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We present a method for the effective preparation of a Bose-Einstein condensate (BEC) into the excited bands
of an optical lattice via a standing-wave pulse sequence. With our method, the BEC can be prepared in either
a single Bloch state in an excited band or a coherent superposition of states in different bands. Our scheme is
experimentally demonstrated by preparing a 87Rb BEC into the d band and the superposition of s- and d-band
states of a one-dimensional optical lattice, within a few tens of microseconds. We further measure the decay of the
BEC in the d-band state and carry an analytical calculation for the collisional decay of atoms in the excited-band
states. Our theoretical and experimental results agree well.
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I. INTRODUCTION

Ultracold atomic gases in optical lattices have various
applications in many fields, including the quantum simulation
of many-body systems and the realization of quantum com-
putation and high-precision atomic clock [1–3]. So far, most
of the experiments have been implemented in ground bands
(s bands) of optical lattices. Recently, ultracold gases in the
excited bands of optical lattices have attracted much attention.
It is proposed that many interesting many-body phenomena,
e.g., supersolid quantum phases in cubic lattices [4], quantum
stripe ordering in triangular lattices [5], orbital degeneracy [6]
can appear in the ultracold atoms in the excited-band states.
Nevertheless, the d- and f -band physics in optical lattices
have remained experimentally unexplored, except the bipartite
square optical lattice [7].

A common concern for the research of excited-band physics
of ultracold gas in an optical lattice is how to rapidly load the
atoms into the high-energy bands without excitation or heating.
So far several experimental techniques have been developed
for preparing ultracold atoms in the high-energy bands. These
techniques include (i) the coherent manipulation of vibrational
bands by stimulated Raman transitions [8], (ii) using a moving
lattice to load a Bose-Einstein condensate (BEC) into an
excited band [9], (iii) the population swapping technique for
selectively exciting the atoms into the p band [10,11] or f

band [7] of a bipartite square optical lattice. It is pointed
out that these approaches are designed to transfer the atoms
from the s band to the excited bands. Namely, to create an
ultracold gas in the excited band of the optical lattice with
these approaches, one needs to first load the atoms into the s

band. With the widely used adiabatic loading approach, such
a process takes several tens of milliseconds.

In this paper, we develop a method for effective preparation
of a weakly interacting BEC in the high energy bands of an
optical lattice. This scheme is based on our previous work for
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the rapid loading of BEC into the ground state of an optical
lattice via a standing-wave laser pulse sequence [12,13]. With
our method, the BEC can be directly transferred from the
ground state of the weak harmonic trap into the excited band
of the optical lattice with a nonadiabatic process, which can
normally be completed within several tens of microseconds.
Furthermore, in our scheme the BEC can be prepared in either
a single excited-band Bloch state or a coherent superposition of
Bloch states in different bands with the same quasimomentum.
As a demonstration, we experimentally realize the effective
preparation of a 87Rb BEC into a d-band state, and the
coherent superposition of d-band and s-band states of an
one-dimensional (1D) optical lattice. The effectiveness of our
approach is further verified by the observations of the atomic
Rabi oscillations between states with different single-atom
momentum. As shown below, the fidelities of the preparation
process in our experiments are as high as 97–99%.

As an application of our method, we experimentally
investigate the decay process of the 87Rb BEC, which is rapidly
loaded in the d band of the 1D optical lattice. It is well known
that when the ultracold atoms are prepared in the excited-band
state of an optical lattice, they can decay to the states in the
lower bands via interatomic collision. For the ultracold gas pre-
pared around the lowest-energy points of high-energy bands,
the lifetime of the gas is mainly determined by the collisional
decay. Such a decay process was experimentally observed by
N. Katz et al. in a moving optical lattice [14] and theoretically
studied with a perturbative calculation by the same authors
[14]. Nevertheless, to the best of our knowledge, there is still
lack of a first-principles calculation for the collisional-decay
rate. In this paper, based on the scattering theory, we provide a
first-principles calculation for the collisional-decay process of
ultracold gases in the excited bands and obtain the analytical
expression of the decay rate. We compare our theoretical
result and the experimental observations, and find great
consistency.

The remainder of this manuscript is organized as follows.
In Sec. II, we introduce our method for effective preparation
of BEC in the excited-band states. Our experiment for the
preparation of the BEC of 87Rb atoms is shown in Sec. III.
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In Sec. IV we analytically calculate the rate of the collisional
decay of atoms in the d-band state and compare our result
with the experimental observations. The main results are
summarized and discussed in Sec. V, while some details of
our calculations are given in the Appendix.

