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We consider a binary Bose-Einstein condensate with linear and nonlinear interactions between its components,
which emulate the spinor system with spin-orbit (SO) and Rabi couplings. For a relatively dense condensate,
one-dimensional coupled equations with the nonpolynomial nonlinearity of both repulsive and attractive signs
are derived from the three-dimensional Gross-Pitaevskii equations. Profiles of modes confined in an external
potential under the action of the self-repulsion, and self-trapped solitons in the case of the self-attraction, are
found in a numerical form and by means of analytical approximations. In the former case, the interplay of the
SO and Rabi couplings with the repulsive nonlinearity strongly distorts shapes of the trapped modes, adding
conspicuous sidelobes to them. In the case of the attractive nonlinearity, the most essential result is reduction of
the collapse threshold under the action of the SO and Rabi couplings.
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I. INTRODUCTION

The recently proposed emulation of the spin-orbit (SO)
coupling in condensed matter by means of similar but weak
(i.e., theoretically tractable and experimentally controllable)
interactions in binary Bose-Einstein condensates (BECs) [1]
has drawn much attention, in the spirit of using dilute
Bose gases as quantum simulators [2]. In this context, BEC
composed as mixtures of different atomic states may represent
pseudospin systems, with the multicomponent mean-field
wave functions emulating the spinor order parameter. In
experiments, the artificial SO coupling has been implemented
in both bosonic [3,4] and fermionic [5,6] atomic gases,
by means of counterpropagating laser beams which couple
two internal hyperfine states of the atom by a stimulated
two-photon Raman transition. In this connection, it is relevant
to mention that the true SO coupling (rather than the emulated
one) is possible too in BEC composed of spinor bosons [7]
and in magnon condensates [8].

The single-particle SO Hamiltonian which can be imple-
mented in the BEC is

ĥsp =
[

p̂2

2m
+ U (r)

]
+ h̄�

2
σx − kL

m
p̂xσz, (1)

where p̂ = −ih̄(∂x,∂y,∂z) is the momentum operator, U (r) is
a trapping potential, kL is the recoil wave number induced
by the interaction with the laser beams, � is the frequency
of the Raman coupling, which is responsible for the Rabi
mixing between the two states, and σx,z are the Pauli matrices.
Recently, considerable attention has been drawn to models
combining the SO coupling, which is a linear feature, and
mean-field nonlinearities, which are induced, as usual [9], by
interatomic collisions. Various dynamical effects have been
investigated in the framework of such nonlinear systems,
including the self-trapping and formation of solitons [10–12],
vortical patterns [13], the interplay of the SO coupling and
dipole-dipole interactions [14], the modulational instability of
uniform states in SO-coupled BEC [15], etc.

The objective of the present work is to present an effective
one-dimensional (1D) model for the SO- and Rabi-coupled

relatively dense binary BEC, and investigate basic properties
if trapped modes in the framework of the model. The dimension
reduction, i.e., derivation of the 1D system from the underlying
set of the three-dimensional (3D) Gross-Pitaevskii equations
(GPEs) with cubic terms, leads to nonpolynomial nonlinearity,
as was previously demonstrated in the context of single [16]
and binary [17] condensates with the attractive nonlinearity,
as well as for the repulsive nonlinearity [18]. In the former
case, the corresponding nonpolynomial nonlinear Schrödinger
equations (NPSEs) generate solitons, as the usual 1D GPEs
with the postulated cubic nonlinearity. However, on the
contrary to the 1D cubic equations, the NPSEs predict the
onset of collapse in the effectively 1D solitons at a critical
strength of the self-attraction [16]. This feature makes the
1D solitons similar to 3D solitons, which are also subject to
the collapse above a critical value of the number of atoms,
depending on parameters of the BEC-trapping potential.
Detailed numerical investigations have demonstrated that the
near-collapse dynamics of 3D solitons (although not the
collapse itself) is quite accurately approximated by their 1D
counterparts in the framework of the NPSE [19].

In this work, we derive a system of two NPSEs coupled
by linear and nonlinear terms, which include new terms
accounting for the emulated SO interaction. The derivation
is performed for both the repulsive and attractive signs of
the interatomic interactions, and is followed by the analysis
of trapped modes, for both signs of the nonlinearity. In the
case of the self-repulsion, the trapping is imposed by an
axial harmonic-oscillator (HO) potential, while the attractive
condensates self-trap into solitons. The analysis concentrates
on new features of the externally trapped and self-trapped
modes in the presence of the SO-emulating interactions.

