numerical results show how the second-harmonic light is influenced by
both the disorder in the structure and the boundaries of the crystal. Particularly, we find that the net result from
the interplay between disorder and boundary effects is strongly dependent on the dimensions of the crystal and
the observation direction. Remarkably, our calculations also show that although in general the maximum possible
enhancement of the second-order light is the same as the one corresponding to linear light scattering in turbid
media, in the Cerenkov phase matching direction the enhancement can exceed the linear limit. The theoretical
analysis presented in this work expands the current understanding of light control in complex media and could
contribute to the development of a new class of imaging and focusing techniques based on nonlinear frequency

mixing in random optical materials.
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I. INTRODUCTION

Recently, many efforts in the field of nonlinear optics have
been made to understand the second-harmonic generation
(SHG) phenomena occurring in random structures, both from
theoretical and experimental standpoints [1-7]. Nowadays,
it is widely accepted that the SHG from disordered media
grows linearly with the length of the random media along
the fundamental beam path [1,2]. On the other hand, it
is also well known that a SHG speckle pattern is formed
even in materials that are transparent, but characterized by
nonlinear random structures [4]. An example of this class of
structures is the strontium barium niobate (SBN) crystal, which
is composed of domains with random sizes and antiparallel
polarization [8—12]. The SHG speckle obtained in this crystal
spans a wide range of emission directions, which greatly
reduces its efficiency in one particular direction. As it has
been experimentally demonstrated, a speckle-free generation
can be recovered by a wave-front phase-modulation method
to focus the SHG from a SBN crystal from many speckles
to a single point [13]. That approach is based on a concept
similar to the one used to focus the fundamental beam through
strongly scattering turbid media [14-23].

In this paper, we present a detailed theoretical study of
the spatial intensity control of SHG by fundamental beam
phase modulation. A random nonlinear structure is considered,
with random domain size and antiparallel polarization. In
our analysis, we first compute the SHG from one single
domain by means of the Green-function formalism. Then, the
SHG from the whole structure is obtained as the coherent
sum of SHG from each of the domains forming the system.
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Our calculations show that, in some particular directions, the
presence of the crystal boundary can play a role as important
as the disorder of the structure in determining the behavior
and optimal enhancement efficiency of the SHG. In any other
generic direction different from those special directions, the
SHG is mainly contributed from the disordered structure, and
the boundary effect is negligible. It is also shown that the
maximum SHG enhancement obtained by considering just
the disordered structure contribution is comparable with the
enhancement efficiency obtained in light focusing through
linear diffusive media. However, in some of the above-
mentioned special directions (specifically in Cerenkov phase
matching directions), the effect of the crystal boundary can be
significant enough to lead to enhancement efficiencies larger
than those reached in linear diffusive media.

This paper is organized as follows. In Sec. II we present
the theoretical framework for the second harmonic intensity
(SHI) generated from a nonlinear random crystal composed
of domains with random sizes and opposite polarizations. The
SHI from one single domain is obtained by solving the second-
order wave equation by means of a Green function. Then, the
SHI from the whole structure is deduced as the coherent sum
of SH light from all the domains. The optimization of the SHI
in a certain direction is realized by introducing an extra phase
term to the plane-wave fundamental light that depends on the
transversal spatial coordinates. In Sec. III we first discuss
the SHG from a homogeneous single crystal as a function
of the crystal size and the observation direction. Then, we
carry out the same analysis for the case of a random structure.
Both the SHI under plane-wave incidence and the optimized
SHI by wave-front phase modulation are analyzed. We discuss
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the results comparing them with the case of the optimization
of light transmission in diffusive linear media.

II. THEORETICAL FRAMEWORK

We consider a crystal structure characterized by a homo-
geneous refractive index but featuring random changes in the
second-order nonlinear susceptibility. More specifically, we
focus our discussion in a structure similar to the one that can be
found in ferroelectric crystals such as SBN or LiNbOs3. In such
crystals, long domains are formed along the crystallographic ¢
axis with antiparallel orientation. In the case of SBN, the size
and position of the domains are usually randomly distributed.
A random distribution can also be introduced in LiNbO3; by
electric-field poling with designed patterns. The elongated
shape of the domains implies that the nonlinear light emission
from a fundamental beam propagating perpendicular to the
¢ axis is mostly confined to the plane perpendicular to the ¢
axis [3,6].