II. APPROACH FOR EFFECTIVE PREPARATION OF BEC
IN EXCITED BANDS

We now introduce our approach for rapidly preparing a
BEC in the excited bands of an optical lattice. For simplicity,
in this section we consider only the case with a 1D optical
lattice. Our method introduced here can be straightforwardly
generalized to the systems with a two- or three-dimensional
lattice.

In the ultracold gas of single-component bosonic atoms, a
1D optical lattice can be created by two counterpropagating
laser beams. In the presence of the optical lattice, the single-
atom Hamiltonian in the x direction is given by (h̄ = 1)

Hx = p2
x

2m
+ V0 cos2

(
x

a
π

)
, (1)

with m and px the single-atom mass and momentum in
the x direction, respectively. Here V0 is the depth of the
optical lattice and a is the lattice constant. According to the
Bloch’s theorem, the eigenstate of Hx can be expressed as
|n,q〉 ≡ un,q(x)eiqx/

√
2π , with n = s,p,d . . . the index of

the energy band and q ∈ [−π/a,π/a) the quasimomentum.
Here the periodic Bloch function un,q(x) satisfies un,q(x) =
un,q(x + a). Using this property, it can be easily proved that
Bloch state |n,q〉 is the superposition of the plane waves
eikx/

√
2π , with k = q + 2jπ/a (j = 0,±1,±2, . . .). Namely,

|n,q〉 can be reexpressed as

|n,q〉 =
+∞∑

j=−∞
Cnj (q)|px = q + 2jπ/a〉, (2)

where |px = k〉 ≡ eikx/
√

2π is the eigenstate of px with
eigenvalue k and Cnj is the superposition coefficient.

As shown in Fig. 1, we suppose that, before the preparation
process, there is no optical lattice in our system, and the atoms
are condensed in the single-atom ground state of the weak
harmonic trap. We further approximate such a state to be
|px = 0〉 with zero momentum. Our purpose is to prepare the
condensed atom in a given superposition state,

|�a〉 =
∑

n

fn|n,q0〉. (3)

According to Eq. (2), |�a〉 can be expressed as the superposi-
tion of the states |px = q0 + 2jπ/a〉, i.e., we have

|�a〉 =
+∞∑

j=−∞
dj |px = q0 + 2jπ/a〉, (4)

with dj = ∑
n fnCnj (q0).

We first consider a simple case where |�a〉 is the su-
perposition of the zero-quasimomentum Bloch states in the
“even bands,” i.e., the case with q0 = 0 and fp,f,h,... = 0.
In that case, with our method the preparation process is

FIG. 1. (Color online) The system before and after the preparation
process. (a) Before the process, the BEC is confined in a weak
harmonic trap. (b) After the preparation process, an optical lattice
is turned on and the atoms in the condensate are transferred into a
single quasimomentum state or the superposition of quasimomentum
states in different energy bands.

accomplished via alternating cycles of switching on (duty
cycle) and off (off-duty cycle) the optical lattice. In these duty
cycles, the atom experiences spatial potential V0 cos2(xπ/a).
Such a potential can induce the transition between the states
|px = 2jπ/a〉 with different values of j . In the off-duty cycle,
the atom is governed by the free Hamiltonian p2

x/(2m). Thus,
although there is no transition between different eigenstates
of px , these states can gain different phase factors. Therefore,
when the duty and off-duty cycles are alternately applied to
the atoms at state |px = 0〉, the atoms can be prepared to
a superposition state of |px = 2jπ/a〉, i.e., a state with the
form in Eq. (4). It is pointed out that, since the initial atomic
momentum is zero and the quasimomentum is conserved in
both of the two cycles, in the preparation process the atomic
state can only be the superposition of the zero-quasimomentum
states in different energy bands. Finally, when all the duty and
off-duty cycles are completed, we instantaneously switch on
the optical lattice, and then the atoms are loaded in the optical
lattice.

The above preparation approach can be mathematically
described as follows. We assume the preparation process
includes NC duty cycles and NC off-duty cycles, and the
duration of the lth duty and off-duty cycle is τl and τ ′

l ,
respectively. Thus, after the preparation process, the atomic
state would be

|�L〉 ≡
∏

l

e−i
p2
x

2m
τ ′
l e−i[ p2

x
2m

+V0 cos2(x π
a

)]τl |px = 0〉. (5)

Therefore, for a given target state |�a〉, the parameters NC and
{τl,τ

′
l } can be determined via maximizing the fidelity

F = |〈�L|�a〉|2 . (6)

It is apparent that the value 1 − F just describes the difference
between the realistic atomic state |�L〉 after the preparation
and the target state |�a〉, i.e., the error in the preparation
process. When F = 1 the atoms would be fully prepared
in the state |�a〉. It is pointed out that, for simplicity, here
we assume the optical lattice has the same intensity V0 in
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all the duty cycles. In the practical cases, if it is necessary,
the optical-lattice intensity can also be treated as a control
parameter and take different values in different duty cycles.
On the other hand, due to the selection rule, in the above
process the potential of the optical lattices in the duty cycles
can only couple the initial state |px = 0〉 with the states |n,0〉
with n = s,d,g, . . . . Thus, the atoms can only be prepared
into the states in these bands.

