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Statistical analysis of spatial frequency supercontinuum in pattern forming feedback systems
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We study numerically and experimentally the highly nonlinear dynamical regime (far above the primary
instability threshold) of a one-dimensional spatially extended feedback system. The spatiotemporal dynamics is
very complex and is characterized by the emission of a spatial frequency supercontinuum accompanied by the
appearance of abnormally intense localized peaks in transverse patterns. We perform statistical analysis of this
highly nonlinear regime in terms of the probability density function (PDF) of the peak intensities rather than usual
tools such as correlation functions. We find that the statistics of these peak intensities is described very well by
the generalized gamma (GG) probability density function and determine its three parameters which can be used
as quantitative indicators of the transition from the weakly to the highly nonlinear regime. Most interestingly, we
discover that in the highly nonlinear regime the GG PDF converges to the gamma probability density function
with the shape parameter equal to 3/2. This limit corresponds to the Rayleigh probability density function of the
peak amplitudes for the oceanic waves. This behavior of the PDF can be an indicator of the universality of the
highly nonlinear regime for other processes involving supercontinua and chaos.
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I. INTRODUCTION

Rogue events that are observed, e.g., in the open ocean
in the form of rogue or freak waves [1–3], were predicted in
optics [4], and in this context it has been proven that they can be
controlled or even suppressed [5,6]. Very recently, such rogue
events have been experimentally evidenced in optics in the
regime of supercontinuum emission in fiber systems [6–9] and
in spatially extended systems [10–14]. Observation of these
rogue events in optics is not surprising since the self-focusing
nonlinear Shrödinger equation (NLSE) reflects the temporal
nonlinear dynamics of waves propagating in optical fibers [15]
as well as on the ocean surface [1,16,17].

One of the main features of optical temporal rogue waves
occurring in photonic crystal fibers is their inherent association
with generation of an extremely broadband continuum of
frequencies commonly called supercontinuum [7,18]. The
dynamics of this highly nonlinear regime is very complex
and the underlying physical processes are still under investi-
gation [19–21]. In the spatiotemporal optical systems, highly
nonlinear regimes are characterized by the spatiotemporal
chaos, and the transition from the weakly nonlinear to highly
nonlinear dynamics remains an open field of research [22–24].
It is natural to ask if in spatially extended systems the dynamics
of the highly nonlinear regimes is also characterized by the
emission of a continuum of spatial frequencies. Similarly,
what features would the associated intense localized transverse
structures share with that of optical temporal rogue waves?
The prominent attributes of these latter events usually retained
are the following [25]: their intensities are far greater than
those associated with typical waves occurring in these systems
(the criterion used in the oceanic rogue waves states that

*eric.louvergneaux@univ-lille1.fr; http://www.phlam.univ-lille1.
fr/perso/louvergneaux/
†Present address: Departamento de Fı́sica, Facultad de Ciencias
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their amplitude must exceed two times the significant wave
height [1,17]); they disappear as fast as they appear [1,26]; and
they occur very rarely as compared to the Gaussian statistics.

In this paper, we report on generation of spectral super-
continua (SC) in a one-dimensional transverse Kerr slice
medium, subject to an optical feedback. We show that these
supercontinua are closely related to generation of abnormally
high intensity peaks in the transverse patterns that disappear
as fast as they appear. The associated highly nonlinear regime
[27] is far above the threshold for the Turing instability
(spatial modulational instability), where stationary rolls are
observed. We investigate this spatiotemporal chaotic regime
using a statistical approach in terms of probability density
functions (PDFs) of the pattern intensity maxima. We find
that statistical distribution of these maxima is well described
by the generalized gamma (GG) distribution, characterized by
three parameters. These parameters are used as quantitative
indicators to characterize the transition from the weakly to
the highly nonlinear dynamical regime. In particular, we
investigate the influence of the beam waist of the incident pump
(specific to spatially extended optical systems) on the PDF.

Most interestingly, we discover that the GG PDF reduces
to the gamma PDF with the shape parameter equal to 3/2
for the spatiotemporal chaotic regime very high above the
Turing threshold. It should be noted that in terms of the
probability density function for the peak amplitudes (instead
of intensities) this corresponds to the Rayleigh distribution
which was observed for the statistics of the oceanic waves. This
behavior of the PDF can be an indicator of the universality of
the spatiotemporal chaotic regime and calls for similar investi-
gations in other types of dynamical systems manifesting chaos.

