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Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and
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In the context of ultracold atoms in multimode optical cavities, the appearance of a quantum-critical glass phase
of atomic spins has been predicted recently. Due to the long-range nature of the cavity-mediated interactions,
but also the presence of a driving laser and dissipative processes such as cavity photon loss, the quantum optical
realization of glassy physics has no analog in condensed matter and could evolve into a “cavity glass microscope”
for frustrated quantum systems out of equilibrium. Here we develop the nonequilibrium theory of the multimode
Dicke model with quenched disorder and Markovian dissipation. Using a unified Keldysh path integral approach,
we show that the defining features of a low-temperature glass, representing a critical phase of matter with
algebraically decaying temporal correlation functions, are seen to be robust against the presence of dissipation
due to cavity loss. The universality class, however, is modified due to the Markovian bath. The presence of strong
disorder leads to an enhanced equilibration of atomic and photonic degrees of freedom, including the emergence
of a common low-frequency effective temperature. The imprint of the atomic spin-glass physics onto the photon
subsystem realizes a “photon glass” state and makes it possible to detect the glass state by standard experimental
techniques of quantum optics. We provide an unambiguous characterization of the superradiant and glassy phases
in terms of fluorescence spectroscopy, homodyne detection, and the temporal photon correlation function g(2)(τ ).
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I. INTRODUCTION

An emerging theme in the research on strongly correlated
ultracold atoms is the creation of quantum soft-matter phases
ranging from nematics and smectics [1,2], liquid crystals [3],
granular materials [4–6], friction phenomena in nonlinear
lattices [7,8], to glasses [9–13]. Realizing glasses with strongly
interacting light-matter systems bears the promise to study
some of the most celebrated achievements in statistical
mechanics from a new vantage point. The Parisi solution of
mean-field spin glasses [14], for example, continues to trigger
research more than three decades after its discovery in the early
1980s and may have implications for information storage [15]
and “frustrated” optimization algorithms [16]. The latter is
related to the inability of a glass to find its ground state, a
feature that makes it inherently nonequilibrium.

Historically, quantum effects in soft matter and glasses
have not played a prominent role because most soft materials
are too large, too heavy, and/or too hot and therefore way
outside the quantum regime. Spin and charge glass features
have, however, been invoked in some electronic quantum
materials [14,17], mainly due to RKKY-type interactions or
randomly distributed impurities providing a random potential
for the electrons. However, here the glassy mechanisms occur
often in combination with other more dominant (Coulomb)
interactions, and it is hard to pin down which effects are
truly due to glassiness. Note that the somewhat simpler Bose
glass of the Bose Hubbard model [18] (see [19] for a possible
realization in optical cavities), while in the quantum regime,
occurs because of a short-range random potential and does
not generically exhibit some of the hallmark phenomena of
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frustrated glasses, such as many metastable states, aging, or
replica-symmetry breaking.

It would clearly be desirable to have a tunable realization of
genuinely frustrated (quantum) glasses in the laboratory. Re-
cent work on ultracold atoms in optical cavities [9–11,19] sug-
gests that it may be possible to create spin- and charge glasses
in these systems, which arise because of frustrated couplings
of the atomic “qubits” to the dynamical potential of multiple
cavity modes. It is appealing to these systems that the photons
escaping the cavity can be used for in situ detection of the atom
dynamics (“cavity glass microscope”) [20] and that the inter-
action mediated by cavity photons is long ranged. The latter
makes the theoretical glass models more tractable and should
allow for a realistic comparison of experiment and theory.

The phases of matter achievable with cavity quantum
electrodynamics (QED) systems settle into nonequilibrium
steady states, typically balancing a laser drive with dissipation
channels such as cavity photon loss and atomic spontaneous
emission. The notion of temperature is, a priori, not well
defined. A line of recent research on the self-organization
transition of bosonic atoms in a single-mode optical cavity
(experimentally realized with a thermal gas of cesium [22]
and with a Bose-Einstein condensate of rubidium [23,24]) has
established the basic properties of the nonequilibrium phase
transition into the self-organized, superradiant phase [25–34].
In particular, it was shown that, upon approximating the atom
dynamics by a single collective spin of length N/2 and taking
the atom number N large, the dynamics can be described by
classical equations of motion [27,31] and that the phase tran-
sition becomes thermal due to the drive and dissipation [32].

In this paper, we underpin our previous proposal [10] and
show that quenched disorder from multiple cavity modes
leads to qualitatively different nonequilibrium steady states
with quantum glassy properties. We develop a comprehensive
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nonequilibrium theory for many-body multimode cavity QED
with quenched disorder and Markovian dissipation. We pay
special attention to the quantum optical specifics of the pumped
realization of effective spin model [35], the laser drive, and the
finite photon lifetimes of cavity QED. Using a field theoretic
Keldysh formalism adapted to quantum optics, we compute
several observables of the glass and superradiant phases, which
are accessible in experiments with current technology. Our key
results are summarized in the following section.

The remainder of the paper is then organized as follows. In
Sec. III we discuss the multimode open Dicke model in the
simultaneous presence of quenched disorder and Markovian
dissipation. Disorder and dissipative baths are contrasted more
rigorously in Appendix B. We switch to a unified description
of both these aspects in Sec. IV in the framework of a Keldysh
path integral formulation and specify the formal solution
of the problem in the thermodynamic limit in terms of the
partition sum, which makes it possible to extract all atomic
and photonic correlation and response functions of interest.
This solution is evaluated in Sec. V, with some details in
Appendix D. This comprises the calculation of the phase
diagram in the presence of cavity loss, as well as the discussion
of correlation and response functions for both atomic and
photonic degrees of freedom, allowing us to uniquely charac-
terize the simultaneous spin and photon glass phase from the
theoretical perspective. We then discuss the consequences of
these theoretical findings to concrete experimental observables
in cavity QED experiments in Sec. V E. The combination
of correlation and response measurements makes it possible
for a complete characterization of the phase diagram and, in
particular, of the glass phase.