When the target state |�a〉 is the superposition of the zero-
quasimomentum state in both “even bands” and “odd bands”
(i.e., q0 = 0 and fp,f,h,··· 	= 0), the preparation process can also
be accomplished via a sequence of laser pulses. Nevertheless,
here one should use the laser pulses of optical lattices moving
with a velocity v < π/(ma). Namely, the potential created
in the lth duty cycle should be proportional to Vl cos[(x −
vt)π/a]. The mechanism of the preparation approach can be
easily understood in the reference moving with velocity v.
In that reference, the initial atomic state and the target state
in Eq. (4) become |px = −mv〉 and

∑+∞
j=−∞ dj |px = −mv +

2jπ/a〉, respectively. Thus, the pules in the duty cycles can
induce the transition between the states |px = −mv + 2jπ/a〉
with different values of j , and in the off-duty cycles these states
can gain different phase factors. Therefore, with the help of
the sequence of the laser pules one can prepare the atoms
in the target state. It is easy to prove that these pulses can
induce the transition between the states in any two bands, and,
thus, the atoms can be prepared in the target state with arbitrary
coefficient dj .

Finally, we consider the case with q0 	= 0, i.e., the target
state |�a〉 is the superposition of the Bloch states with
nonzero quasimomentum. With our approach, we cannot
prepare the atoms into such a state in the laboratory reference.
Nevertheless, as shown above, with the laser pulses of optical
lattices moving with velocity −q0/m, the atoms can be
loaded into the state |�a〉 in the reference moving with these
pulses.

III. EXPERIMENTAL RESULTS

In our experiment, we first prepare a cigar-shaped BEC
of about N = 1 × 105 87Rb atoms in the |F = 2,mF = 2〉
hyperfine ground state in the quadrupole-Ioffe configuration
trap, of which the axial frequency is 20 Hz and the radial
frequency 220 Hz [12,15]. The 1D optical lattice along the
BEC’s long axis (x direction) can be created by laser beams
with wavelength λ = 2a = 852 nm, which is far beyond the
87Rb transition line between |F = 2〉 and |F ′ = 3〉.

In our experiments we prepare the atoms in the excited-band
states of a 1D optical lattice with depth V0. We choose the target
state to be

|�a(V0)〉 = √
1 − r|s,0; V0〉 + √

r|d,0; V0〉, (7)

where r is a real number and |n,q; V0〉 is the Bloch state
in the n band with quasimomentum q. We perform the
preparation processes for the cases (a) V0 = 10ER,r = 1, (b)
V0 = 20ER,r = 1, and (c) V0 = 10ER,r = 1/2, with ER =
4π2h̄2/(mλ2). As shown in above section, the preparation of
the atoms into the state |�a(V0)〉 can be accomplished via
switching on and off the standing-wave laser beam for the

FIG. 2. (Color online) (a) Sequence of laser pulses in our
experiments. (b) Table of the designed lattice depth V0, the parameter
r for the target state |�a〉 in Eq. (7), the durations τ1,2 and τ ′

1,2 given by
the numerical maximizing of the fidelity F , the fitted value V0R of
the lattice depth and the fidelities FR(V0R) defined in Eq. (11) for the
preparation processes of the cases (a), (b), and (c) in our experiments.
Here V0R is given by the fitting of the theoretical values of N0(τ )/N
given by Eq. (9) to the experimental measurements. The units of V0

and V0R are ER and the units of τ1,2 and τ ′
1,2 are μs.

optical lattice. In our experiment we choose NC = 2. Namely,
the preparation process is accomplished via two duty cycles
and two off-duty cycles, as shown in Fig. 2(a). The laser pulses
in the duty cycles are generated via a fast-response radio-
frequency switch together with a normal-frequency source.
As shown in Sec. II, we determine the durations τ1,2 and τ ′

1,2
for the duty and off-duty cycles by numerically maximizing
the fidelity F defined in Eq. (6). In Fig. 2(b) we show the
values of τ1,2 and τ ′