The wave equation governing the SH electric field E@®),
as directly deduced from Maxwell equations for nonmagnetic,
nonconductive materials, can be written as

V x V x E®) _ jCo2gCe) — @PW, (1)

c

where P?® is the component of the material polarization
oscillating at the SH frequency, and k®® = 2w/c)n®* is the
wave number of the SH wave. The Green-function formalism
can be used to solve this equation. Such formalism has been
widely used in electromagnetism [24,25] and optics [26],
including for problems in nonlinear optics [3,27-29]. When a
homogeneous refractive index is assumed, the electric field at
position r can be represented by the integral over the nonlinear
volume,

2
E(r) = _(2“;) / G(r.r P (' )dr, ()
c 1%

where the dyadic Green function is given by

. WL

We are interested in the far-field distribution of the SH light.
Thus, we take the asymptotic expansion of G (r,r’) in the limit
r > r’. We make the approximation |[r — r'| ~ r — -1’ and
keep only the terms in 1/r. The result can be represented as

3)

4 |r —r'|’
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In this equation, k®”corresponds to a unitary vector in
the direction of observation of the SH field and ® is the
tensor product. Finally, taking the material polarization at
-2
the SH frequency as PC2(r') = ¥ (r') : E@ (*)E® () and
the fundamental field as E@)(r) = E@¢! KT we can write in
Cartesian components,
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where Ak = k@® — 2k(® is the wave-vector mismatch. If we

assume that X(z)is constant over the nonlinear volume, as it
will happen for a single crystalline domain, it is possible to
take it out of the integral. In such case, the electric field will
be proportional to f,, ¢/“¥"'dr’, and this integral contains all
the angular dependence of the SH emission. The integral has
an analytic solution for some simple volume shapes [3].

For the case of long domains, such as those found in SBN,
irradiated by a fundamental wave that propagates normal to
the long axis (crystal ¢ axis), the light emission is confined
mostly to the plane normal to the long axis. This can be
deduced from Eq. (5) and is also observed experimentally
[3,6]. Without loss of generality, and in order to simplify
the theoretical discussion, we restrict our analysis to the
two-dimensional (2D) plane perpendicular to the ¢ axis. Since
both fundamental and SHG light propagate along that plane, no
fundamental difference is expected for a full three-dimensional
(3D) treatment. We describe the plane with x-y Cartesian
coordinates and take x as the fundamental beam propagation
direction (Fig. 1). The integral in Eq. (5) has analytical solution
for a rectangular-shaped domain with dimensions L, and L,
along the x and y directions, respectively [3]. If the domain is
located at position (x,y) we can write
2w2€i2a)n2wr/c

E(2a)) _

@y = degt E@ E@ e CAAYAI L T

cinr

x sinc(Aky L, /2)sinc(Aky L, /2), (6)

where d.g is the effective component of the second-order
nonlinear susceptibility and r is the distance to the observation
point. The phase mismatch between the fundamental and SHG
light in the x and y directions are Ak, = 4w (ny,co8¢ —
n,Co8¢;i,) /A, and Ak, = 4mw(ny,sing — n,sing;,)/A, re-
spectively. n,, and n,,, are the refractive indices of fundamental
and SH light, A, is the fundamental wavelength, and ¢ and ¢;,
are the SHG output angle and fundamental incident angle to
the forward direction, respectively. Without loss of generality,
we assume that the forward direction corresponds to the
fundamental incident direction, thus ¢;, = 0.

FIG. 1. (Color online) Schematic of SHG from a nonlinear
structure with random domain size and antiparallel polarization:
(a) SHG under plane-wave incidence. (b) SHG optimized at one
point by wave-front modulation.
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Once the SH electric field from a single domain has been
calculated, the SH electric field from the whole structure can
be obtained as the result of the interference of the SHG from
each domain. This can be understood as splitting the integral
in Eq. (5) in a sum over all the nonlinear domains (n) within
which the nonlinear susceptibility is constant:

2w26i2a)n2wr/c N ) ,
E(Zw) — E®E® deff(n) elAk-r dr/
2
c°mTr el V(n)
N
- Z E2®, (7
n=1

Note that, although Eq. (7) is already written in the scalar form,
the same would be valid in the general 3D treatment in vector
form.

Next we introduce a phase modulation of the fundamental
beam along the perpendicular direction (y). Specifically, the
beam is divided into N segments, and the phase of each
segment ¢, (I < n < N) is modulated independently between
0 and 27 . If we assume that the fundamental beam is perfectly
collimated, and by neglecting the effect of beam diffraction
during propagation within the crystal, the SH signal generated
by the mix of the fundamental beam from two different
phase segments can be neglected. This allows increasing the
computational efficiency of our theoretical treatment, as we
need to consider only the SH generated from each segment
separately.