II. THE OPTICAL SYSTEM

The experimental setup used to observe optical spatial
patterns is composed of a Kerr slice medium subjected to
optical feedback [28]. It essentially consists in a nematic liquid
crystal (LC) layer irradiated by a strong laser beam which is
reflected back onto the sample by a simple plane mirror placed
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FIG. 1. (a) Schematic sketch of the experimental setup. LC,
liquid crystal layer; M, feedback mirror; F , input optical field; B,
backward optical field; d , feedback length. Typical one-dimensional
experimental near-field patterns observed at (b) the Turing primary
threshold and (c) at five times (intensity ratio) above this threshold in
the highly nonlinear regime.

at a variable distance d from the LC layer [Fig. 1(a)]. The
nonlinear medium is a 50-μm-thick layer of E7 LC homeotrop-
ically anchored. The beam is delivered by a monomode
frequency doubled Nd3+:YVO4 laser (λ0 = 532 nm) which
is shaped by means of two cylindrical telescopes in order
to achieve a transverse quasimonodimensional (1D) pumping
(beam diameters ≈ 240 μm × 3200 μm). The reflected beam
is monitored after its second passage through the LC layer
[Bout on Fig. 1(a)]. Near- and far-field distributions are
simultaneously recorded. Two control parameters are easily
accessible in the experiments, namely, the maximum intensity
I0 of the incident laser beam and the distance d between the
mirror and the LC layer.

The reorientation of the LC director by the laser electric
field leads to a nonlinear change of its refractive index which
depicts pattern formation [29] above a primary threshold
[Fig. 1(b)]. The spatiotemporal dynamics of the system is
well described in the framework of a model introduced first
by Akhmanov et al. [30] and later adapted by Firth and
d’Alessandro [29]. In the 1D case it reads for the refractive
index n of the nonlinear nematic LC layer,

∂n

∂t
− ∂2n

∂x2
+ n = |F |2 + |B|2. (1)

t and x are the time and space variables scaled with respect
to the relaxation time τ and the diffusion length lD of the
liquid crystal. F and B are the forward and backward fields,
respectively. Equation (1) must be completed by the two
following equations that govern light propagation through the
sample and over the feedback loop, respectively:

∂(F,B)

∂z
= iχn(F,B), (2)

∂(F,B)

∂z
= −i

2k0
∇2

⊥(F,B). (3)

(F,B) means F or B. χ parametrizes the Kerr effect (positive
for a focusing medium, d > 0) and k0 is the laser field
wave number. The profile of the forward propagation field

is assumed to be Gaussian so that F (x) = F0 exp(−x2/w2),
where w is the beam radius at LC sample.

|Bout(x,t)|2 represents the variable we can access experi-
mentally. This is the backward output optical beam intensity
[|Bout|2 on Fig. 1(a)] taken at the direct output of the LC
sample. It is monitored on the near-field imaging CCD camera.
It is our dynamical variable in this study and especially for the
probability density functions. Using Eqs. (2) and (3), it reads

|Bout(x,t)|2 = R
∣∣eiχn(x,t)eiσ∇2

⊥ [eiχn(x,t)F (x)]
∣∣2

(4)

where R is the mirror intensity reflectivity. We have set
σ = d/k0l

2
D , where d is the slice-mirror distance (Fig. 1).

For simplicity, in the rest of the paper we will call it near-field
intensity INF(x) with INF(x) ≡ |Bout(x,t)|2.

The rich variety of patterns appearing in this kind of
system and their associated dynamics have been extensively
investigated (see, e.g., [27,31–34]). Depending on the type of
nonlinearity (quadratic, cubic, etc.) and the specific underlying
system, many patterns have been reported ranging from rolls
or hexagons to spatial solitons [35,36] and time-dependent
patterns [37]. Most of these studies have been performed
near threshold where amplitude equations, mainly Ginzburg-
Landau and Swift-Hohenberg equations, can be derived to
describe the weakly nonlinear dynamics above threshold [38].
Here, contrarily to these studies, our interest lies in the
dynamics that occurs in strongly nonlinear regimes (far beyond
threshold) where, unfortunately, order-parameter description
in terms of amplitude equations fails. We now focus on the
highly nonlinear dynamical regime where spatial spectrum
enlargement and intense localized transverse pulses occur.