The relation between Keldysh path integral and quantum
optics observables is elaborated on further in Appendix C.

II. KEY RESULTS

A. Nonequilibrium steady-state phase diagram

The shape of the phase diagram for the steady state
predicted in [10], with the presence of a normal, a superradiant,
and a glass phase is robust in the presence of Markovian
dissipation; cf. Fig. 1. As to the phase diagram, the open
nature of the problem only leads to quantitative modifications.
In particular, the characteristic feature of a glass representing a
critical phase of matter persists. The presence of photon decay
overdamps the spin spectrum and changes the universality
class of the glass phase, which we now discuss.

B. Dissipative spectral properties and universality class

Within the glass phase, we identify a crossover scale ωc ∼ κ

proportional to the cavity decay rate κ , above which the
spectral properties of a zero-temperature quantum spin glass
are reproduced. Although the finite cavity decay κ introduces
a finite scale “above the quantum critical point of the closed,
equilibrium system,” κ acts very differently from a finite
temperature. In particular, below ωc, the spectral properties
are modified due to the breaking of time reversal symmetry
by the Markovian bath, while remaining critical. Due to the
low-frequency modification, the quantum spin glass in optical
cavities formally belongs to the dynamical universality class

FIG. 1. (Color online) Nonequilibrium steady-state phase dia-
gram of the open multimode Dicke model (in units of the cavity
detuning ω0 = 1), as a function of averaged atom-photon coupling J

(y axis) and disorder variance K (x axis) and for ωz = 0.5 (effective
atom detuning) for different photon decay rates κ . QG is the quantum
spin and photon glass; SR is the superradiant phase. The T = 0
equilibrium phase diagram of Ref. [10] is recovered as κ → 0. The
SR-QG transition is not affected by κ .

of dissipative quantum glasses, such as glasses coupled to
equilibrium Ohmic baths [36–38] or metallic spin glasses
[11,39].

Spectral properties. The role of the crossover scale between
equilibrium and dissipative spin glass is further illustrated in
Fig. 2. It is given by

ωc = 2κ

(
1 + ω2

0

ω2
0 + κ2

+
(
ω2

0 + κ2
)2

√
Kω2

z

)−1

. (2.1)

FIG. 2. (Color online) Illustration of the dissipative spectral
properties and universality class. As a function of probe frequency
ω (y axis) and the disorder variance K (x axis), we illustrate the
different regimes in the phase diagram (J = 0 for simplicity). In the
normal phase, for frequencies ω < α the system is represented by a
dissipative Ising model, described by Eq. (2.2), while for frequencies
ω > α,ωc it is described by nonuniversal behavior of a disordered
spin fluid. In the glass phase (K > Kc), there exist two qualitatitvely
distinct frequency regimes, separated by the crossover scale ωc; cf.
Eq. (2.1). At the lowest frequencies, ω < ωc the system is described
by the universality class of dissipative spin glasses. For ω > ωc, we
find that the system behaves quantitatively as an equilibrium spin
glass. For α < ωc and K < Kc, there exists a dissipative crossover
region (D-C in the figure), which is a precursor of the dissipative spin
glass. It shows dissipative Ising behavior for the smallest frequencies
and resembles the dissipative glass for frequencies ωc > ω > α.
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The resulting modifications below this scale, compared to a
more conventional equilibrium glass are due to the Markovian
bath, introducing damping. In the normal and superradiant
phases, this allows for the following form of the frequency-
resolved linearized Langevin equation for the atomic Ising
variables,

1

Z
(ω2 + iγ ω + α2)x(ω) = ξ (ω), (2.2)

modeling the atoms as an effective damped harmonic os-
cillator, with finite lifetime τ = 1

γ
< ∞ and α the effective

oscillator frequency, with the physical meaning of the gap of
the atomic excitations in our case. The noise has zero mean
and 〈ξ (t ′)ξ (t)〉 = 2γ

Z
Teffδ(t ′ − t).

At the glass transition, Z and α scale to zero simultane-
ously and the frequency dependence becomes gapless and
nonanalytic. In the entire glass phase, the effective atomic
low-frequency dynamics is then governed by the form

1

Z̄

√
ω2 + γ̄ |ω| x(ω) = ξ (ω), (2.3)

which obviously cannot be viewed as a simple damped oscil-
lator anymore. The broken time reversal symmetry manifests
itself in γ,γ̄ > 0, thus modifying the scaling for ω → 0. The
crossover between these different regimes is clearly visible in
Fig. 3.

Universality class. The qualitative modification of the
low-frequency dynamics below the crossover scale ωc implies
a modification of the equilibrium quantum spin-glass uni-
versality class. The open-system Dicke superradiance phase
transition, where the Z2 symmetry of the Dicke model is
broken spontaneously due to a finite photon condensate, is
enclosed by a finite parameter regime in which the dynamics
is purely dissipative or overdamped (see, e.g., [32]). Together
with the generation of a low-frequency effective temperature
(LET), for this reason the single-mode Dicke phase transition
can be classified within the scheme of Hohenberg and Halperin
[40] in terms of the purely relaxational Model A, thereby
sharing aspects of an equilibrium dynamical phase transition.
This situation is different for the open-system glass transition:

FIG. 3. (Color online) Dissipative spectral properties and uni-
versality class of the single-atom spectral density A(ω) (response
signal of RF spectroscopy) in the quantum glass phase for parame-
ters K = 0.01,J = 0.1,ωz = 2,κ = 0.1, ω0 = 0.7. For frequencies
ω < ωc below the crossover scale, the spectral density is overdamped
and proportional to

√
ω. For intermediate frequencies ω > ωc, A is

linear in the frequency, as for the nondissipative case [10], which is
recovered in the limit κ → 0.