The rest of the paper is organized in the following way.
The derivation of the NPSE system for the binary condensate
with the SO and Rabi interactions between the components is
reported in Sec. II. This section also includes analytical ap-
proximations which help to understand characteristic features
of the trapped modes in the SO-coupled dense condensates.
Basic numerical results are reported in Sec. III. In both cases
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of the self-repulsion and self-attraction, the nonpolynomial
nonlinearity strongly affects shapes of the trapped modes and
solitons. The most essential result is a reduction of the collapse
threshold for the solitons under the action of the SO and Rabi
interactions. The paper is concluded in Sec. IV.

II. SPIN-ORBIT-COUPLED NONPOLYNOMIAL
SCHRÖDINGER EQUATIONS

A. Derivation of the model

Our starting point is the 3D version of the SO system which
was recently introduced in the form of 1D GPEs with the
cubic nonlinearity [11]. In fact, the 1D equations postulated
in Ref. [11] are essentially the same as those derived earlier
in the context of nonlinear fiber optics, for two polarizations
of light copropagating in a twisted birefringent fiber [20]).
A different version of the 1D SO Hamiltonian was adopted
in another recent paper [12]. If one takes into account the
nonlinearity induced by atomic collisions, the present model
and the one studied in Ref. [12] can be transformed into each
other, provided that the strength of the nonlinear terms is
characterized by the single s-wave scattering length.

The SO- and Rabi-coupled binary BEC, confined in the
plane of (y,z) by a tight HO potential with trapping frequency
ω⊥, and in the x direction by a generic loose potential V (x),
is modeled by the system of 3D GPEs for macroscopic wave
functions ψk of the two atomic states (k = 1,2):

i ∂tψk = [ − 1
2∇2 + V (x) + 1

2 (y2 + z2) + (−1)k−1iγ ∂x

+ 2π gk|ψk|2 + 2π g12|ψ3−k|2
]
ψk + 	 ψ3−k, (2)

where the lengths, time, and energy are measured in units
of a⊥ = √

h̄/(mω⊥), ω−1
⊥ , and h̄ω⊥, respectively. Here gk ≡

2ak/a⊥, g12 ≡ 2a12/a⊥ are the strengths of the intra- and inter-
species interactions, with the respective scattering lengths ak

and a12, while γ ≡ kLa⊥ and 	 ≡ �/(2ω⊥) are dimensionless
strengths of the SO and Rabi couplings, respectively [recall
that kL is the recoil wave number in Hamiltonian (1)]. The
time-dependent number of atoms in the kth state is Nk(t) =∫∫∫

dx dy dz|ψk(x,y,z,t)|2, the constant total number of
atoms being N = N1(t) + N2(t).

To reduce the dimension from 3D to 1D, we adopt the
usual factorized ansatz for the wave functions which are tightly
trapped in the transverse plane (y,z) and weakly confined in
the axial direction x [16,17]:

ψk(x,y,z,t) = 1√
πηk(x,t)

exp

{
− y2 + z2

2η2
k(x,t)

}
fk(x,t), (3)

where ηk(x,t) and fk(x,t) are the transverse widths and
axial wave functions, respectively, the latter normalized by
conditions ∫ +∞

−∞
|fk(x,t)|2 dx = Nk(t), (4)

which are compatible with Eq. (3). The conserved total number
of atoms is N = N1 + N2.

Inserting ansatz (3) into the Lagrangian density which
produces Eqs. (2), performing the integration in the transverse
plane, and neglecting, as usual, derivatives of ηk(x,t), one

can derive the corresponding effective Lagrangian, which then
gives rise to a system of four variational equations:

i ∂tfk =
[

− 1

2
∂2
x + V (x) + (−1)k−1iγ ∂x + 1

2

(
1

η2
k

+ η2
k

)

+ gk

η2
k

|fk|2 + 2
g12(

η2
1 + η2

2

) |f3−k|2
]
fk

+ 2	
η1η2(

η2
1 + η2

2

)f3−k, (5)

η4
k = 1 + gk|fk|2 + 4g12|f3−k|2 η4

k(
η2

1 + η2
2

)2

+ 2(−1)k−1	
(f ∗

1 f2 + f ∗
2 f1)

|f1|2
η3

kη3−k

(
η2

1 − η2
2

)
(
η2

1 + η2
2

)2 . (6)

In most cases, a reasonable assumption is that strengths of the
nonlinear interactions between different species are equal,

g1 = g2 = g12 ≡ g (7)

