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Accelerating solitons in gas-filled hollow-core photonic crystal fibers
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We found the self-similar solitary solutions of a recently proposed model for the propagation of pulses in
gas-filled hollow-core photonic crystal fibers that includes a plasma induced nonlinearity. As anticipated for a
simpler model and using a perturbation analysis, there are indeed stationary solitary waves that accelerate and
self-shift to higher frequencies. However, if the plasma nonlinearity strength is large or the pulse amplitudes are
small, the solutions have distinguished long tails and decay as they propagate.
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I. INTRODUCTION

Hollow-core photonic crystal fibers (HC-PCFs) can exhibit
very interesting properties, such as relatively low loss, low
group velocity dispersion and high confinement of light in
the core [1,2], while also allowing new nonlinear phenomena
associated with the interaction of light and matter filling these
fibers. Lately, these HC-PCFs have been filled with gases for
purposes of enhancing Raman scattering if a Raman-active
gas is used [3], or further controlling the total dispersion of
the fiber by varying the gas pressure [4]. Furthermore, it has
also been shown that a few uJ or even pJ [5,6] energy optical
pulses are sufficient to ionize the gas and produce a plasma,
leading to new nonlinear effects, such as the blueshifting of
the central wavelength of the pulses [5,7]. Despite the fact that
the soliton shift to higher frequencies has also been reported
in other contexts, such as in a line-defect waveguide [8] and in
tapered solid-core photonic crystal fibers [9], the existence
of a blueshift in a Raman-active gas opens new exciting
opportunities of controlling the soliton dynamics by two
competing processes, one leading to a redshift, usually known
as the soliton self-frequency shift (SSFS) caused by intrapulse
Raman scattering (IRS) [10], and the other to a blueshift.

Traditionally, the interaction between light and matter has
been studied using computationally demanding methods based
on models for the full electric field of the pulse [11] but,
recently, Saleh er al. presented a model that describes pulse
propagation in hollow-core photonic crystal fibers filled with a
gas as a pair of coupled equations for the electric field envelope
and ionization fraction [12]. This model, which neglects losses
and results from a linearization of the tunneling model for pulse
intensities close to the threshold intensity, has proved to be
amenable to the application of both numerical and analytical
techniques. In effect, by using a perturbation approach the
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occurrence of the blueshift effect has already been adequately
predicted [12].

In this paper, we present a thorough study of accelerating
solitons in gas-filled HC-PCFs, extending the results in [12].
We start with the model proposed by Saleh et al. [12], use
an accelerating self-similarity variable to obtain an ordinary
differential equation (ODE) to which we apply a perturbation
approach, and solve using a shooting procedure. In this anal-
ysis, we have considered the exact solution for the ionization
term and our results apply to both zero and nonzero threshold
intensities. The dependence on the model parameters, namely,
the plasma and Raman strengths, the intensity threshold, and
the pulse peak value are studied in detail.

II. SELF-SIMILARITY VARIABLE AND
PERTURBATION APPROACH

As mentioned in the Introduction, here we will follow Saleh
et al. [12] and start with the following coupled equations
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where {(z,t) is the optical field envelope in units of square
root of power, z is the distance along the fiber, ¢ is the time in a
reference frame moving with the group velocity at the central
frequency wy, B; is the group velocity dispersion parameter, y
is the nonlinear parameter, ¢ is the Raman parameter, c is the
vacuum speed of light, ko = wo/c, w, = [e*n./(egm,)]"/? is
the plasma frequency associated with an electron density 7,(¢),
e and m, are the electron charge and mass, respectively, € is
the vacuum permittivity, and A is the effective mode area.
The plasma-induced nonlinearity only occurs for intensities
above the threshold intensity Iy, = | |t2h /Acsr, sothat Alyr|? =
[y]? — |w|§h and ® is the Heaviside step function. ny is the
total number density of ionizable atoms, associated with the
maximum plasma frequency w; = (e’ny/(egm.)]'/?, and &
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is the photoionization cross section. This model assumes that
the recombination time is longer than the pulse and neglects
the ionization induced loss that is small especially for pulses
whose maximum is barely above the threshold. The Eq. (2)
may be solved exactly, and after an adimensionalization we
obtain