Here, irreversible dissipative and reversible coherent dynamics
rival each other at the glass transition down to the lowest
frequencies. In particular, the dissipative dynamics fades out
faster than the coherent dynamics, as witnessed by larger
critical exponents, and there is no regime in the vicinity of
the critical point where either dissipative or coherent dynamics
would vanish completely. This behavior is illustrated in Fig. 10
and the decay of the coherent dynamics is demonstrated in the
inset of Fig. 7.

We note that, while these findings are unconventional
from the viewpoint of equilibrium quantum glasses, they are
not uniquely tied to the presence of the driven, Markovian
nonequilibrium bath. In fact, such behavior is also present in
the case of a system-bath setting in global thermodynamic
equilibrium, where the presence of the bath variables modifies
the spectral properties of the spins [11,36,37]. Both physical
contexts share in common the time-reversal breaking of the
subsystem obtained after elimination of the bath modes and
may be seen to belong to the same universality class.

C. Atom-photon thermalization into quantum-critical regime

As in the driven open Dicke model, the statistical properties
of atoms and photons are governed by effective temperatures
at low frequencies. The effective temperature differs in general
for the two subsystems. Approaching the glass transition,
these effective temperatures are found to merge. The finite
cavity decay enables this mechanism but κ does not directly
play the role of effective temperature. This mechanism pushes
the hybrid system of atoms and photons in the glass phase
into a quantum-critical regime described by a global effective
temperature for a range of frequencies. This quantum critical
regime retains signatures of the underlying quantum critical
point.

The Markovian bath not only affects the spectral properties,
but also governs the statistical properties of the system. The
main statistical effect is the generation of a LET for the atomic
degrees of freedom, for which we find

Teff = ω2
0 + κ2

4ω0
(2.4)

throughout the entire phase diagram and taking the same value
as in the single-mode case (in the absence of spontaneous
emission for the atoms). This thermalization of the atoms
happens despite the microscopic driven-dissipative nature of
the dynamics and has been observed in a variety of driven open
systems theoretically [30,41–47] and experimentally [48].
Below this scale, the occupation properties are governed by an
effective classical thermal distribution 2Teff/ω, while above it
the physics is dominated by nonequilibrium effects [32]. For
cavity decay κ 	 ω0, the crossover scale obeys ωc 	 Teff . As
a consequence, in an extended regime of frequencies between
ωc and Teff, the correlations describe a finite temperature
equilibrium spin glass.

In the single-mode open Dicke model, the photon degrees
of freedom are also governed by an effective temperature,
which, however, differs from the one for atoms [32], indicating
the absence of equilibration between atoms and photons even
at low frequencies. The increase of the disorder variance
leads to an adjustment of these two effective temperatures;
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FIG. 4. (Color online) Thermalization into quantum-critical
regime of the atomic (red dashed line) and photonic (blue lines)
distribution functions F (ω) when approaching the glass transition at
a critical disorder variance Kc for ω0 = 1.3,ωz = 0.5,κ = 0.01,Kc =
0.01, J = 0.1, and varying parameter δ = Kc − K . For larger values
of J , i.e., larger distance from the glass transition, the LET 2Teff =
limω→0 ωF (ω) of the photons is much lower than the LET of the
atoms and the frequency interval for which atoms and photons are
not equilibrated is larger. When the glass transition is approached,
atoms and photons attain the same LET.

cf. Fig. 4. At the glass transition, and within the entire
glass phase, the thermalization of the subsystems is complete,
with common effective temperature given in Eq. (2.4). This
effect can be understood qualitatively as a consequence of
the disorder-induced long-ranged interactions; cf. Eq. (4.32).
These lead to a coupling of atomic and photonic frequency
modes away from ω = 0 and enable equilibration.

We emphasize that the notion of thermalization here refers
to the expression of a 1/ω divergence for the system’s distribu-
tion function, as well as the adjustment of the coefficients for
atoms and photons. This provides an understanding for distinct
scaling properties of correlations (where the distribution
function enters) vs responses (which do not depend on the
statistical distribution), which can be addressed separately in
different experiments (see below). Crucially, this notion of
“thermalization” does not mean that the characteristic features
of the glass state are washed out or overwritten.

D. Emergent photon glass phase

The strong light-matter coupling results in a complete
imprint of the glass features of the atomic degrees of freedom
onto the photons in the cavity. We refer to the resulting state
of light as a photon glass highlighting the connection of
multimode cavity QED to random lasing media [49,50].

The photon glass is characterized by a photonic Edwards-
Anderson order parameter signaling infinitely long memory in
certain temporal two-point correlation function. This implies
that a macroscopic number of photons is permanently present
in the cavity (extensive scaling with the system size), which
are, however, not occupying a single mode coherently, but
rather a continuum of modes. The presence of a continuum of
modes at low frequency is underpinned by the slow algebraic
decay of the system’s correlation functions, as shown for the
photon correlation function in Fig. 5. This is a consequence
of the disorder-induced degeneracies. g(2)(τ ) is accessible by
detecting the photons that escape the cavity.

FIG. 5. (Color online) Emergent photon glass phase with alge-
braically decaying photon correlation function g(2)(τ ) at long times,
for parameters ω0 = 1,κ = 0.4,ωz = 6,J = 0.4,K = 0.16. The time
scale for which algebraic decay sets in is determined by the inverse
crossover frequency ωc, given by Eq. (5.11). For comparison, we
have also plotted the envelope of the exponential decay of the cor-
relation function in the normal and superradiant phase. The short-time
behavior of the correlation function is nonuniversal and not shown
in the figure; however, g(2)(0) = 3 due to the effective thermal
distribution for low frequencies. The parameter τ0 = O( 1

ω0
) was

determined numerically.