[21] [in fact, a more general case is considered below too; see
Eqs. (13) and (15)]. In this case, algebraic equations (6) admit
a simple solution, making it possible to eliminate the widths
in favor of the wave functions:

η4
1 = η4

2 = 1 + g(|f1|2 + |f2|2), (8)

hence Eqs. (5) for the two coupled axial wave functions may
be cast into a closed form,

i ∂tfk =
[

− 1

2
∂2
x + V (x) + (−1)k−1iγ ∂x

+ 1 + (3/2)g(|f1|2 + |f2|2)√
1 + g(|f1|2 + |f2|2)

]
fk + 	 f3−k. (9)

This NPSE system is a generalization of the one introduced
earlier [17] for the study of vectorial solitons in two-component
BECs, under the same assumption (7) as adopted here (but
without the linear coupling between the components).

Using Eq. (9), we aim to construct stationary states with
chemical potential μ, setting

fk(x,t) = φk(x) e−iμt . (10)

The resulting equations for stationary fields φ1,2(x) are
compatible with restriction

φ∗
1 (x) = φ2(x), (11)

leading to the single stationary NPSE:

μ� = −1

2
�′′ + V (x)� + iγ�′ + 1 + (3/2)gN |�|2√

1 + gN |�|2
�

+	�∗, (12)

where we have set �(x) ≡ √
2/Nφ1(x) = √

2/Nφ∗
2 (x), so

that
∫ +∞
−∞ dx|�(x)|2 = 1, and the prime stands for d/dx.

Clearly, solutions of Eq. (12) are complex if γ 	= 0, with the
symmetry which implies that their real and imaginary parts
�R(x) and �I (x) are, respectively, even and odd functions,
provided that potential V (x) is even (or is absent).

In fact, being interested in stationary solutions subject to
constraint (11), we can also consider a case more general
than the one singled out by Eq. (7) (the full symmetry of
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the nonlinear interactions). This generalization is essential
because the case of the full symmetry is critical, in some
respects [21]. Assuming |f1|2 = |f2|2 ≡ |f |2 and

g1 = g2 ≡ g 	= g12, (13)

one can again obtain a simple solution for algebraic equa-
tions (6):

η4
1 = η4

2 = 1 + (g + g12) |f |2, (14)

the substitution of which into Eqs. (5), (10), and (11) leads to
the stationary equation tantamount to Eq. (12), with g replaced,
according to Eqs. (13) and (14), by

geff ≡ (1/2) (g + g12) . (15)

All the stationary solutions obtained from Eq. (12) pertain to
the solutions subject to condition (11), if g is replaced by geff

in the case when relation (13) holds. This equivalence does not
apply to asymmetric solutions, which do not obey relation (11).
Strictly speaking, the equivalence does not pertain either to the
study of the dynamical solutions of the solutions, which must
be carried out within the framework of full equation (9), and,
in particular, should include perturbations which may break
relation (11).

Finally, we note that, in the weakly nonlinear regime
gN |�|2 
 1 the nonpolynomial term in Eq. (12) may be
expanded and reduced to the cubic approximation

(μ − 1) � = − 1
2�′′ + V (x) + iγ�′ + gN |�|2� + 	�∗.

(16)

In the opposite limit of gN |�|2 � 1, which may be relevant
in the case of the repulsive interactions, the nonpolynomial
nonlinearity reduces to a quadratic form, ∼|�| �; cf. Ref. [18].

B. Analytical approximations

In the absence of the Rabi coupling 	 = 0 the SO term can
be removed from Eq. (12) by substitution

�(x) ≡ �0(x) eiγ x, (17)

the resulting equation for �0(x) being tantamount to the
stationary version of the usual NPSE [16], with a shifted
chemical potential,

μ̃ ≡ μ + γ 2/2. (18)

The same substitution (17) may be used to produce an
analytical result valid for small 	 and/or large γ : In the lowest
approximation, the solution is

�(x) ≈ �0(x)eiγ x

[
1 + i	

2γ 2
sin (2γ x)

]
, (19)

where �0(x) is, as said above, a real solution for the usual
NPSE with 	 = γ = 0 and chemical potential (18). Note that
this approximation predicts an increase of the height of the
density profile in the mode, averaged over oscillations between
the real and imaginary parts of the wave function:

|�(x)|2 ≈ �2
0(x)(1 + 	2/8γ 4). (20)

In the opposite case, when γ is small and 	 is large, an
analytical approach can be developed too. In this situation, a
straightforward consideration of Eq. (12) demonstrates that, in

the lowest approximation, the solution can be constructed as
one with a small imaginary part:

�(x) ≈ �0(x) + iγ

2	
�′

0(x), (21)

where �0(x) is, as above, the solution of the usual NPSE
corresponding to the given norm, N .