III. FROM STATIONARY MODULATIONAL INSTABILITY
TO SPATIAL FREQUENCY CONTINUUM

The global features of the numerical scenarios of successive
pattern destabilization in our system are the following: For low
pumping intensity I = |F0|2, the output backward near field
|Bout(x,t)|2 simply reflects the overall Gaussian dependence
of I . Further increase in the pump intensity leads to a critical
situation where input intensity exactly compensates losses
(dissipation). This is a marginal instability that is typical
for nonequilibrium dissipative systems and is specific for
the Turing instability. It is the counterpart of modulational
instability in temporal systems [39]. At threshold I = Ith

(F0 th = 0.86), two spatial modes are marginally unstable with
critical wave numbers k = ±kth � ±2

√
λd [29]. Their signa-

ture at I = 1.1Ith are two peaks located at kth = ±0.061 μm−1

in the power spectrum of Fig. 2(e). The corresponding output
transmitted near field Bout shows stationary rolls with a
unique wavelength [Fig. 2(a)]. As the input power is increased
beyond a secondary threshold Id , these rolls destabilize
via time pseudoperiodic dislocations associated with fringe
annihilation (respectively, creation) for positive (respectively,
negative) 2d values [28]. Further increasing the input intensity
(I = 4.4Ith), more spatial modes are destabilized due to
multitongues of instability [27]. The spectrum shows multiple
decreasing harmonics of the fundamental wave number kth as
can be seen in Fig. 2(f). The amplitudes of the sidebands
then follow an exponential decay [inset of Fig. 2(f)]. The
associated near-field distribution thus depicts sharp periodic

063802-2



STATISTICAL ANALYSIS OF SPATIAL FREQUENCY . . . PHYSICAL REVIEW A 87, 063802 (2013)

Po
w

er
 sp

ec
tru

m
 (f

ar
 fi

el
d 

in
te

ns
ity

) |
B

|
ou

t
2

(
)k

-0.5 0.5 1.5
0

Wave number ( m  )k μ -1
0-1.5

0

0

0

Transverse space (0.5 width)x w

N
ea

r f
ie

ld
 in

te
ns

ity
 |B

|
ou

t
2

(
)x

0

0.8

(d)

100

0

200

(a)

20

40

0
(b)

10

0

20

(c)

(h)

(e)
(f)

(g)

-1 1

0 0.2 0.4

FIG. 2. (Color online) Evolution of the numerical [(a)–(d)] near- and [(e)–(h)] far-field (power spectrum) pattern profiles versus input
field value F0. [(a),(e)] F0 = 0.9, I/Ith = 1.1; [(b),(f)] F0 = 1.8, I/Ith = 4.4; [(c),(g)] F0 = 2.5, I/Ith = 8.4; [(d),(h)] F0 = 4.5, I/Ith = 27.4.
σ = 4.23, χ = 1, d = 5 mm, R = 0.9, w = 1400 μm. (a)–(d) are snapshots of the near-field evolution taken when the output intensity
(|Bout(x,t)|2) is maximum, whereas (e)–(h) are their corresponding time-averaged power spectra. Each peak (in red online) indicated by an
arrow is then the highest peak of the total time recording of the associated numerical simulation. The inset in (f) is a close-up of the (f) spectra
in log10 scale. For (e)–(h) plots, the k = 0 component has been suppressed and the power spectra rescaled.

peaks [Fig. 2(b)]. Continuing to increase the input laser power
leads to a chaotic spatiotemporal dynamics [27] where the
transverse cross section of the near field possesses no more
regularity but the occurrence of intense localized structures [in-
dicated by an arrow in Fig. 2(c)]. The corresponding spectrum
broadens and leads to the appearance of a continuum of spatial
frequencies that coexists with the previous primary wave
number and its harmonics [Fig. 2(g)]. Finally, very far above
the Turing threshold (I/Ith = 27.4) a full continuum of spatial
frequencies is reached for the power spectrum [Fig. 2(h)].
The width of this continuous spectrum is approximately
20–30 times the initial modulational instability wave number
kth � 0.06 μm−1 at primary threshold Ith [see Fig. 2(a)]. In
this highly nonlinear regime, very intense localized peaks
arise suddenly and erratically in the near-field pattern, as
pointed out by an arrow in Fig. 2(d). We are interested in
this highly nonlinear regime and its appearance from the
modulational instability since it reminds one of emission of
the supercontinuum in photonic fibers which is accompanied
by optical rogue waves [7,9]. We adopt a statistical approach
in terms of PDF for this analysis. Other issues such as the
question of the coherence of the phenomenon [19,40,41] are
currently in progress and are out of the scope of this paper.