E. Cavity glass microscope

The cavity setup of Fig. 6 should allow for unprecedented
access to the strongly coupled light-matter phase with disorder.
Adapting the input-output formalism of quantum optics [51,
52] to the Keldysh path integral, we provide a comprehensive
experimental characterization of the various phases in terms of

FIG. 6. (Color online) Cavity glass microscope setup. Atoms are
placed in a multimode cavity subject to a transversal laser drive with
pump frequency ωp . The atoms are fixed at random positions by
an external speckle trapping potential over regions inside the cavity,
wherein mode functions g(ki ,xl) randomly change sign as a function
of the atomic positions, in order to provide frustration, as well as vary
in magnitude. The more cavity modes, the better, and in particular
the regime where the ratio of the number of cavity modes (M) over
the number of atoms (N ), α = M/N is kept sizable is a promising
regime for glassy behavior [9,15]. Photons leaking from the cavity
with rate κ give rise to additional dissipative dynamics and allow for
output detection measurements.
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FIG. 7. (Color online) Cavity glass microscope output of a
typical fluorescence spectrum S(ω) (not normalized), decomposed
in coherent Sc and incoherent part Sinc for the three distinct phases
in the multimode Dicke model. The parameters J,K are varied,
while ω0 = 1,κ = 0.1,ωz = 0.5 are kept fixed for each panel. (Top)
Normal phase, (J,K) = (0.13,0.008). Central and outer doublets are
visible but broadened by the disorder; only the incoherent contribution
is nonzero. (Middle) Superradiant phase, (J,K) = (0.4,0.008). The
central doublets have merged due to the presence of a critical mode at
ω = 0. At zero frequency there is a coherent δ contribution indicated
by the arrow (dashed). (Bottom) Glass phase, (J,K) = (0.13,0.017).
There is a characteristic 1√

ω
divergence for small ω < ωc due to the

nonclassical critical modes at zero frequency. The peak at ω = 0
is incoherent and can therefore easily be discriminated from the
coherent peak in the middle panel. The inset in the top panel shows
the behavior of the peak distance of S(ω) in the normal phase when
approaching the glass phase. The two peaks approach each other
and merge at the glass transition. The distance follows the dominant
coherent exponent αδ ∝ δ

3
2 ; cf. Sec. II B.

the cavity output spectrum and the photon correlations g(2)(τ )
in the real time domain.

This continues and completes a program started in [32]
of setting up a translation table between the language and
observables of quantum optics and the Keldysh path integral
approach. The frequency and time-resolved correlations can
be determined via fluorescence spectroscopy (cf. Fig. 7), and
the measurement of g(2)(τ ) follows time-resolved detection of
cavity output (cf. Fig. 5). The fluorescence spectrum shows
a characteristic 1√

ω
divergence for small frequencies ω < ωc.

This indicates a macroscopic but incoherent occupation of the
cavity as anticipated above: The glass state is not characterized
by a single-particle order parameter where a single quantum
state is macroscopically occupied, and which would result in
(temporal) long-range order such as a superradiant condensate.
Rather it is characterized by a strong and infrared divergent
occupation of a continuum of modes, giving rise to temporal
quasi-long-range order. This phenomenology is reminiscent
of a Kosterlitz-Thouless critical phase realized, e.g., in
low-temperature weakly interacting Bose gases, with the

difference that spatial correlations are replaced by temporal
correlations.

Finally, the combined measurement of response and cor-
relations enables the quantitative extraction of the effective
temperature.

III. MULTIMODE OPEN DICKE MODEL

In this section, we explain the model for fixed atoms in
an open multimode cavity subject to a transversal laser drive
shown in Fig. 6. We first write the explicitly time-dependent
Hamiltonian operator for a level scheme involving two Raman
transitions proposed by Dimer et al. [35]. We then transform
this Hamiltonian to a frame rotating with the pump fre-
quency. This eliminates the explicit time dependencies in the
Hamiltonian at the expense of violating detailed balance be-
tween the system and the electromagnetic bath surrounding the
cavity. The bath becomes effectively Markovian in accordance
with standard approximations of quantum optics. Finally, we
eliminate the excited-state dynamics to arrive at a multimode
Dicke model with tunable couplings and frequencies.

A. Hamiltonian operator

The unitary time evolution of the atom-cavity system with
the level scheme of Fig. 8 follows the Hamiltonian

Ĥ = Ĥcav + Ĥat + Ĥint + Ĥ (t)pump, (3.1)

which we now explain one by one. The cavity contains M

photon modes with frequencies νi ,

Ĥcav =
M∑
i=1

νia
†
i ai, (3.2)

which we later take to be in a relatively narrow frequency range
νi ≈ ν0 such that the modes couple with strengths comparable
to the detuned internal transition shown in Fig. 8. The atom
dynamics with frequencies given relative to the lower ground

FIG. 8. (Color online) Internal level scheme to generate tunable
Dicke couplings between the ground-state levels |1〉, |0〉 and the
cavity. Adapted from Dimer et al. [35].
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state |0〉 is

Ĥat =
N∑


=1

ωr |r
〉〈r
| + ωs |s
〉〈s
| + ω1|1
〉〈1
|. (3.3)

The interaction between the atoms and cavity modes,

Ĥint =
N∑


=1

M∑
i=1

(gr (ki ,x
)|r
〉〈0
| + gs(ki ,x
)|s
〉〈1
|)âi

+ H.c., (3.4)

involves a set of cavity-mode functions g(ki ,x
) which depend
on the wave vector of the cavity mode ki and the position of
the atom x
. The pump term

Ĥpump(t) =
N∑


=1

(
e−iωp,r t

�r (kr ,x
)

2
|r
〉〈1
|

+ e−iωp,s t
�s(ks ,x
)

2
|s
〉〈0
|

)
+ H.c. (3.5)

does not involve photon operators and induces coherent
transitions between the excited and ground states as per Fig. 8.
ωp is the (optical) frequency of the pump laser. We assume the
atoms to be homogeneously pumped from the side so that the
mode function of the pump lasers are approximately constant
�r,s(kr,s ,x
) ≈ �r,s . This can be realized in a system where
the atoms are confined in a two-dimensional plane.