In this calculation we found it convenient to divide the
structure into N groups corresponding to the segments whose
phases are modulated. Thus, if we assume that there are M
domains in each of the N groups modulated by phases ¢,,, we
can write

N M
3 I ®

n=1 m=1

In the crystal structure considered, the absolute value of the
effective nonlinear susceptibility is constant and only its sign
changes for domains with opposite polarization. If we take
P, with value 1 or — 1 as the sign given by the polarization
of domain mn, from Eqgs. (6) and (8), the SHI can be expressed
as

N M
Z PunLy,, Ly"m o1 Conn Akt Aky)

n=1 m=1

Ak, Ly Ak, L .
x sinc (%) sinc (%) &'

where we denote d = 8w*na,d% 11?3 w2r* n2 ). As de-
duced from Eq. (9), the maximum SHI occurs when the modu-
lated phases ¢, compensate the phases introduced by the rest of
the terms. With the appropriate values for ¢, the contributions
from the N modulated groups can be added in phase. We
define the phase modulation SHG enhancement efficiency

12w=d

2
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FIG. 2. (Color online) Spatial distribution of the SHI (in arbitrary
units) from plane-wave input on a homogeneous crystal of 2.1 um
width, and variable crystal length (a), and a homogeneous crystal of
18 pum length, and variable crystal width (b).

as the proportion between the maximum 7% and the 7?* under
plane-wave input, 7 = I**(¢,)max/I** (¢, = 0).!

III. RESULTS

A. Homogeneous crystal

We first consider the SHG from a homogeneous crystal.
The expression for the SHI can be deduced from Eq. (6) as

Ak,L,\ . Ak, L
1% — dL)ZcLisinc2 (T) sinc? <%> ,  (10)

where L, and L, are now the length and width of the whole
crystal, respectively. In the case in which Ak, = 0 but Ak, #
0, Eq. (10) can be rewritten as

4dL? Ak, L
= X sin? Stin (11)
AK2 2

This situation will occur in usual experiments with SBN for an
emission (internal) angle ¢ = 16.8°. To calculate this angle, we
have assumed the fundamental beam at wavelength 1064 nm,
and the SHG at 532 nm. We then take the corresponding
refractive index of the Sryg1Bag39Nb,Og¢ crystal: nipeanm =
2.22 and ns3onm = 2.32 [30]. From Eq. (11) it is evident that
the SHI will have a quadratic growth with the crystal length
L,, and it will fluctuate periodically with L, (Fig. 2). This

12w

"We applied the software MATHEMATICA using the Nmaximize func-
tion with the DifferentialEvolution method to obtain the maximum
SHG enhancement efficiency.
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condition is also called Cerenkov phase matching [31-34].
In the same way, for the case of collinear SHG (¢ = 0°),
Aky = 0 and Ak, # 0. The intensity will have an expression
like Eq. (11) but with a permutation of the subscripts x and y.
The SHI will follow a quadratic growth with the crystal width
Ly, and it will show the well-known periodical oscillations
with the crystal length L, (Fig. 2). Note that in this case,
together with the growth of the crystal width, there is a linear
growth of the fundamental wave intensity that propagates
inside the crystal.

Both the collinear and the Cerenkov effects are due to
the boundaries of the crystal and will persist even after we
introduce randomness to the structure. For SHI at any angle ¢,
for which neither Ak, nor Ak, is 0, Eq. (10) can be simplified
nto

20 16d . , (Ak<Ly\ . , (Ak,L,
1 = sin sin“ | —— ), (12)
Ak2 Ak}z, 2 2

which can be rather weak compared with the quadratic growth
in the collinear and Cerenkov cases. In general, when we
introduce randomness in the structure, the boundary effect
will be negligible in these directions.

Now, we analyze the case in which the SHG from a
homogeneous crystal is maximized for a certain angle. In this
case, the input beam is divided into N segments of width L
whose phases are modulated by ¢, (1 <n < N):

AkeL,\ . (Aky,L\7?
12‘“=d|:LXLsinc< 5 )smc( 2‘ >:|

N 2
Z einLAky ei2<p,,
n=1

As deduced from Eq. (13), if we introduce a phase modulation
in such a way that ¢, compensates the phase from nLAk,,
the maximized /¢ is proportional to N2L?. Therefore, 1>
features a quadratic growth with the crystal width L, = N L,
while it has the same relation with the crystal length L, as the
1% under the plane-wave input.