dq 13%
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where g = (y20)"/*¥, § = z/20. T =t /10, Tr = tg/t0, b1 =
Tkozo(or /wp)?, and o = &1y/(Aery 20), Where zo = 12/|B
is the so-called dispersion length and 7y is an arbitrary
time chosen similar to the pulse duration. Equation (3) is
a generalized nonlinear Schrodinger equation (GNLSE) for
which a Lie group symmetry analysis reveals the occurrence of
the similarity variable 7' = 7 + $& 2 + b&. In some particular
cases, the ODE resulting from the application of such a
similarity reduction to the original partial differential equation
(PDE) possesses bounded solutions, such as pulses or beams in
the optical context, that have been called accelerating solitons.
One of these cases is for (3) with ¢7 =0 [13-15]. The
observation of blueshifting of the pulse central frequency and
previous perturbation results for ¢7 # 0 have motivated us to
search for pulse solutions using such a similarity variable also
in this case. Hence, using T =t + %52 + b& and admitting
solutions of the form g(&,7) = F(T)expli6(§,T)], with F
and 6 real, we obtain an ODE for F':

F'4+aTF — DF +2F3 _4TRF2F/
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and the following expression for the phase:
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where D and E are arbitrary constants. In order to reduce the
number of parameters, we introduced the following change of
variables P(¢) = o F(T) and T = o¢, with which the ODE
for P(¢) reads

P"+atP —CP +2P — ygP*P’
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with @ = ao3, yg = 4tg /o, and yp = 2¢702. If we further
define

1
+ Zbasz + —ad’e* + E, 4
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where R = yg/yp, it will permit the application of a pertur-
bation approach simultaneously to the two terms, namely, the
Raman and plasma, as long as yx is small.

Hence, we have used a perturbation approach around the
ODE associated with the nonlinear Schrodinger equation
(NLSE) whose results are valuable by themselves if the
additional terms are small, but that also serve as first estimates
for our shooting method. Hence, we consider expansions for
P and « in powers of x such that

P=GE —%)+xP()+---,
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where G(¢ — &) = +/Csech[v/C (¢ — £o)], and
Q= o +---
and introduce them in (5). To first order, we obtain
P/ — CP, +6G*P,
= —12G + RG*G' — G(1 — e= /<@ -POOG =Rt

The left member of the last equation is obeyed by G’, so that
the solvability condition is
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which gives
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where {’ = ¢ — o and ¢ is the instant at which G(£¢;) = Py,.
The integral in the last expression may be written in closed
form as a series but here we solve it numerically. Nevertheless,
for Py, = 0, the integral is easily solved analytically such that
o simplifies to

= —ARC* —(CTV2 =)+ (€2 + D (D)

In the limit of small C, this equation reduces to o) =
—14—5RC2 + %C . Moreover, the MacLaurin series for the

plasma term of (7) shows that it is always below the curve %C.
In fact, this term may be approximated by %C - %«/ C3 with

an error that is no larger than %C 2, which certainly makes the
term smaller than %C upto C = %. However, the term tends
to 1 as C increases to infinity; hence it cannot be larger than
%C for C above % Returning to the general expression (6),
whenever the peak intensity is close to the intensity threshold,
i.e., v/C ~ Py, its exponentials may be expanded up to first
order which gives
42, 2 21372
o = 15RC + 3ﬁ(C Pg)". (8)
Note that both this expression and the approximate
expression for the acceleration for small C and Py, = 0 exhibit
C? and C dependencies which are associated, respectively, to
Raman and plasma effects. Such dependencies imply that the
plasma effect is expected to dominate for small peak amplitude
pulses, with the acceleration taking positive values which are
proportional to the square of the peak amplitude. Conversely,
as the peak amplitude increases, the soliton trajectory should
be mainly controlled by the Raman effect, which leads to a
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FIG. 1. Dependence of the acceleration parameter « on the pulse
peak amplitude for Py, = 0 and for three different x values. Points
are shooting results, and lines are for the perturbation expression.

negative acceleration that is dependent on the fourth power of
the peak amplitude.