We now transform Eqs. (3.1)–(3.5) to a frame rotating
with the (optical) frequency of the pump laser, mainly
to eliminate the explicit time dependence from the pump
term Eq. (3.5) [35]. The unitary transformation operator
is Û (t) = exp(−iĤ0t), with Ĥ0 = (ωp,s − ω′

1)
∑M

i=1 a
†
i ai +∑N


=1{(ωp,r + ω′
1)|r
〉〈r
| + ωp,s |s
〉〈s
| + ω′

1|1
〉〈1
|}, with
ω′

1 a frequency close to ω1 satisfying ωp,s − ωp,r = 2ω′
1 [35].

We then eliminate the excited states in the limit of large
detuning � to finally obtain the multimode Dicke model,

Ĥ =
M∑
i=1

ωiâ
†
i âi + ωz

2

N∑
l=1

σ z
l +

∑
i,l

gil

2
σx

l (â†
i + âi), (3.6)

with a correspondence of the effective spin operators in
Eq. (3.6) to the internal atomic levels,

σ z

 = |1
〉〈1
| − |0
〉〈0
|, σ x


 = |1
〉〈0
| + |0
〉〈1
|. (3.7)

The couplings and frequencies are tunable,

ωi = νi − (ωp,s − ω′
1) + g̃2

r (ki)

�r

, ωz = 2(ω1 − ω′
1),

(3.8)
gi
 = gr (ki ,x
)�r

2�r

,

where we assume Eq. (15) of Ref. [35] to be satisfied: g2
r

�r
=

g2
s

�s
and gr�r

�r
= gs�s

�s
. In particular, the effective spin-photon

coupling gi
 can now be tuned sufficiently strong to reach
superradiant regimes by changing the amplitude of the pump
�r . The effective cavity frequencies receive an additional
shift from a mode mixing term aiaj with space averaged
cavity couplings ∼g̃2/�r from which we only keep the
mode-diagonal contribution (for running wave cavity mode

functions ∼eikix
 this is exact; we do not expect qualitative
changes to our results from this approximation).

The multimode Dicke model with internal atomic
levels obeys the same Ising-type Z2 symmetry,
(ai,σ

x
l ) → (−ai, − σx

l ), familiar from the single-mode
Dicke model [53–58]. Therefore, there exists a critical
coupling strength Jc, such that the ground state of the system
spontaneously breaks the Z2 symmetry as soon as the average
coupling strength,

J ≡ 1

N

N∑
l,m=1

M∑
i=1

gilgim

4
, (3.9)

exceeds the critical value, J � Jc. The phase transition from
the symmetric to the symmetry-broken, superradiant (SR)
phase has been well analyzed for the single-mode Dicke model
and the essential findings, such as the universal behavior
for zero- and finite-temperature transitions [57,58] or in the
presence of dissipation [29,30,32], remain valid also for
the multimode case. The SR phase is determined by the
presence of a photon condensate, i.e., the emergence of a
coherent intracavity field [24,59], which is described by a
finite expectation value of a photon creation operator 〈a†

C〉 = 0.
The SR condensate a

†
C = ∑

i α
C
i a

†
i , with

∑
i |αC

i |2 = 1, is
a superposition of many cavity modes a

†
i , and its explicit

structure depends on the realization of the couplings {gil}.

B. Markovian dissipation

In a cavity QED experiment of the type described in Fig. 6,
the atoms and photons governed by the Hamiltonian (3.6) are
additionally coupled to the electromagnetic field outside the
cavity. This leads to the additional processes of spontaneously
emitted photons into the environment and to cavity photon loss
through imperfect mirrors, accurately captured by a Markovian
master equation [60,61]) of the form

∂tρ = −i[Ĥ ,ρ] + L(ρ) ≡ Ltot(ρ), (3.10)

where ρ is the density matrix of the atom-photon system, Ĥ is
the Hamiltonian (3.6), andL is a Liouville operator in Lindblad
form,

L(ρ) =
∑

α

κα(2LαρL†
α − {L†

αLα,ρ}). (3.11)

Here, {· ,·} represents the anticommutator and the Lα are
Lindblad or quantum jump operators. The photon dissipation
is described by the Liouvillian

Lph(ρ) =
M∑
i=1

κi(2âiρâ
†
i − {â†

i âi ,ρ}), (3.12)

where κi is the loss rate of a cavity photon from mode (i).
Equation (3.12) describes a Markovian loss process that, while
being a standard approximation in quantum optics, violates the
detailed balance between the system and the bath. Formally,
it can be derived by starting with a cavity-bath setup in which
both are at equilibrium with each other and performing the
transformation into the rotating frame outlined above Eq. (3.6)
also on the system-bath couplings (see Appendix B 3 ).
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In this work, we consider κi < ωi,ωz but of the same order
of magnitude. In contrast, the atomic dissipative dynamics
are considered to happen by far on the largest time scale,
which can be achieved in typical cavity experiments [24,59].
In a recent open-system realization of the single-mode Dicke
model [24,59], spontaneous individual atom-light scattering
is suppressed by five orders of magnitude compared to the
relevant system time scales, such that atomic dephasing
effectively plays no role [24]. As a result, only global atomic
loss is influencing the dynamics, which, however, can be
compensated experimentally by steadily increasing the pump
intensity or chirping the pump-cavity detuning [24]. We
therefore do not consider atomic spontaneous emission in this
paper.