1,2 and the maximized fidelities given by
our numerical calculations. With the same calculation we also
obtain the finial state,

|�L(V0)〉 =
(
e−i

p2
x

2m
τ ′

2e−i[ p2
x

2m
+V0 cos2( πx

a
)]τ2

× e−i
p2
x

2m
τ ′

1e−i[ p2
x

2m
+V0 cos2( πx

a
)]τ1

)
|px = 0〉

≡
∑

n

fL,n(V0)|n,0〉, (8)

of the atoms after the preparation process in the cases (a)–(c).
As shown in Sec. II, in the end of the preparation process

we instantaneously switch on the optical lattice and hold
it for time τ . Then we switch off the laser beams and
the magnetic trap and image the expanding cloud after
30 ms time of flight using resonant probe light propagating
along the z axis. With this approach we can measure the
number Nj (τ ) of the atoms in the zero-momentum state
|px = 2jπ/a〉, while the population of the higher-momentum
states are negligible (less than 5%). As shown above, after
the preparation process in cases (a), (b), and (c), the atoms
are prepared in the state |�L(V0)〉 in Eq. (8). Thus, when
the laser beams and the magnetic trap are switched off, the
atomic state is |�τ (V0)〉 = ∑

n fL,n(V0)e−iEn,0τ |n,0〉. Here En,0

is the eigenenergy of Hx with respect to the state |n,0〉,
respectively. Namely, we have Hx |n,0〉 = En,0|n,0〉. There-
fore, the number Nj (τ ) of atoms in the state |px = 2jπ/a〉
at time τ would be Nj (τ ) = N |〈px = 2jπ/a|�τ (V0)〉|2
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FIG. 3. (Color online) The relative population Nj (τ )/N [j =
0,±1, it is denoted as wj (τ ) in the figure] for the states with
px = 2jπ/a. Here Nj (τ )/N is plotted as a function of the holding
time τ for the cases (a) V0 = 10ER,r = 1, (b) V0 = 20ER,r = 1,
and (c) V0 = 10ER,r = 1/2. We show the values of N0(τ )/N
(blue circles with error bar), N1(τ )/N (red squares with error bar),
and N−1(τ )/N (green triangles with error bar) measured in our
experiments and the ones given by our numerical calculation with
Eq. (9) and the state |�τ (V0R)〉 [blue solid line for N0(τ )/N and
red dashed line for N±1(τ )/N ], with V0R given by the fitting of the
theoretical values of N0(τ )/N given by Eq. (9) to the experimental
measurements.

and satisfies
Nj (τ )

N
= Pj (τ ) (9)

with the function Pj (τ ) defined as

Pj (τ ) ≡
∣∣∣∣∣
∑

n

fL,n (V0) Cn,j e
−iEn,0τ

∣∣∣∣∣
2

, (10)

with Cn,j defined in the above subsection. Equations (9) and
(10) show that the atom number Nj (τ ) oscillates with τ .

In Fig. 3 we illustrate the values of Nj (τ )/N (j = 0,±1)
of the state with px = ±2jπ/a given by our experimental
measurements. We also fit the theoretical values of N0(τ )/N
given by Eq. (9) to the experimental results. In our experiments,
the values of τ1,2, τ ′

1,2 and a are controlled well. On the other
hand, the relative accuracy of the control of V0 is more than
90%. A relative error of V0, which is in the order of 1%, may
appear in our preparation process for each case. Due to this
fact, in our calculations we use the experimental values of τ1,2,
τ ′

1,2 and a and take V0 as a fitting parameter. In Fig. 3 we show
the values of Nj (τ )/N given by our theoretical calculation
with Eq. (9) and the lattice depth V0R given by the fitting
calculation. It is shown that the theoretical curve fits well
with the experimental results. Therefore, in our experiments
the atoms are successfully loaded in the state |�L(V0R)〉. It
is pointed out that the theoretical curves of N1(τ )/N and
N−1(τ )/N are the same, while the experimental data differ
by an amount of 5%. That difference may be caused by the

imperfect alignment of the optical lattice along the long axis
of the BEC.

In Fig. 2(b) we display the designed values V0 and the
realistic values V0R of the lattice depth in our experiments for
the cases (a)–(c), and the realistic fidelities

FR(V0R) = |〈�L(V0R)|�a(V0R)〉|2 (11)

of the preparation processes in our experiments. It is shown
that in cases (a) and (b), where the target states are selected
to be the single d-band Bloch state |d,0; V0〉, the fidelities
FR(V0R) of our experimental preparation processes are as high
as 98.2% and 97.3%. In case (c), where the target state is the
superposition state (|s,0; V0〉 + |d,0; V0〉)/

√
2, the fidelity is

99.5%. According to these results, in all of our experiments
with various target states and lattice depths, the preparation
processes are successfully accomplished within several ten
microseconds via our approach.