Finally, a specific approximation applies to the description
of broad solitons, for which the kinetic-energy term in Eq. (9),
(1/2) ∂2

xfk , may be neglected in comparison with the SO
coupling (−1)k−1 iγ ∂xfk . Broad solitons may be naturally
assumed to have a small amplitude, hence the accordingly
expanded system of equations (9) is approximated by

i∂tFk = [V (x) + (−1)k−1iγ ∂x + g(|F1|2 + |F2|2)]Fk

+	f3−k, (22)

where Fk ≡ fk exp (it). In the absence of the axial potential
(V = 0), the self-attractive nonlinearity (g < 0) gives rise to
well-known exact solutions of Eq. (22) in the form of gap
solitons, which may be moving ones, with velocity c [22,23],
namely,

F1 = 1

γ

√
	

γ − c

2|g| (γ 2 − c2)1/4W ∗(X)

×exp [iφ(X) − iT cos θ ] ,

F2 = 1

γ

√
	

γ + c

2|g| (γ 2 − c2)1/4W (X) (23)

×exp [iφ(X) − iT cos θ ] ,

where

X = 	(γ 2 − c2)−1/2 (x − ct) ,

T = (γ 2 − c2)−1/2 (	/γ ) (γ 2t − cx),
(24)

φ(X) = (2c/γ ) tan−1 {tanh [(sin θ )X] tan (θ/2)} ,

W (X) = (sin θ ) sech [(sin θ )X − i (θ/2)] ,

and the parameter θ is determined by the normalization
condition N = N1 + N2 [see Eq. (4)],

θ = (|g|γ /2)(γ 2 − c2)−1N. (25)

The solitons exist with velocities c2 < γ 2, and with θ < π ,
which imposes a limitation on the number of atoms in the
soliton of this type, according to Eq. (25). In fact, the solitons
are stable, approximately, in the interval of θ < π/2 [24],
which makes the limitation on N more restrictive.

The broad gap solitons can be also found in the presence
of the axial trapping potential V (x) in Eq. (22). Indeed, for
the broad soliton it may be approximated by V (x) ≈ −V0δ(x)
with V0 > 0. Quiescent gap solitons (with c = 0) can be found
in an exact analytical form in this case too [25].

The gap solitons exist as well in the case of the self-
repulsion, i.e., g > 0. The respective solutions are obtained
from Eqs. (23) and (24), substituting {F1,F2} by {F ∗

1 , − F ∗
2 }.

Lastly, the underlying condition for neglecting the second
derivatives in Eq. (9) and reducing it to Eq. (22) takes the
form of N 
 (	|g|)−1(γ 2 − c2)3/2. Of course, the gap solitons
do not exist in the rigorous sense, as the neglected second
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derivatives close the spectral gap, giving rise to a slow decay
of the solitons into radiation waves (cf. Ref. [26]).

III. NUMERICAL RESULTS

A. The self-repulsive spin-orbit-coupled BEC under the
harmonic-oscillator axial confinement

We start the numerical analysis by looking for trapped
modes supported by Eq. (12) with g > 0 (the repulsive
nonlinearity) in the presence of the HO axial potential with
frequency ωx ,

V (x) = (λ2/2)x2, (26)

where λ ≡ ωx/ω⊥ is the anisotropy of the HO confinement.
Equation (12) was solved by dint of the imaginary-time
method, implemented with the help of the finite-difference
predictor-corrector Crank-Nicolson algorithm [27]. In Fig. 1
the numerical results are reported for the HO potential (26)
with λ = 1/3, adimensional nonlinearity strength gN = 20,
SO coupling γ = 1, and four different values of Rabi coupling
	. The density profile of the trapped modes, |�(x)|2, is plotted
as a function of axial coordinate x (solid lines). For the
completeness of the depiction of the complex wave functions,
we also display �2