As a remark, let us refer that identical results for the
acceleration would be obtained using the so-called adiabatic
perturbation approaches, such as the ones based on the inverse
scattering method [16,17] or on the modified conservation
laws.

III. PULSE PROFILES AND ACCELERATIONS

We then used a shooting method to obtain the pulse
solutions of Eq. (5) and respective accelerations. For this
purpose, we first analyze the asymptotical form of this equation
for pulse solutions that vanish at the limits { — oo which is
given by

P"+(a — C — xAx)P =0,
where

0 if ¢— —o0
Ao = | — o= /% APPOAPYL

if ¢ — oo,

0.4

0.3

0.1
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that, using z = —a'/?¢ + @7?3(C + xAs), may be trans-
formed to an Airy equation:

P’ —zP =0.

This result anticipates that the pulse solutions with @ > 0 have
tails that are exponentially decreasing as { — —oo as the Airy
solution Ai(z) for z — oo and may have tails that are also
exponentially decreasing as ¢ increases as the solution Bi(z)
for z — O but that eventually exhibit Airy oscillations (even
if very, very small). For @ < 0, the contrary is true.

Considering those asymptotic behavior, we designed our
shooting procedure as follows. First, we have fixed the accel-
eration ¢ and, starting from the left tail, we integrated forward
using initial conditions that conform with the corresponding
Ai(z). The actual location of the pulse in the ¢ axis may be
estimated using the perturbation approach described in the
previous section but, since it is not very far from ¢ = 0, the
first estimate for the left tail location ¢minys may be obtained
as if P(¢) ~ G(¢). Then, the shooting procedure checks if P
and P’ are already very small at some point in the right tail,
and improve the starting ¢ in order to obtain the actual pulse
profile for the chosen acceleration. Therefore, this procedure
allows us to establish the relationship between the acceleration
and the pulse characteristics, namely, its peak amplitude.

Our results show that, as long as x is small, the dependence
of the acceleration on the peak amplitude is in fact very
similar to the one obtained by perturbation, that is, by using
expressions (6) or (7) with JC replaced by Ppeax. Let us first
discuss the results for Py, = 0. Figure 1 shows the acceleration
as function of peak amplitude of P(¢) for three different
strengths of the plasma term and without the Raman term.
As shown, the acceleration increases with the amplitude of the
peak, and a good agreement exists between the shooting results
and the perturbation expression (7). Nevertheless, for x = 0.3
there is an observable difference between the two results that
can be attributed to the deviation of the pulse profile from
the sech shape considered for the derivation of Eq. (7). The
absence of results for low Ppea in the curves for x = 0.2
and x = 0.3 is due to the inability of our shooting to find a
solution with a small right tail. In fact, the pulse profiles with

FIG. 2. Pulse profiles with the peak amplitude close to (a) 0.3 and (b) 0.8 for two different x values.

063803-3



M. FACAO, M. I. CARVALHO, AND P. ALMEIDA

Shoot. Py=0.2  +
Pert. Py =0.2 ---eeeeer

0.03 | Shoot. P, =03  x

Pert. Py =0.3

0.02

0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Peak

FIG. 3. Dependence of the acceleration parameter « on the pulse
peak amplitude for different Py, values and fixed x = 0.1. Points are
shooting results, and lines are for the perturbation expression (6). The
inset shows the shooting accelerations for Py, = 0.2 compared with
o computed using (8) with JC replaced by Pyeax.

small amplitude are located close to the zero of the Airy z axis,
an effect that is more pronounced as x grows. This means that,
in those situations, the solution is no longer similar to a sech
profile but it has long, and eventually oscillatory, tails. Figure 2
presents two sets of solutions for Ppeax ~ 0.3 and Ppea ~ 0.8.
The first set shows considerable differences at the right tail,
with the pulse for x = 0.2 having a longer tail. In the second
set, the shape differences are not so evident since for this peak
amplitude, both solutions are already similar to each other and
with the sech shape.