IV. COLLISIONAL DECAY AND LIFETIME
OF BEC IN EXCITED BAND

In above sections, we show our approach to load the BEC
to the excited band of an optical lattice. As an application, we
study decay process of the 87Rb BEC loaded in the d-band
state with zero quasimomentum of the 1D optical lattice. It is
well known that the atoms in the excited bands of an optical
lattice can decay to the lower bands via interatomic collision,
and the lifetime of these atoms is usually determined by this
collisional decay.

In this section, we first give an analytical calculation for
the collisional decay of the 87Rb BEC in our experiments.
We then compare our theoretical result to our experimental
measurements. The quantitative agreement between them
confirms our analytical result for the collisional decay rate. Our
result can be straightforwardly generalized to other systems of
weakly interacting BEC in the high-energy bands of an optical
lattice.

We consider the ultracold bosonic atoms condensed in the
d-band state with zero quasimomentum. When two atoms in
the condensate decays to lower bands via collision, they likely
become thermal due to the large interband energy gap. In the
beginning of the collisional decay, these collisional products
are very rare. Thus, we can neglect the scattering between
the thermal atoms and the condensed ones and consider only
the collision of the atoms in the condensate. Therefore, the
decreasing of the density nd (t) of the ultracold bosonic atoms
condensed in the d band can be described by the master
equation [16]

dnd (t)

dt
= −Knd (t)2 . (12)

Here the factor K is given by

K = 2
∑

(n1,n2)	=(d,d)

σ (n1,n2) v, (13)

where σ (n1,n2) is the cross section of the two-atom inelastic
collision, with the ith (i = 1,2) atom in the ni band after
the collision and v is the relative velocity of the two atoms
before collision. In Eq. (13) the factor 2 comes from the
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bosonic statistics. Solving Eq. (12), we obtain

nd (t) = nd (0)

1 + Knd (0) t
, (14)

thus, the decay rate of our system can be defined as � =
Knd (0).

In the Appendix we calculate the cross section σ (n1,n2)
for the system in our experiment and obtain the result
(h̄ = 1),

σ (n1,n2)v = 4πa2
s a

2

m

∫
dq

[
θ (2Ed,0 − En1,q − En2,−q)

×
∣∣∣∣
∫ a

0
dxu∗

n1,q
(x) u∗

n2,−q(x) u2
d,0(x)

∣∣∣∣
2 ]

, (15)

with m the mass of a single 87Rb atom and as the scattering
length of two 87Rb atoms. Here a is the lattice constant of
the optical lattice, the periodic Bloch function un,q(x) and the
eigenenergy En,0 of the Hamiltonian Hx in the x direction are
defined in Sec. II and Sec. III, respectively. In Eq. (15) the
θ function is defined as θ (x) = 1 for x > 0 and θ (x) = 0 for
x < 0.

In our experiment, the collisional decay of the BEC in
the excited-band state is observed via the following approach.
We first perform the preparation process for the case (a) in
the above section and prepare the 87Rb BEC at the state
|�L(V0)〉 = ∑

n fL,n(V0)|n,0〉. Here the depth V0 of the optical
lattice is 10ER and the coefficients fL,n(V0) is given by the
numerical calculation in Eq. (8), with τ1,2 and τ ′

1,2 given in
Fig. 2(b). We have |fd |2 = 98%. We then hold the optical
lattice for time τ and measure the number Nj (τ ) (j = 0,±1) of
atoms in the state |px = 2jπ/a〉. As shown in Figs. 4(a)–4(c),
we do the measurements for the cases with τ = τ0 + τ ′ with
τ0 = 0,300 μs,600 μs,900 μs, and τ ′ ∈ (0,100 μs).

Since τ ′ is much smaller than the characteristic time of
the collisional decay in our system, in time evolution of
the BEC in the interval τ ∈ (τ0,τ0 + τ ′), the effect given
by the collisional decay can be neglected. Therefore, we have
the relation Nd

j (τ )/N = nd (τ0)/nd (0)Pj (τ ), with j = 0,±1
and the function Pj (τ ) defined in Eq. (9). Here N is the
total number of the atoms in the condensate prepared in our
experiment. Namely, when τ is large, N is the summation of
the atom number of the remained condensate and the one of the
product of the collisional decay. In the above expression Nd

j (τ )
is the number of the atoms with px = 2jπ/a in the remained
condensate at time τ . Nevertheless, in our experiments, when
τ is large, the atoms in the remained condensate are mixed with
some of the thermal atoms produced by the collisional decay,
which have the similar momentum with the condensed ones. It
is, thus, hard for us to exactly measure Nd

j (τ ) for the cases with
large τ . Therefore, the number Nj given by our measurement is
actually the summation of the number of condensed atoms and
the thermal atoms with px ≈ 2jπ/a [17]. Since the thermal
atoms without quantum coherence do not attend the Rabi
oscillation, we have