R(x) and �2
I (x)(dashed and dot-dashed lines,

respectively). As expected, for 	 = 0 (the left upper panel of
Fig. 1) density |�(x)|2 for γ = 1 is the same as for γ = 0. In
this case, a finite value of γ implies that �(x) has oscillatory
real and imaginary components �R(x) and �I (x). The increase
of 	 at fixed γ (γ = 1 in Fig. 1) leads to the decrease of
the imaginary part, the corresponding density profile, |�(x)|2,
displaying several local maxima (see the right top and left
bottom panels in Fig. 1). Finally, when 	 is sufficiently large,
the imaginary component of the density, �2

I (x), becomes very
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FIG. 1. (Color online) The repulsive binary BEC under axial
harmonic confinement (26): The probability density for the trap
anisotropy λ = 1/3, adimensional nonlinearity strength gN = 20,
spin-orbit coupling γ = 1, and four values of the adimensional
Rabi coupling 	. Here, and in similar plots displayed below, the
solid line depicts |�(x)|2 = �2

R(x) + �2
I (x), while the dashed and

dashed-dotted lines separately represent squared real and imaginary
parts of the wave function, �2

R(x) and �2
I (x). Lengths are measured,

here and below, in units of the transverse confinement radius,
a⊥ = √

h̄/(mω⊥).
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FIG. 2. (Color online) The same as in Fig. 1, but for a fixed
Rabi coupling, 	 = 1, and four different values of the spin-orbit
coupling, γ .

small, in accordance with analytical approximation (21), the
probability density |�(x)|2 being nearly identical to that at
	 = 0, as can be seen from the comparison of the right bottom
and left top panels in Fig. 1).

It is also relevant to analyze the density profile at fixed 	 for
different values of the SO coupling γ . To this end, in Fig. 2 we
display the numerical results for λ = 1/3, gN = 20, 	 = 1,
and four values of γ . At γ = 0 (the left upper panel of Fig. 2),
�(x) is real and the density profile is smooth. As shown in
Fig. 2, for γ 	= 0 solution �(x) is complex, and the respective
density |�(x)|2 displays several local maxima, whose number
increases with γ . At large values of γ , we observe many
small-amplitude local variations of |�(x)|2, which makes the
averaged density profile close to that at γ = 0. This regime
may be explained by analytical approximation (19).

To summarize, the numerical results demonstrate that the
SO and Rabi couplings produce the most prominent effect on
the density profile of the trapped modes in the self-repulsive
binary BEC, in the form of conspicuous sidelobes, in the case
when the constant accounting for both couplings γ and 	

take moderate values, neither very small nor too large. It is
also relevant to stress that Figs. 1 and 2 demonstrate values
gN |�(x = 0)|2 � 3, at peak-density points. This implies,
according to Eq. (12), that the nonpolynomiality of the
effective nonlinearity is quite essential.

B. Bright solitons in the self-attractive spin-orbit-coupled BEC

It is well known that the attractive intrinsic nonlinearity
(g < 0) supports self-trapped matter-wave solitons in the ef-
fectively 1D BEC, even in the absence of the axial confinement
[V (x) = 0] [28]. Here we aim to investigate effects of the
SO and Rabi coupling on the bright solitons by solving
Eqs. (9) and (12) with g < 0, in the absence of the axial
trapping potential [V (x) = 0]. The objective is to construct
true solitons, unlike the approximate gap solitons (23).

For γ = 0 and/or 	 = 0, Eqs. (9) and (12) with V (x) = 0
predict that metastable solitons exist only for −4/3 < gN <

0. Indeed, at gN < −4/3 the 1D NPSE gives rise to the
collapse of the condensate, which sets in locally at a point
where the total density of the condensate attains the critical
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FIG. 3. (Color online) Density profiles of the solitons, in the case
of the self-attractive binary BEC without the axial potential, V = 0.
Here, the nonlinearity strength is gN = −0.6, spin-orbit coupling is
γ = 1, and values of the Rabi coupling 	 are indicated in the panels.

value |f1|2 + |f2|2 = −1/g [or |�|2 = − (gN )−1, in terms
of Eq. (12)]. This prediction is known to be in very good
agreement with the full 3D calculations [16,19].

Obviously, interesting issues are a change of the shape of the
solitons, and a shift of the collapse threshold under the action of
the SO and Rabi couplings. In Fig. 3 we plot the density profile
|�(x)|2 (solid line) for the bright solitons, obtained from the
numerical solution of Eq. (12), for gN = −0.6, γ = 1, and
three values of 	. A noteworthy feature is the compression
of the soliton’s density profile and increase of its height with
the increase of 	. This trend can be explained by the above-
mentioned perturbative result, given by Eq. (20).