Concerning the numerical results for Py # 0, the accel-
erations are again in good agreement with the perturbation
expression if x is small. As Fig. 3 shows, when compared
with the results for Py, = 0, the accelerations are lower for
small peak amplitudes and larger otherwise. Furthermore, the
acceleration decreases with increasing Py, for smaller peak
amplitudes, and the inverse is true for larger peak amplitudes.
Also represented in this figure is the acceleration resulting
from the approximate expression (8) with +/C replaced by

0.3

0.2

0.1
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FIG. 5. Dependence of the acceleration parameter o on the
pulse peak amplitude for different R values and fixed x = 0.1 and
Py, = 0. Points are shooting results, and lines are for the perturbation
expression.

Ppeax, which, as anticipated, is close to the shooting results
when Ppex ~ Pyp. The pulse shape differs from the sech
also for some peak amplitudes close to Py, but this effect
is smaller as Py, increases. Note that as Py increases, the
possible peak amplitudes that make the plasma term nonzero
are also increasing, since the latter should be larger than the
first. Figure 4 compares pulse profiles for Py, = 0 and 0.2.
Figure 5 illustrates the behavior of the acceleration with
the peak amplitude for R different from zero, i.e., including
the Raman term. For small peak amplitudes, o increases
with the peak amplitude which is the characteristic behavior
of the plasma effect. However, as the peak amplitude increases
further, the acceleration starts to decrease into the region of
negative accelerations that are characteristic of the accelerating
solitons of the NLSE plus IRS [15]. Note that, similarly to what
happened when only the plasma term was present, the shooting
was performed forward, but in the cases of negative «, the
estimates of P and P’ in the left tail were taken from Bi. Still for
the case R # 0, the proximity of the pulses to the z = 0 in the

0.6

0.4

0.2

FIG. 4. Pulse profiles with the peak amplitude close to (a) 0.25 and (b) 0.5 for two different P, values and fixed x = 0.1.
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FIG. 6. Dependence of the relative amplitude at z = 0 on the
pulse peak amplitude for different x and Py, values.

Airy axis for smaller peak amplitudes is lost as we introduce
the Raman term. However, as the peak amplitudes increase
to values for which the acceleration is negative and large in
modulus, the pulse returns to the neighborhood of the Airy
z = Oand starts to develop long tails but, in this case, to the left.

Let us return to the case R = 0. Our results indicate
that the pulse profiles develop long tails whenever the peak
amplitude is small. Since these long tails can be associated with
the oscillatory behavior of the Airy functions for negative z,
we plotted in Fig. 6 the relative pulse amplitude at z = 0 as
a function of the peak amplitude for different values of x
and Py. As expected, this relative amplitude increases with
x- On the other hand, when Py = 0, this relative amplitude
increases with the decrease of Pyeax but, for Py, # 0 the curves
exhibit a maximum for a given value of Py, that is not large
when compared to Py. The existence of the long tails for
small peak amplitude pulses is not readily understood since
for those amplitudes the plasma term is smaller. Also, we
know that in the presence of IRS the pulses develop long tails
if the Raman term is large, which happens for large g or short
pulses (large peak amplitudes). In order to better understand
the deviation from the sech shape in the presence of the
plasma term, we plotted the effective nonlinear refractive index

0.25

0.2

0.15

0.1

0.05

effective nonlinear index

-0.05

85 90 95 100 105 110 115
T

(a)
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g1 — tr(1gP)e — pr(1 — e~ [ MaFO@IaRITy for several
cases. Figure 7 compares two of those cases against the typical
nonlinear refractive index of the NLSE. We may observe that,
although the magnitude of the effect of the plasma term is
greater for Feq = 0.5, the relative deviation from the NLSE
case is larger in the Fjesc = 0.1 case. There, we may also see
that the introduction of nonzero Py, decreases the plasma effect
which was fully expected since this means that only part of the
pulse creates the plasma.