C. Quenched or quasistatic disorder

The glassy physics addressed in this paper arises when the
spatial variation of cavity mode couplings,

K = 1

N

N∑
l,m=1

(
M∑
i=1

gilgim

4

)2

− J 2, (3.13)

is sufficiently large. The specific values of the couplings gil

in Eq. (3.6) are fluctuating as a function of the atom (l) and
photon (i) numbers and depend on the cavity geometry and
realization of the random trapping potential (Fig. 6). After
integrating out the photonic degrees of freedom in Eq. (3.6),
we obtain the effective atomic Hamiltonian

Heff = ωz

2

N∑
l=1

σ z
l −

N∑
l,m=1

Jlmσ x
l σ x

m, (3.14)

where we introduced the effective atom-atom couplings
Jlm = ∑M

i=1
gligim

4 and at this point neglected the frequency
dependence in the atom-atom coupling term in Eq. (3.14).
This is appropriate for ωi ≈ ω0 and ω0 large compared to
other energy scales [in particular, |(ωi − ω0)/ω0| 	 1]. In
order to solve the effective Hamiltonian (3.14), it is sufficient
to know the distribution of the couplings Jlm, which itself is a
sum over M random variables. For a large number of modes
(M → ∞) and a sizable ratio α = M/N , this distribution
becomes Gaussian, according to the central limit theorem, with
expectation value J and variance K , as defined in Eqs. (3.9)
and (3.13), respectively.

The variables Jlm can be seen as spatially fluctuating but
temporally static variables, connecting all atoms with each
other. This may be seen as a coupling to a bath with random
variables Jlm, which vary on time scales τQ much larger than
the typical time scales of the system τS only. The dynamics of
the bath is then frozen on time scales of the system, and the
bath is denoted as quasistatic or quenched [14]. This type of
bath is in a regime opposite to a Markovian bath, where the
dynamics of the bath happens on much faster time scales τM

than for the system, τM 	 τS [60,61]. We have summarized
basic properties of these baths in Appendix B.

IV. KELDYSH PATH INTEGRAL APPROACH

In this section, we introduce the Keldysh formalism
[32,62,63] and derive the set of self-consistency equations

for the atoms and photons from which all our results can
be extracted. We first formulate the open multimode Dicke
model Eqs. (3.6) and (3.12) as an equivalent Keldysh action
that includes the nonunitary time evolution induced by cavity
decay. In the Keldysh approach, one additionally benefits from
the fact that the partition function

Z = Tr (ρ(t)) = 1 (4.1)

is normalized to unity, independent of the specific realization
of disorder, and we perform the disorder average directly on the
partition function. We then integrate out the photons (carefully
keeping track of their correlations, as explained below) and
derive a set of saddle-point equations for frequency-dependent
correlation functions which can be solved.

A. Multimode Dicke action

To describe the photon dynamics, one starts from an action
for the coupled system of cavity photons and a Markovian bath.
Then the bath variables are integrated out in Born-Markov
and rotating wave approximations. The resulting Markovian
dissipative action for the photonic degrees of freedom on the
(±) contour reads

Sph =
∑

j

∫ ∞

−∞
dt{a∗

j+(i∂t − ωj )aj+ − a∗
j−(i∂t − ωj )aj−

− iκ[2aj+a∗
j− − (a∗

j+aj+ + a∗
j−aj−)]}. (4.2)

Here, the creation and annihilation operators have been
replaced by time-dependent complex fields. The structure of
the master equation (3.10) is clearly reflected in the action
on the (±) contour in Eq. (4.2). The first line corresponds
to the Hamiltonian part of the dynamics, with a relative
minus sign between (+) and (−) contours stemming from
the commutator. The second line displays the characteristic
form of the dissipative part in Lindblad form.

For practical calculations, it is more convenient to
switch from a (±) representation of the path integral
to the so-called Keldysh or RAK representation. In the
latter, the fields on the (±) contour are transformed to
“classical” aj,c = (aj+ + aj−)/

√
2 and “quantum” fields

aj,q = (aj+ − aj−)/
√

2, where the labeling of these fields
indicates that aj,c can acquire a finite expectation value, while
the expectation value of aj,q is always zero. After a Fourier
transformation to frequency space, ai(ω) = ∫

dt ai(t) e−iωt ,
the photonic action in Keldysh representation is obtained as

Sph =
∫

j,ω

(a∗
j,c,a

∗
j,q )

(
0 DR

j (ω)

DA
j (ω) DK

j (ω)

)(
aj,c

aj,q

)
, (4.3)

where we used the abbreviation
∫
j,ω

= ∑M
j=1

∫
dω
2π

. The
integral kernel of Eq. (4.3) is the inverse Green’s function
in Keldysh space with the inverse retarded/advanced Green’s
function

D
R/A

j (ω) = [
G

R/A

j

]−1
(ω) = ω ± iκj − ωj (4.4)

and the Keldysh component of the inverse Green’s function

DK
j (ω) = 2iκj . (4.5)

From now on, we focus on the case where the variation in the
photon parameters is much smaller than all other energy scales
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of this problem and consider only a single photon frequency ω0

and photon loss rate κ , i.e., |κ − κj | 	 κ and |ω0 − ωj | 	 ω0,
for all photon modes (j ). As a result all photon Green’s
functions are identical with κj = κ and ωj = ω0. The Green’s
function in Keldysh space takes the form

G(ω) =
(
GK (ω) GR(ω)

GA(ω) 0

)
=

(
0 DR(ω)

DA(ω) DK (ω)

)−1

, (4.6)

where we already identified retarded/advanced Green’s func-
tion GR(ω) in Eq. (4.4). The Keldysh component of the Green’s
function is obtained by performing the inversion (4.6) as

GK (ω) = −GR(ω)DK (ω)GA(ω). (4.7)

The retarded Green’s function encodes the response of the
system to external perturbations and its anti-Hermitian part is
proportional to the spectral density

A(ω) = i[GR(ω) − GA(ω)], (4.8)

since GA(ω) = [GR(ω)]†. The retarded Green’s function
GR(ω) and the Keldysh Green’s function GK (ω) constitute
the basic players in a nonequilibrium path integral description,
determining the system’s response and correlations. For a more
detailed discussion of a Keldysh path integral description of
cavity photons, we refer the reader to [32].