IV. STATISTICAL ANALYSIS OF THE HIGHLY
NONLINEAR REGIME USING PDFs

In the following, we associate the highly nonlinear regime
to the presence and predominance of a spectral continuum

(similar to that of temporal chaotic or turbulent regimes)
[Figs. 2(g) and 2(h)] that swamps the spectrum. We focus here
on characterization of this regime in terms of the distribution
of the maxima of the peak intensities in the near-field pattern.
We evaluate the probability density functions of these peaks
as for the supercontinuum analysis in fiber systems [6,7,9,11].
Our method is different from the previous approaches to study
highly nonlinear regimes using correlation functions, time
averaging, Karhunen-Loeve decomposition, etc. [22,23].

A. Typical PDF

The PDF represents the histogram of the intensity or
the amplitude maxima distribution along the 1D near-field
spatial pattern for a given recording time (a few hundreds
of the relaxation time τ ). Since the transverse profile of the
pump is nonuniform, special care is taken for estimation of
the PDF (see the Appendix). Starting from Fth (threshold
for the modulational instability) and increasing F0, the PDF
continuously deforms from a localized region [Fig. 3(a)]
(corresponding to the maxima of an almost sinusoidal spatial
modulation) until it converges to a typical profile shown in
Fig. 3(d). Thus, for supercontinuum emission, a typical PDF
looks like the profile depicted in Fig. 3(d). It possesses an
asymmetric bell shape with a long tail responsible for very big
intensity fluctuations. An example of such a spatial intensity
fluctuation is pointed out by an arrow in Fig. 2(d). It is
interesting to note that a typical spatial PDF (Fig. 3) reminds
one of some PDFs observed in the numerical simulations
of the nonlinear Schrödinger equation (without higher-order
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FIG. 3. Numerical PDFs of intensity peaks corresponding to the
spectra of Fig. 2. Same parameters as Fig. 2. (a) F0 = 0.9, I/Ith = 1.1;
(b) F0 = 1.8, I/Ith = 4.4; (c) F0 = 2.5, I/Ith = 8.4; (d) F0 = 4.5,
I/Ith = 27.4.

dispersion terms or Raman effect) [see Fig. 14 in [42]], even
if the physical mechanisms are different and the fiber system
is conservative.

A log-linear plot of the previous PDFs (Fig. 4) shows that
increasing the input pump value F0 gives rise to more intense
events without changing the global shape of the PDF tail in the
highly nonlinear regime. It also shows that the tails seem to
follow an exponential decreasing versus peak intensity. In the
following sections we shall give a more detailed description
of the features of PDF in the highly nonlinear regime.

B. PDFs analysis

Usually, to analyze the PDFs, and so the distribution of
the intensity peaks in the near field, one can plot them in
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FIG. 4. (Color online) Evolution of the numerical PDF of inten-
sity peaks for different pump intensity I = |F0|2 in log10 scale. Same
parameters as Fig. 2.

log-linear scale for a direct reading of their departure from a
Gaussian distribution, or calculate the higher-order moments
of the distribution such as the skewness and kurtosis, which
measure the asymmetry of the curve, or else compare the
highest peaks to the significant ones. All these indicators
provide information on the nature of the random events. We
start first with the measure of the highest peaks corresponding
to our supercontinuum.

1. Highest peaks

We saw previously that a typical PDF in the highly nonlinear
regime possesses a long tail. This tail contains information
about the strong and rare intensity peaks which arise in the
transverse patterns. In oceanic waves, the way to estimate
how strong the waves are is to calculate the ratio between the
peak amplitude to the significant peak amplitude (commonly
called Hs) [1]. When this ratio exceeds 2, the waves are
referred to as freak or rogue. The significant amplitude is
defined as follows: It is the average amplitude of the highest
one-third (33.3%) amplitudes in the histogram of the PDF.
Let us mention that the oceanic wave height corresponds to
its amplitude, whereas in our case we will be dealing with
intensities of the random peaks, i.e., amplitudes squared. In
order to use the previous ratio, we will temporarily refer
to PDFs versus peak amplitude and not peak intensity. In
this case, one finds that the ratio between the highest peak
amplitude to the significant peak amplitude reaches and can
exceed 2 for (Table I). This corresponds to the regime of
the emission of a full continuum of spatial frequencies [see
Fig. 2(h)]. Moreover, these peaks appear and disappear in a
very “short” time. Here, their lifetime is less than τ/2 where
τ is the relaxation time of the system. Thus, these highest
peaks fill two of the three main criteria for rogue events.
One can conclude that the emission of a continuum of spatial

TABLE I. Ratio between the highest peak amplitude (|Bout|max) to the significant peak amplitude (|Bout|s) corresponding to the numerical
simulations of Fig. 2.