Nj (τ )

N
≈ nd (τ0)

nd (0)
Pj (τ ) + nt

j (τ0) (16)

with j = 0,±1 and nt
j (τ0) the density of the thermal atoms

with px ≈ 2jπ/a. It is pointed out that, because Pj (τ ) is an
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FIG. 4. (Color online) (a)–(c) The fraction Nj (τ )/N (j = 0,±1)
given by our experimental measurements. Here Nj (τ ) is the number
of the atoms with px ≈ 2jπ/a, and N is the total atom number in
the condensate prepared in our experiment. In our experiments we
first perform the preparation process for the case (a) in Sec. III and
hold the optical lattice for time τ . (d) The value of nd (τ0)/nd (0)
given by the fitting of Eq. (16) with the experimental measurements
of Nj (τ )/N (j = 0,±1, blue dots, green triangles, and red squares
with error bars) and the one given by the theoretical calculation with
Eq. (14) (black solid line).

oscillating function of τ , the fraction Nj (τ )/N also oscillates
with the time τ . Physically speaking, that is because the
quantum coherence is maintained in the remained condensate.
As shown in Figs. 4(a)–4(c), such behavior is clearly observed
in our measurements.

We fit expression (16) of Nj (τ )/N with the experimental
measurements in each time interval τ0 < τ < τ0 + τ ′ and
take nd (τ0)/nd (0) and nt

j (τ0) as the fitting parameter. In
Fig. 4(d) we compare the value of nd (τ0)/nd (0) given by
such a fitting and the one given by Eq. (14) with the factor
K calculated from Eq. (15) and nd (0) = 2.39 × 1014 cm−3.
Here we approximate nd (0) to be the average atomic density
of the condensate in our magnetic trap without optical lattice.
The good agreement between the theoretical and experimental
results confirms our analysis of the decay mechanisms and
the calculations of scattering amplitude. In particular, all of
the oscillating amplitudes of the curves N0,±1(τ )/N given by
our measurements quantitatively consist with the condensate
fraction nd (τ0)/nd (0) given by our theoretical calculation.
This consistency shows that in our experiment the quantum
coherence is successfully maintained in the undecayed con-
densate and does not exist in the decay products.
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V. CONCLUSION

In this paper we present a method for effective preparation
of a BEC in excited bands of an optical lattice. With our
approach the BEC can be prepared in either a pure Bloch
state in the excited band or the superposition of Bloch states in
different bands via the sequence of standing-wave laser pulses.
We experimentally demonstrate our method by preparing the
87Rb BEC into the d-band state and the superposition of s-
and d-band states of a 1D optical lattice within a few tens
of microseconds. We further measure the collisional decay
process of the d-band BEC prepared in our experiment and
analytically derive the collisional-decay rate atoms in the
excited-band states. The experimental and theoretical results
agree well with each other. Our method and result are helpful
for the study of orbital optical lattice and simulation of
condensed matter physics.
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APPENDIX: THE CROSS SECTION OF INELASTIC
COLLISION BETWEEN d-BAND ATOMS

In this Appendix we calculate the cross section σ (n1,n2)
of the inelastic collision between the two atoms in the d-band
state with zero momentum and prove Eq. (15). In the two-atom
scattering problem of our system, the total Hamiltonian is
given by (h̄ = 1)

H = − 1

m

∂2

∂y2
− 1

m

∂2

∂z2
+

∑
i=1,2

[
− 1

2m

∂2

∂x2
i

+ V (xi)

]

+U (�r) ≡ H0 + U (�r), (A1)

with �r = (x,y,z) the relative position of the two atoms and
xi (i = 1,2) the x coordinate of the ith atom in the x

direction. Namely, we have x = x1 − x2. In Eq. (A1), V is
the potential given by the optical lattice in the x direction,
and U (�r) is the two-atom interaction potential. In this paper
we model the interatomic interaction with the Huang-Yang
pseudopotential

U (�r) = 4πas

m
δ(�r)

∂

∂r
(r·), (A2)

where as the s-wave scattering length.
Here we calculate the cross section with the approach in

Sec. 3-e of Ref. [18]. In Eq. (A1), H0 is defined as the
free Hamiltonian of the two atoms without interaction. The

FIG. 5. (Color online) The motion of the wave packets of the
two-atom relative coordinate through a two-dimensional plane.