The atomic sector of the Dicke Hamiltonian (3.6) can be
mapped to an action in terms of real fields φl , as long as the
physically relevant dynamics happens on frequencies below
ωz [64]. The φ
 obey the nonlinear constraint

δ(φ2
l (t) − 1) =

∫
Dλl(t)e

iλl (t)(φ2
l (t)−1), (4.9)

where λl(t) are Lagrange multipliers, in order to represent
Ising spin variables (see Ref. [32] for further explanation). As
a result, we can apply the following mapping to Eq. (3.6):

σx
l (t) −→ φl(t), (4.10)

σ z
l (t) −→ 2

ω2
z

(∂tφl(t))
2 − 1. (4.11)

On the (±) contour, we then obtain

Sat = 1

ωz

∫
l,t

(∂tφl+)2 − (∂tφl−)2 , (4.12)

subject to the nonlinear constraint

Sconst = 1

ωz

∫
l,t

λl+(φ2
l+ − 1) − λl−(φ2

l− − 1). (4.13)

The atom-photon coupling reads

Scoup =
∫

t,i,l

gil

2
[φl+(a∗

i+ + ai+) − φl−(a∗
i− + ai−)]. (4.14)

Transforming to the RAK basis and frequency space, the
atomic propagator becomes

Sat = 1

ωz

∫
ω,l

(φc,l,φq,l)Dat(ω)

(
φc,l

φq,l

)
+ 1

ωz

∫
ω,l

λq,l, (4.15)

with

Dat(ω) =
(

λq,l λc,l − (ω + iη)2

λc,l − (ω − iη)2 λq,l

)
. (4.16)

Here, η → 0+ plays the role of a regulator that ensures
causality for the retarded/advanced Green’s functions. For the
atom-photon coupling in the RAK basis, we get

Scoup =
∫

ω,l,j

gil

2

[
(φc,l,φq,l)σ

x

(
ac,l

aq,l

)

+ (a∗
c,l ,a

∗
q,l)σ

x

(
φc,l

φq,l

)]
. (4.17)

For the atomic fields, it is useful in the following to introduce
the Keldysh vector

�l(ω) =
(

φc,l(ω)
φq,l(ω)

)
,

which will simplify the notation in the following.
The Keldysh action for the open multimode Dicke model

is then obtained as the sum of Eqs. (4.3), (4.15), and (4.17),

S[{a†,a,φ,λ}] = Sph + Sat + Scoup. (4.18)

B. Calculation procedure

We now explain how we solve the Keldysh field theory
described by Eq. (4.18). The calculation proceeds in three
steps.

1. Integration of the photon modes

This step can be performed exactly via Gaussian integra-
tion, since the action (4.18) is quadratic in the photon fields.
Note that this does not mean that we discard the photon
dynamics from our analysis. To also keep track of the photonic
observables, we modify the bare inverse photon propagator,
Eq. (4.3), by adding (two-particle) source fields μ according
to

Dph(ω) → Dph(ω) + μ(ω),

with μ =
(

μcc μcq

μqc μqq

)
. (4.19)

The photon Green’s functions are then obtained via functional
variation of the partition function with respect to the source
fields,

GR/A/K (ω) = δ

δμqc/cq/cc(ω)
Z

∣∣∣∣
μ=0

. (4.20)

The resulting action is a sum of the bare atomic part (4.15) and
an effective atom-atom interaction,

Sat-at = −
∫

ω

∑
l,m

Jlm�T
l (−ω)�(ω)�m(ω), (4.21)

with atom-atom coupling constants Jlm defined in (3.14) and
the frequency-dependent coupling

�(ω) = 1
2σx

[
G0 (ω) + GT

0 (−ω)
]
σx, (4.22)

which is the bare photon Green’s function G0 after sym-
metrization respecting the real nature of the Ising fields �l .
We note that the information of the photonic coupling to the
Markovian bath is encoded in �(ω).
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TABLE I. Translation table for the atomic order parameter and Green’s functions, from now on labeled with Q, and the intracavity photon
Green’s function, labeled with G.

Atoms Photons

Qcc(t,t ′) = QK (t,t ′) = −i
〈{

σ x
l (t),σ x

l (t ′)
}〉

Gcc(t,t ′) = GK (t,t ′) = −i
〈{

am(t),a†
m(t ′)

}〉
ψc(t) = √

2
〈
σ x

l (t)
〉

Qcq (t,t ′) = QR(t,t ′) = −i �(t − t ′)
〈[
σ x

l (t),σ x
l (t ′)

]〉
Gcq (t,t ′) = GR(t,t ′) = −i �(t − t ′)

〈[
am(t),a†

m(t ′)
]〉

ψq (t) = 0 Qqc(t,t ′) = QA(t,t ′) = [QR(t,t ′)]† Gqc(t,t ′) = GA(t,t ′) = [GR(t,t ′)]†

Qqq (t,t ′) = 0 Gqq (t,t ′) = 0

2. Disorder average

The coupling parameters Jlm are considered to be Gaussian
distributed and the corresponding distribution function is
determined by the expectation value and covariance of the
parameters Jlm

Jlm = J

N
, (4.23)

δJlmδJl′m′ = K

N
(δll′δmm′ + δlm′δml′ ) ≡ K̂lml′m′ , (4.24)

where the line denotes the disorder average and δJlm =
Jlm − Jlm represents the variation from the mean value. The
disorder-averaged partition function can be expressed as

Z =
∫

D ({�,λ,J }) ei(Sat+Sat-at+Sdis), (4.25)

with the disorder “action”

Sdis = i

2

∑
l,m,l′,m′

(Jlm − Jlm)K̂−1
lml′m′(Jl′m′ − Jl′m′ ), (4.26)

describing a temporally frozen bath with variables Jlm. Per-
forming the disorder average, i.e., integrating out the variables
Jlm in the action (4.25) replaces the parameters Jlm → J/N

in (4.21) with their mean value. Furthermore, the variance
K introduces a quartic interaction term for the atomic Ising
variables which is long-range in space and time,

Sat-4 = iK

N

∫
ω,ω′

∑
l,m

(�l��m) (ω) (�l��m) (ω′), (4.27)

with the shortcut (�l��m)(ω) ≡ �T
l (−ω)�(ω)�m(ω).