F0 1.2 1.5 1.8 2 2.5 3 3.5 4 4.5 5 5.5 6
|Bout|s 2.04 2.38 2.89 3.35 3.98 4.72 5.51 6.24 6.98 7.72 8.44 9.25
|Bout|max 2.42 3.67 5.17 5.76 7.38 9.10 10.44 12.95 14.22 15.03 18.40 17.79
|Bout|max
|Bout|s 1.18 1.54 1.79 1.72 1.85 1.93 1.89 2.08 2.04 1.95 2.18 1.92
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frequencies in the highly nonlinear regime is associated with
the occurrence of very intense localized patterns.

To study more deeply the highly nonlinear regime and its
emergence, we use a modelization of its statistical PDFs.
This provides us with all the parameters of the statistical
distribution that characterize quantitatively the probability law
(asymmetric bell shape, long decreasing tail).

2. Modeling the PDF

Analytical probability density distributions of wave heights
have been investigated in the literature on the oceanic rogue
waves (see, e.g., [43,44]) and in very specific situations in the
domain of optical rogue waves [45].

For oceanic random waves it can be argued that, following
the central limit theorem, one can expect that the PDF of
the wave amplitudes should be Gaussian in the limit of very
small amplitudes. However, finite values of amplitudes result
in small deviations of the PDF from the normal (Gaussian)
distribution [43,44].

Since, a priori, in our case we expect to observe deviations
from the normal distribution for our PDF, we have chosen to
model the PDF by a GG distribution [46]. This distribution is
very flexible and includes as special cases the exponential,
the Log-normal, the Weibull, the Rayleigh, the Maxwell-
Boltzmann, and the chi-square distributions. It is often used
for modeling of the probability distribution for rare events.
The GG PDF reads as follows:

P (x; a,β,p) = axap−1

�(p) βap
e−(x/β)a , (5)

where a and p are known as the shape parameters, and β is the
scale parameter. In our case the random variable x corresponds
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generalized gamma distribution. (a) Linear and (b) log10 scale. Fitted
GGD parameters (a,β,p) are 1.03, 26.47, and 1.49.

to x = |Bout|2 the peak intensity of the field in the random
pattern.

The parameter estimation of this distribution is a mathemat-
ical problem in itself which still remains open [47]. We use a
method of moments to evaluate the (a,β,p) parameters. For
comparison, fitting regression methods (such as least squares)
give multiple solutions for (a,β,p) and always lead to a poorer
results. The idea is to equate the theoretical moments of the
order r

E(xr ) = βr
�

(
p + r

a

)

� (p)
(6)

to the ones calculated from the experimental data

Edata(xr ) = 1

n

n∑

i=1

xr
i , (7)

where n is the number of peak maxima and xi corresponds
to the ith peak intensity of |Bout|2. Solving numerically
Eq. (6) = Eq. (7) for three moments provides us with (a,β,p).
The best agreements are always obtained using the lowest
moment orders.

The result of the modeling on a typical PDF using the
GG distribution is given in Fig. 5. One can see the excellent
agreement between the probability density function points
and the GG curve for linear scale [Fig. 5(a)] as well as for
log-linear scale [Fig. 5(b)]. It means that the GG distribution
models low intensity peak distribution as well as intense ones.
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FIG. 6. (Color online) Evolution of the GGD parameters (a) a,
(b) β, and (c) p versus pumping F0. �, numerical points. The fit
curves - are only plotted for a better reading. Asymptotic curves (in
gray) indicate limit cases of no supercontinuum emission (F0 � 2)
and supercontinuum emission (F0 � 4) R = 0.9, d = 5 mm, χ = 1,
wx = 1400 μm.
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In other words, the GG distribution perfectly reproduces the
PDF curves.