eigenstate of H0 can be written as

|λ,n1,n2〉
≡ a

(2π )2
eikyyeikzzeiq1x1eiq2x2un1,q1 (x1)un2,q2 (x2), (A3)

with ky(z) the two-atom relative momentum in the y (z) direc-
tion and a the lattice constant of the optical lattice. Here qi and
ni(i = 1,2) are the quasimomentum and the quantum number
for the energy band of the ith atom, respectively. As shown in
the main text, un,q(x) is the periodic Bloch function of the n

band with quasimomentum q. We further define

λ = (ky,kz,q1,q2) (A4)

as the set of all the four quantum numbers. It is easy to prove
that

H0|λ,n1,n2〉 =
(

k2
y + k2

z

m
+ En1,q1 + En2,q2

)
|λ,n1,n2〉

≡ Eλ,n1,n2 |λ,n1,n2〉, (A5)

where En,q is the single-atom energy associated to the n-band
state with quasimomentum q and satisfies[

− 1

2m

∂2

∂x2
+ V (x)

]
[eiqxun,q(x)] = En,qe

iqxun,q(x). (A6)

We now calculate the cross section of the collision of two
atoms in the d band with zero quasimomentum. According to
the standard scattering theory, the cross section is defined with
respect to a two-dimensional plane. Here we assume the plane
is spanned by the vectors êa and êb. They satisfy êa · êb =
0, and the x component of êa(b) is equal to a (Fig. 5). To
define the cross section, we should consider the incident wave
packets

∣∣�(κa,κb)
〉 =

∫
dky dkz dq1 dq2 e−i(κa êa+κbêb)· �Kφ(λ)|λ,d,d〉,

(A7)

where κa,κb are two integers and λ = (ky,kz,q1,q2) is the set
of all the four quantum numbers. Here φ(λ) ≡ φ(ky,kz,q1,q2)
is a normalized wave packet which sharply peaks at the point
ky = ky0, kz = kz0, q1 = q10, q2 = q20, and the vector �K is
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defined as �K ≡ [(q2 − q1)/2,ky,kz]. With these assumptions,
it is easy to prove that the average two-atom relative position
given by the wave function |�(κa,κb)〉 is distributed in the two-
dimensional plane spanned by êa and êb (Fig. 5).

According to the scattering theory, the cross section
σ (n1,n2) is defined as

σ (n1,n2) = |êa||êb|
∑
κa,κb

∫
dk′

ydk′
zdq ′

1dq ′
2

× ∣∣〈λ′,n1,n2|(S − 1)
∣∣�(κa,κb)

〉∣∣2
, (A8)

where λ′ = (k′
y,k

′
z,q

′
1,q

′
2) and S is the S operator with respect

to the scattering process and satisfies

〈λ′,n1,n2|S|λ,d,d〉 = 〈λ′,n1,n2|λ,d,d〉
− 2πiδ

(
Eλ,d,d − Eλ′,n1,n2

)
×〈λ′,n1,n2|T |λ,d,d〉, (A9)

with T the associated T operator.
Therefore, to obtain the scattering cross section

σ (n1,n2), we should, first, calculate the T -matrix element
〈λ′,n1,n2|T |λ,d,d〉. In our experiments, since the scattering
length of 87Rb atoms is much smaller than the atomic de
Broglie wavelength and the lattice constant a of the optical
lattice, we can use the Born approximation

T ≈ U (�r) . (A10)

Using the Huang-Yang pseduopotential in Eq. (A2), we obtain

〈λ′,n1,n2|T |λ,d,d〉 = a2as

4mπ2
A (A11)

with the parameter A defined as

A ≡
∫

dx1 dx2 u∗
n1,q

′
1
(x1) u∗

n2,q
′
2
(x2)

× δ(x1 − x2) ud,q1 (x1) ud,q2 (x2). (A12)

To obtain the value of A, we first assume the length of the
optical lattice in the x direction is Nxa. The direct calculation
then gives

A = Nx�(q1,q2,q
′
1,q

′
2) δq1+q2,q

′
1+q ′

2
, (A13)

where the function �(q1,q2,q
′
1,q

′
2) is defined as

�(q1,q2,q
′
1,q

′
2)

=
∫ a

0
dxu∗

n1,q
′
1
(x) u∗

n2,q
′
2
(x) ud,q1 (x) ud,q2 (x). (A14)

Here the Kronecker symbol is defined as δij = 1 for i = j

and δij = 0 for i 	= j . Therefore, for a slow-varying function
f (q1,q2), we have(

2π

Nxa

)2 ∑
q1,q2

Af (q1,q2)