IV. DIRECT NUMERICAL INTEGRATION

Direct numerical simulations of the full Eq. (3) were
performed using pseudospectral codes in order to study the
stability of the solutions described in the last section and to
confirm accelerations and the existence of tails. In general,
the solutions found by the shooting procedure are stable and
evolve along the predicted trajectory. Figure 8(a) is a contour
graph showing the evolution of the pulse profile of Fig. 4(b) for
Py = 0.2. The trajectory is in full agreement with the predicted
acceleration. Whenever long tails were found in the shooting
procedure, they were confirmed in the propagating solution.
In cases of very long tails, the solution is no longer stable
but decays. Figures 8(b) and 9 show the evolution and output
as obtained for the pulse profile of Fig. 2(a) corresponding
to x = 0.2. The same kind of behavior was already observed
with the Raman accelerating solutions [15] and is consistent
with the infinite energy of the Airy solutions Ai(z) and Bi(z).
As discussed in Sec. III, pulse solutions in the positive Airy
axis and far away from its zero have exponential decay in both
tails, similar to Ai to the left and to Bi to the right (the inverse
happens for « < 0). The algebraically decaying oscillations
of Bi(z) for negative z will only occur far away in the right
tails (left tails for « < 0). However, if the solutions are in the
positive Airy axis but close to the zero, one of the tails will
behave like a combination of Ai and Bi; it will exhibit the
typical algebraic decay and it will shed radiation away during
propagation. Figures 8(b) and 9 report this latter behavior.

Finally, let us return to the physical variables and calculate
the actual acceleration and frequency shift. The adimensional

0.01

0.005

effective nonlinear index

-0.005

_0'01 1 1 1
60 80 100 120 140

T
(b)

FIG. 7. Effective nonlinear index for peak amplitudes close to (a) 0.5 and (b) 0.1 for fixed x = 0.1 and Fy, = |gqu| as indicated in the

legends. Comparison with the NLSE case.
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FIG. 8. (Color online) Evolution of pulse solutions, |g| with (a) peak amplitude equal to 0.5 for x = 0.1 and Py, = 0.2 and (b) peak

amplitude equal to 0.3 for x = 0.2 and P, = 0. We have used o = 1.

acceleration a does not correspond directly to an acceleration
in physical units; nevertheless let us define the acceleration a,
as the second derivative of the temporal peak position, in the
group velocity reference frame, with respect to the propagation
distance z, namely,

_ dztpeak _ |,62|2 dzfpeak _ |,32|2 ‘_l
"dz? 5 dg? 2
Ay’
— o (X, P, Poeak)-
253|,32| (X th peak)

Note that the negative signal only implies that the pulse
is traveling toward negative ¢ but since ¢ is measured in a
reference frame that travels with the group velocity for wy, the
pulse is gaining velocity whenever this acceleration is negative.
This change in velocity is due to a deviation in frequency that
is linear with the distance z, as expressed in the phase (4), and
given by

do a,
Aw = —— — —
dt — |pl
0.3 ' ' input T - ]
. output z=400
0.2+ A
= |
i
0.1+ ' A
|
P
A\
0 /I e N
-200 -100 0 100 200

T

FIG. 9. Input and output for the simulation whose contour is on
Fig. 8(b).

Since Eq. (3) neglects the photoionization related losses that
are small for pulses whose peak amplitude is comparable with
the threshold, for x not too large, we may use expression (8)
for o and approximate the frequency by

~ 32
ko(wr /wo)*& (‘ﬁgeak - Vi)
3 At WYpeak

which gives the well known Gordon result for the IRS [10,13,

15] and the effect of plasma growing with order geak.

_ 8 gry?
15 [Ba]

4
wpeakZ +

’

V. CONCLUSIONS

We have found the self-similar accelerating solutions of
a generalized NLS that includes IRS and a term for plasma
induced nonlinearity. This equation models the propagation
of pulses in gas-filled HC-PCFs where photoionization of the
gas has occurred. The solutions are very close to the NLSE
sech soliton as long as the strength of the plasma term is
relatively low and the solution amplitude is relatively large.
The accelerations and the blueshifting increase with the peak
amplitude of the pulses. In case of pulse solutions whose peak
intensity is close to the photoionization threshold, which are
the ones for which the equation better models the physical
effects, the frequency blueshift increases in the same order
as the square of peak amplitude. However, also the same
solutions, whose peak amplitudes are close to the threshold,
may exhibit a profile that is considerably different from the
sech, have long tails, and decay along the propagation distance.
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