The SHI under plane-wave input in Eq. (13) is obtained
when ¢, =0 for all n. Then, the SHG enhancement efficiency is
n=N2/| N &2k 2 For the collinear case, n (¢ = 0°) =
1, and therefore 12 cannot be optimized through this phase
modulation method. For other angles, the precise value of the
enhancement depends on the size of the modulated segments
L.If L =2m/Aky, the denominator in the expression for 7
is N? and thus n = 1 (no enhancement). In contrast, if the
wave-front modulation is performed using small segments
(L < m/Aky) the denominator in n can be approximated

by |f0N edn|*> =2 —2cos N. This term corresponds to the
effect of the crystal width (in this case proportional to N) in the
intensity under plane-wave irradiation. The oscillation in the
denominator is translated into an oscillation in 7. The minima
in the oscillation correspond to n = N2/4, that features a
quadratic growth with N. Note also that the possible zeros in
the denominator cause 7 to diverge to infinity for certain values
of N. However, this divergence, that has its origin in zero
intensity under the plane wave for the corresponding crystal
width, does not lead to an infinite value in the maximized
intensity.

X (13)
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B. Random structures

A SHG speckle appears when some degree of randomness is
introduced into the distribution of polarization of the domains,
even if the domain size is uniform. The degree of disorder is
quantified by the parameter o(0 < o < 1), which measures
the fraction of domains for which P = 1 over the total number
of domains. Figure 3 shows the SHG speckle pattern from
a random structure, due to the interference of SHG from
all domains, which are of uniform size L and antiparallel
polarization. For a random structure whose width is fixed,
as the structure length increases, the speckle size decreases
(except in ¢ = 0°), whereas the speckle number increases.
This behavior is associated with the fact that the speckle size
is inversely proportional to the angular range from which the
light arrives to the observation point [35]. By comparison of
Figs. 3(a) and 3(b), one can see that if the whole structure size
is fixed, as the domain size L increases, the SHG becomes
stronger in the forward direction.

(a) 1=0.2 pm
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20 0.2} /
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0.3r (o) L=0.2 pm

IZw

5l (@ . 1=0.2um
i oo=1
1203 1t
0,:,\ x .
0 20 30

10
¢2w(d%)
FIG. 3. (Color online) The intensity (in arbitrary units) of the
SHG speckle pattern generated from plane-wave input on structures
with uniform square domain size L and random polarization. The

crystal width is 1.2 pum, and the crystal length takes the following
values: 0.6 um red, 30 um thick black, and 60 um dashed blue.
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If we gradually increase the randomness of the structure
by decreasing o from 1 (homogeneous crystal) to 1/2 (half
of the domains with a given polarization), we find that, as the
structure becomes more disordered, the Cerenkov SHG peak
at angle ¢ = 16.8° due to the crystal boundary effect gradually
disappears [Figs. 3(d), 3(c) and 3(a)]. The disorder effect in
the crystal washes out the effect of the homogeneous crystal
boundaries.

Now, we further introduce random sizes to the domains,
together with the antiparallel polarization in the structure.
In this case, the modeled structure consists of a group of
domains with random sizes and negative polarization into a
homogeneous crystal with positive polarization (Fig. 1). We
assume the domains are square shaped, thatis, Ly, = Lymn, =
L,.., where L,,, takes random values from L, t0 Lpax.
L corresponds also to the width of each phase segment
along the y direction, so that the domain position x,, , will
randomly take values between L,,, and L, and y,, , between
(n — 1)L ax + Ly, and nLy,x. In our simulations the eventual
spatial overlap of two domains was not prevented. However,
comparing the results with those obtained in simulations of
constant sized domains for which there is no overlap, we
conclude that the eventual overlap of domains does not affect
the main conclusions presented here.

In this case, o corresponds to the proportion of the area
covered by domains with polarization pointing up (P = 1)
to the total structure area. From Eq. (9), we computed the
SHG before and after optimization for three representative
directions, namely, in the collinear angle, the Cerenkov angle,
and an angle at which neither Ak, nor Ak, is O (Fig. 4).