The evolution of the GG (a,β,p) coefficients is reported
in Fig. 6. One can notice a remarkable fact that the GG
distribution converges to the gamma distribution (a → 1) with
the shape parameter equal to 3/2 as the pump field F0 reaches
4 to 5 and the supercontinuum emission is reached. We find
this asymptotic behavior especially interesting because written
in terms of the peak amplitudes A = √

x instead of the peak
intensities, this probability density function just becomes—to
a multiplicative constant—the Rayleigh distribution,

P (x = A2; a = 1,β = 2σ 2,p = 3/2)

= 1

4
√

πσ 4

A

σ 2
e−(A2/2σ 2) = 1

4
√

πσ 4
R(A,σ )

where R(A,σ ) is the Rayleigh distribution.
It is well known that this distribution of the wave amplitudes

of the random oceanic waves corresponds to the Gaussian or
normal statistics of such waves [43,44]. We can conclude,
therefore, that in our case, very high above the Turing
threshold, the statistics of the intensity peaks in the transverse
patterns becomes Gaussian, which is a signature of random
waves and the amount of incoherence in the system. Similar
numerical investigation on the highly incoherent and nonlinear

regime (and the emergence of rogue events) in a conservative
system has been reported in [20].

The β coefficient confirms that increasing the input pump
value F0 gives rise to more intense extreme events as can
be seen from Fig. 4 without changing the exponential depen-
dence of the PDF tail. Thus, the evolution of these (a,β,p)
coefficients can be used as quantitative indicators to follow
the transition from the weakly nonlinear regime (close to the
Turing threshold) to the regime of very high nonlinearity where
supercontinuum emission and intense peaks are observed. As
seen in Fig. 6, two asymptotic behaviors can be distinguished.
One for F0 � 2 and another one for F0 � 4 corresponding to
the weakly and the highly nonlinear regimes, respectively. In
the first case, the spatial frequency spectrum is composed of
a cluster around the critical wave number kth of the Turing
instability together with its harmonics. For the second regime,
the spectrum always displays a continuum band that dominates
the spectrum partially or totally.

V. EXPERIMENTS

The experimental recordings are achieved via a CCD
camera with an 8-bit resolution depth that is imaging the
near-field intensity (i.e., within the liquid crystal cell). At
modulational instability threshold the transverse wavelength
is 100 μm and the pumping beam diameter is 3200 μm so that
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FIG. 7. (Color online) Experimental evolution of the (a)–(c) near and (d)–(f) far-field profiles of the transverse pattern for the transition
from the [(a), (d)] weak nonlinear regime (close to the primary threshold of the modulational instability) to the [(c), (f)] highly nonlinear one
(supercontinuum emission). [(a),(d)] I0 = 132 W cm−2, I0/Ith = 1, [(b),(e)] I0 = 265 W cm−2, I0/Ith = 2, and [(c),(f)] I0 = 1193 W cm−2,
I0/Ith = 9. R = 0.9, d = 5 mm, wx = 1600 μm. Power spectra (far fields) (d)–(f) are averaged over the experimental recording sequence
(typically 1000 s). (a)–(c) correspond to the time when the near-field highest intensity is detected for the associated recording. For (e)–(h) plots,
the k = 0 component has been suppressed and the power spectra rescaled.
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the aspect ratio is around 30. In order to follow the condition on
the restricted spatial zone Dx of the Gaussian input pump used
to plot the PDFs, we record a near-field region whose width is
Dx ∼ 0.5w centered on the top of the Gaussian pump profile.

A. Spectral continuum

Close to the primary threshold of modulational instability
(very weak nonlinear regime), the near-field profile is almost
periodic [Fig. 7(a)] with a wave number kth = 63 mm−1

[Fig. 7(d)] in agreement with the ones predicted by the theory
kth(theo) = ±61 mm−1 and numerics kth(num) = 59.8 mm−1.
Increasing the pump power, this modulation transforms into
sharp peaks, indicating the presence of harmonics of kth as
shown in [Fig. 7(e)]. Increasing further I0 to many times the
primary threshold Ith, the highly nonlinear regime is reached.
In this latter case, the spatial power spectrum (far field) always
depicts a continuum of spatial frequencies [Fig. 7(f)]. This
continuum is completely similar to the ones obtained for
numerical simulations as can be checked in Fig. 2(h). Its width
(half width at half maximum) reaches approximately, e.g.,
eight times the wave number kth at modulational instability
threshold for I0/Ith = 9.

B. Statistical analysis

The near field associated with the emission of spectral
supercontinuum [Fig. 7(f)] depicts intense and rare localized
patterns whose peak amplitude can reach 2.1 times the
significant peak amplitude for, e.g., I0/Ith = 6 (Fig. 8). These
localized states occur suddenly with a lifetime smaller than
0.5 s (to compare with the characteristic time τ = 2.28 s of
the dynamics).