= 1

Nx

(
2π

a

)2 ∑
q1

�(q1,q
′
1 + q ′

2 − q1,q
′
1,q

′
2)

× f (q1,q
′
1 + q ′

2 − q1)

= 2π

a

∫
dq1�(q1,q

′
1 + q ′

2 − q1,q
′
1,q

′
2)f (q1,q

′
1 + q ′

2 − q1)

= 2π

a

∫
dq1dq2�(q1,q2,q

′
1,q

′
2)f (q1,q2)

× δ[(q ′
1 + q ′

2) − (q1 + q2)]. (A15)

Here we have used the relation(
2π

Nxa

)∑
q1

=
∫

dq1, (A16)

which is applicable in the limit Nx → ∞. The result in
Eq. (A15) implies

A = 2π

a
�(q1,q2,q

′
1,q

′
2)δ[(q ′

1 + q ′
2) − (q1 + q2)]. (A17)

Substituting Eq. (A17) into Eq. (A11), we finally obtain the
element of T matrix

〈λ′,n1,n2|T |λ,d,d〉 = aas

2mπ2
�(q1,q2,q

′
1,q

′
2)

× δ[(q ′
1 + q ′

2) − (q1 + q2)]. (A18)

Substituting Eq. (A18) into Eqs. (A7)–(A9), we can obtain
the scattering cross section σ (n1,n2). The straightforward
calculation gives

σ (n1,n2) = 4πa2
s a

2

m

∫
dqdkydkzdq1dq2

|φ(λ)|2
|∂Eλ,d,d/∂k‖|θ

(
Ed,q1 + Ed,q2 − En1,(q1+q2)/2+q − En2,(q1+q2)/2−q

)

× |�(q1,q2,(q1 + q2)/2 + q,(q1 + q2)/2 − q)|2, (A19)

where k‖ is defined as k‖ = (q2 − q1,ky,kz) · êc. Here êc

is the unit vector perpendicular to the plane spanned by êa

and êb, i.e., we have |êc| = 1 and êc · êa = êc · êb = 0. In
Eq. (A19) the derivative ∂Eλ0,d,d/∂k‖ is taken for fixed values
of q20 + q10 and (q2 − q1,ky,kz) · êa and (q2 − q1,ky,kz) · êb.
To obtain Eq. (A19), we have used the relation

∑
κa,κb

e−i(κa êa+κbêb)· �J = 4π2

|êa||êb|δ
(

�J · êa

|êa|
)

δ

(
�J · êb

|êb|
)

,

(A20)

with �J a vector in the three-dimensional space. Moreover,
using the fact that |φ(λ)| is sharply peaked at λ = λ0 and the
relations

∫
dkydkzdq1dq2|φ(λ)|2 = 1, (A21)

q10 ≈ 0, q20 ≈ 0, ky0 ≈ 0, kz0 ≈ 0, (A22)

we can further simplify Eq. (A19) and obtain the finial
expression for the cross section of inelastic collisions between
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two d-band atoms with zero quasimomentum:

σ (n1,n2) = 4πa2
s a

2

m|∂Eλ,d,d/∂k‖|λ=λ0 |
∫

dq[θ (2Ed,0 − En1,q

− En2,−q)|�(0,0,q,−q)|2]. (A23)

Now we prove Eq. (15). To this end, we need to calculate
the component v of the two-atom relative velocity along the
direction which is perpendicular to the plane spanned by êa

and êb. It is apparent that v is defined as

v =
∣∣∣∣〈�(κa,κb)| − i

�∇r

m
|�(κa,κb)〉 · êc

∣∣∣∣, (A24)

where �∇r = (∂/∂x,∂/∂y,∂/∂z), and the derivative is taken for
fixed values of x1 + x2 . With the expression (A7) of |�(κa,κb)〉,
it is easy to see that v is independent on the values of κa

and κb. To calculate the value of v, we need the expressions
of the periodic Bloch function ud,q(x) and the single-atom
energy En,q . We find that Eq. (A6) for ud,q(x) and En,q can be
simplified to[

− 1

2m

∂2

∂x2
+ V (x) + h1

]
un,q(x) = En,qun,q(x) (A25)

with h1 = −i(q/m)(∂/∂x). Since the |φ(λ)| is sharply peaked
at (q1,q2) = (q10,q20) ≈ (0,0), we can treat the term h1

in the above equation as a perturbation. The second-order
perturbation calculation gives the result

v = |∂Eλ,d,d/∂k‖|λ=λ0 |. (A26)

Using Eq. (A23) and Eq. (A26), we immediately obtain the
result in Eq. (15).
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