If we now define

M
Ak, L
t, = Z Pm,,ernnsinc (%)

m=1

. Ak 'Lmn i
« sinc < >2 ¢ Com Bkt Aky)

the maximum SHI enhancement by phase modulation can be
expressed as

n= Inix — |2 e ’ _ (Xomi |tn|)2 (14)
I§” |Zrllv=1tn|2 \Zﬁ:ltnf

Now, we consider the average values (n) over a statistically
significant number of structures with randomly distributed
domain sizes, polarizations, and positions. In general, the
phase of 7, takes any value between 0 and 27 with equal proba-
bility. Consequently, the average maximum SHI enhancement
by phase modulation is n = 1 + 7 (N — 1)/4 (Fig. 5). Note
that this expression for 5 is in fact equal to the phase
modulation enhancement through turbid linear media [36].
However, for the SHG in the Cerenkov and the collinear angle,
the contribution from the structure boundaries ([yyx) that
behaves like in the homogeneous crystal can be relatively large
compared with the contribution from the random structure
(Irandom)~

In the collinear angle, Iy is proportional to L%, whereas
Iiandom 1s proportional to L .. Thus, for a fixed crystallength L,
Inuik plays a more important role as L, grows larger. For any
random structure, the average enhancement in the collinear
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FIG. 4. (Color online) The SHI (in arbitrary units) as a function
of the angle before and after optimization around ¢ = 30° (a),
¢ = 0° (b), and ¢ = 16.8° (c). The structure background consists
of a homogeneous medium, 60 um wide and 30 um long, with
positive polarization. Part of this medium is covered by domains
with random sizes between 0 and 3 um and negative polarization.
The phase segment number is N = 20. The red line shows the SHI
under plane-wave input, whereas the blue line corresponds to the SHI
optimized by phase modulation.

angle can take values between 1, due to the bulk bound-
ary effect, and 14+ 7 (N — 1)/4, due to the disorder effect
(Fig. 5).

In the Cerenkov angle, Iy is proportional to Li whereas
Iandom 18 proportional to L. For a fixed crystal width L, Tyui
plays a more important role as L, grows larger. In general,
the average enhancement in the Cerenkov angle could take
values between 1 + w(N — 1)/4, due to the disorder effect,
and N2/|3°N_ e"L2% 2 due to the bulk boundary effect. If
the phase modulated segments are chosen with the appropriate
width, the effect of the crystal boundaries makes the average
enhancement in the Cerenkov angle substantially larger than
at other angles [Fig. 5(b)]. Note also in the example given in
Fig. 5(a) the oscillation in (1) produced by a segment width
L < m/Ak, as explained in Sec. IIT A.

From the analysis above it follows that, in either the
collinear or Cerenkov direction, a larger crystal width results
in a smaller 7, closer to the minimum value in their individual
efficiency ranges. This is due to the boundary effect in the
collinear direction and to the disorder effect in the Cerenkov
direction, respectively. On the other hand, a larger crystal
length results in a larger n, closer to the maximum value in their
individual efficiency ranges, in that case due to the disorder
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FIG. 5. (Color online) (a) Maximum SHI enhancement efficiency
as a function of the phase segment number N, at an arbitrary angle
¢ = 30°, collinear angle ¢ = 0°, and Cerenkov angle ¢ = 16.8°.
The black solid line corresponds to the linear enhancement efficiency
14+ (N — 1)/4. The structure is 3N pum wide and 30 um long,
including domains with random sizes between O and 3 ;um and random
polarization. Each plot corresponds to the average over 100 different
realizations of the randomness. (b) The maximum SHI enhancement
efficiency as a function of the target direction from the same structure
when N = 50.
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effect in collinear direction and to the boundary effect in the
Cerenkov direction.

IV. CONCLUSIONS

In summary, we have theoretically analyzed the optimiza-
tion of SHG by wave-front phase modulation for nonlinear
random structures composed of domains with random size and
antiparallel polarization. The wave-front phase modulation is
modeled by dividing the structure into N segments along the
crystal width and applying to them a fundamental wave with
variable phases. We have studied the effect of the random
structure length and width over SHG under a plane-wave
input and found the phase front configurations that lead to
an optimized SHG. We have found that the effectiveness in
the optimization of the SHI from a nonlinear random structure
is affected by the target direction. Our calculations show that,
in general, the SHI enhancement efficiency is equal to the
one that can be obtained in linear diffusive media. However,
in the collinear and the Cerenkov directions, the SHI can
have an important contribution from the crystal boundaries.
When the disorder in the bulk is present, such contribution
can increase the maximum possible enhancement efficiency in
the collinear direction, while it decreases that in the Cerenkov
direction. When a wave-front phase modulation is included,
in the collinear direction the SHI enhancement efficiency is
within the limit of the one obtained in linear diffusive media,
whereas at the Cerenkov angle, the enhancement efficiency
brought by the phase modulation can lead to larger SHI.
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