A typical PDF obtained for supercontinuum emission
is plotted on Fig. 8 in linear and logarithmic scales for
I/Ith = 6. We can see that it is completely similar to
the one predicted in Fig. 3 and that the GG function
perfectly models the PDF curves. The value of the fit-
ted parameters (a = 1.13, β = 21.06, p = 1.3) of the GG
distribution model agrees with the numerical ones ob-
tained for a similar intensity pumping ratio (experimentally,
I/Ith = 6). More precisely, the experimental tail of the
PDF follows the same concavity as the prediction, namely,
a = 1.13± 0.02.

Determination of the (a,β,p) coefficients of the GG
function from the experimental data, even with the moment
method (Sec. IV B2), remains a complicated problem. In our
case, as can be seen on the transverse profile of the beam
[Fig. 8(c)], the experimental recording is noisy. Therefore, we
smoothed the profile using the Savitsky-Golay convolution
method [48]. Then, a least-square method provides us with
the optimum number of neighboring points to include in the
smoothing.

The only experimental restriction to reach values of I/Ith

higher than 6 is that our pumping is 1D-like so that for the
high pump input intensities, the beam starts to self-focus and
it expands in the transverse orthogonal direction to the 1D
axis [49]. The local intensity in the center of the beam then
reaches a plateau and saturates. Thus, it is not possible in
our setup to reach more than typically six to eight times
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FIG. 8. (Color online) (a) Experimental PDF of intensity peaks
obtained in the transverse pattern of Fig. 1. (b) PDF in log10 scale.
(c) Typical spatial extreme event. w = 1600 μm. Input intensity is
six times intensity threshold Ith.

the threshold for the modulation instability so that the full
convergence of the PDF to the gamma distribution with a = 1
cannot be completely achieved. Nevertheless, our experiments
are sufficient to evidence the decreasing of parameter a and
generation of experimental spatial supercontinuum and intense
localized peaks.

VI. CONCLUSION

We have numerically and experimentally evidenced gen-
eration of a spectral supercontinuum in the highly nonlinear
regime of a spatially extended feedback system. This regime,
obtained for the input beam intensities far above the threshold
of the Turing instability, possesses a very complex spatiotem-
poral dynamics that depicts the emission of intense localized
peaks. This spectral broadening can be seen as a spatial
counterpart of the supercontinuum generation in temporal fiber
systems. Using a statistical approach, we characterized the
transition from a weakly to a highly nonlinear regime using
probability density functions of the intensity peaks. Their
modeling with the generalized gamma distribution provides
us with parameters that are used as quantitative indicators
to investigate the transition to the highly nonlinear regime.
In our case, the GG distribution parameters show that the
PDF converges to the gamma distribution when approaching
the highly nonlinear regime. Finally, the study of spectral
broadening leading to the continuum is a challenge to identify
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its mechanism such as, e.g., energy cascades in the case of
weak turbulence theory [50].
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APPENDIX: INFLUENCE OF THE GAUSSIAN PUMPING
PROFILE ON THE PDFs

We describe how we calculate the PDFs in our particular
case of a Gaussian transverse pumping.

Let us remember that the PDF is the histogram of the peak
intensities recorded along the spatial pattern. It is clear that
even if the PDFs calculated, e.g., in the central part and in
the wings of a Gaussian pump have the same profile, putting
them into a unique histogram will completely change the
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FIG. 9. (Color online) (a) Influence of the analyzed zone size on
the PDF in the case of a Gaussian pumping profile. The inset is the
PDF in log-linear scale. F0 = 6. Same parameters as Fig. 2.

shape of the resulting PDF. Thus, it is important to plot
PDFs for uniformlike pumping conditions. To this end we
performed all our PDF calculations on a restricted spatial
zone Dx of the Gaussian input pump. This area is located
in the central part and its extension can vary between 0.25
and0.5w, with 2w the beam diameter. This allows intensity
variations lower than 1.5 to 6% along the area Dx . The choice
of this extension size is given by the PDF modification versus
different sizes of the analyzed domain Dx . Indeed, we can see
in Fig. 9 that the features of the PDF remain unchanged until
Dx is smaller than 0.5w, and change versus Dx in the other
case. In this paper, we calculate all our PDFs verifying this
condition.
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