At a certain finite value of 	, the bright soliton reaches
its smallest axial width and largest peak density, |� (x = 0)|2,
while the imaginary component (the dashed-dotted line) of
�(x) becomes small (see the lower panel of Fig. 3). With the
further increase of 	, the imaginary part of the wave function
vanishes, in accordance with Eq. (21), while the axial width
approaches a finite asymptotic value, corresponding to the real
solution with given norm N . This trend is displayed in Fig. 4,
which shows the average soliton’s width,

〈x2〉 ≡ N−1
∫ +∞

−∞
|�(x)|2dx, (27)

versus 	. The four curves with symbols of Fig. 4 correspond to
different values of the adimensional nonlinearity strength gN .
Note that for gN = −1.2 (the solid line with filled circles) the
collapse of the binary BEC happens at 	 ≈ 0.19, therefore this
line is aborted in Fig. 4. Thus, at fixed values of the SO coupling
(γ = 1 in Fig. 4) a finite Raman coupling 	 corresponds to
the lowest collapse threshold.

The results are summarized in Fig. 5, which shows the
collapse threshold in the parameter space (γ,	,|g|N ) for
the self-attractive binary BEC in the absence of the axial
confinement. The collapse points are obtained from numerical
solutions of Eq. (12), as those beyond which no solution can
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γ = 1

FIG. 4. (Color online) The axial squared width 〈x2〉 of the
solitons, defined as per Eq. (27), versus the Rabi coupling 	. Here
the spin-orbit coupling is γ = 1, and four values of the nonlinearity
strength gN are indicated in the box (the curve for gN = −1.2 is
very short, terminating because of the onset of the collapse).

be found (we here do not study the dynamics of the collapsing
states). We stress that, in accordance with Fig. 4, the collapse
is first attained at a finite value of 	, close to the point of
the minimum of the soliton’s width, rather than at 	 → ∞.
Furthermore, Fig. 5 clearly shows that the SO or Rabi coupling,
acting in isolation, do not affect the collapse threshold at
all, while the strongest reduction of the collapse threshold is
produced by the interplay of these two interactions added to the
binary condensate (i.e., in terms of Fig. 5, the threshold features
the steepest descent, roughly, in the diagonal direction).

To illustrate the symmetry of the system, the figure includes
both positive and negative values of γ and 	. Note that negative
	 corresponds to the fact that, instead of Eq. (11), one could
impose constraint φ∗

1 (x) = −φ2(x), which gives Eq. (12) with
	 replaced by −	. While, as stressed above, for 	 > 0 the
real and imaginary parts of the soliton’s wave function, �R(x)
and �I (x), are even and odd, respectively, they have opposite
parities for 	 < 0. Further, the critical surface in Fig. 5 is
symmetric with respect to the change of γ → −γ because
this is tantamount to x → −x.

1

0

g N  

1
γ 2

0

2

1.0
1.1
1.2
1.3

⏐  ⏐

FIG. 5. (Color online) The critical value of the nonlinearity
strength, corresponding to the onset of the collapse in the 1D soliton,
versus the adimensional spin-orbit and Rabi couplings γ and 	.
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IV. CONCLUSION

We have derived the 1D system of coupled Gross-Pitaevskii
equations for the relatively dense binary BEC, in which the
two components are coupled by the SO and Rabi linear terms,
and also by the nonlinear interactions, both self-repulsive and
self-attractive. The analysis was focused on effects caused
by the nonpolynomial character of the nonlinearity in the
1D equations derived from the system of 3D GPEs. In
addition to the numerical results, analytical approximations
were developed too, for the cases when the SO and Raman
couplings are weak, as well as for broad trapped modes. The
results demonstrate essential changes of the shape of the modes
due to the nonpolynomial nonlinearity, which can be partly
explained by means of the analytical approximations. In the
case of the self-repulsive nonlinearity, the interplay of the
SO and Rabi couplings cause a strong deformation of the
shape of the trapped modes, which develop large sidelobes.
The most significant result is the reduction of the strength of
the self-attractive nonlinearity at the collapse threshold for the

effectively 1D solitons under the combined action of the SO
and Rabi couplings.

An interesting possibility is to extend the present analysis
for effectively 2D binary BEC in the presence of a tight 1D
trapping potential acting in the transverse direction. In the ab-
sence of the linear couplings, 2D single-component solitons af-
fected by the corresponding nonpolynomial nonlinearity were
studied in Ref. [29]. Here too, one may expect a nontrivial low-
ering of the collapse threshold for the effectively 2D solitons.
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