3. Collective variables: Atomic order parameter
and Green’s function

To decouple the spatially nonlocal terms in (4.21) and
(4.27), we introduce the Hubbard-Stratonovich fields ψα and
Qαα′ with α,α′ = c,q, which represent the atomic order
parameter

ψα(ω) = 1

N

∑
l

〈φα,l(ω)〉 (4.28)

and average atomic Green’s function

Qαα′ (ω,ω′) = 1

N

∑
l

〈φα,l(ω)φα′,l(ω′)〉. (4.29)

Now, the action is quadratic in the original atomic fields φ
,
and so these can be integrated out. The resulting action has a

global prefactor N and we perform a saddle-point approx-
imation which becomes exact in the thermodynamic limit
and upon neglecting fluctuations of the Lagrange multiplier.
We replace the fluctuating Lagrange multipliers λl(t) with
their saddle-point value λl(t) = λ. In the steady state, the
atomic observables become time-translational invariant, which
restricts the frequency dependence of the fields to

ψα(ω) = 2πδ(ω)ψα, (4.30)

Qαα′ (ω,ω′) = 2πδ(ω + ω′)Qαα′ (ω). (4.31)

C. Saddle-point action and self-consistency equations

The saddle-point action is given by the expression, cf.
Table I for notation,

S/N = −2λq

ωz

+
∫

ω

�T (−ω)[J�(ω) − J 2�(ω)G̃(ω)�(ω)]

×�(ω) − i

2
Tr[ln G̃(ω)] + iKTr[�Q�Q](ω),

(4.32)

with the “Green’s function”

G̃(ω) = [Dat(ω) − 2K�(ω)Q(ω)�(ω)] (4.33)

and the field �T = (ψc,ψq). The matrices �, G̃, and Q in
Eq. (4.32) possess Keldysh structure; i.e., they are frequency-
dependent triangular matrices with retarded, advanced, and
Keldysh components. The matrix � contains the photon
frequencies ω0 and the decay rate κ and also depends on the
photon Lagrange multiplier μ, so that all photon correlations
can be extracted from Eq. (4.32).

1. Atomic sector

In order to find a closed expression for the macroscopic
fields {�,Q} and to determine the saddle-point value for the
Lagrange multiplier λ, we have to evaluate the saddle-point
equations

δS

δX

!= 0, with X = Qαα′ ,ψα,λα, α = c,q. (4.34)

In stationary state, λq = ψq = Qqq = 0 by causality and we
set λc = λ and ψc = ψ for convenience.

The saddle-point equation for λq expresses the constraint

2 =
∫

ω

iQK (ω) = iQK (t = 0) = 2
1

N

N∑
l=1

〈(
σx

l

)2〉
, (4.35)
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which has been reduced to a soft constraint, present, on
average, with respect to (l), compared to the original hard
constraint, (σx

l )2 = 1, for each (l) individually.
In the SR phase and in the glass phase, the spin attain

locally “frozen” configurations. The correlation time of the
system becomes infinite, expressed via a nonzero value of the
Edwards-Anderson order parameter,

qEA := lim
τ→∞

1

N

N∑
l=1

〈
σx

l (τ )σx
l (0)

〉
. (4.36)

As a consequence, the correlation function QK (ω) is the sum
of a regular part, describing the short-time correlations and a δ

function at ω = 0, caused by the infinite correlation time. We
decompose the correlation function according to

QK (ω) = 4iπqEAδ(ω) + QK
reg(ω), (4.37)

with the Edwards-Anderson order parameter qEA, being
defined in Eq. (4.36) and a regular contribution QK

reg. In the
literature [36,65], this decomposition is referred to as modified
fluctuation dissipation relation (FDR), as also discussed in
Appendix B. The saddle-point equations for atomic response
function and the regular part of the Keldysh function are

QR(ω) =
{

2(λ − ω2)

ωz

− 4K[�R(ω)]2QR(ω)

}−1

(4.38)

and

QK
reg(ω) = 4K|QR|2�K (QA�A + QR�R)

1 − 4K|QR�R|2 . (4.39)

Equations (4.35), (4.38), and (4.39) form a closed set of
nonlinear equations, describing the physics of the atomic
subsystem in the thermodynamic limit, which is discussed
in Sec. V.

2. Photonic sector

The photon response GR and correlation function GK are
determined via functional derivatives of the partition function
Z with respect to the source fields μ, as described in (4.19)
and (4.20). The saddle point for the partition function is

Z = eiS × Z
(0)
ph , (4.40)

with the action S from Eq. (4.32) and the bare photon partition
function Z

(0)
ph .

In the Dicke model, the photon occupation ni is not a
conserved quantity, such that anomalous expectation values
〈a2〉 = 0 will become important. This has to be taken
into account by introducing a Nambu representation, where
the photon Green’s functions become 2 × 2 matrices, see
Appendix A. Generalizing the source fields μ to include nor-
mal and anomalous contributions and evaluating the functional
derivatives with respect to these fields results in the inverse
photon response function

DR
2×2(ω) (4.41)

=
(
ω + iκ −ω0 + �R(ω) �R(ω)

[�R(−ω)]∗ −ω − iκ −ω0 + [�R(−ω)]∗

)
.

(4.42)

Here, the subscript 2 × 2 indicates Nambu representation and

�R(ω) = [�R(−ω)]∗ = 1

2�R(ω)

[
ωzD

R
at (ω)

2(ω2 − λ)
− 1

]
(4.43)

is the self-energy, resulting from the atom-photon interaction.
The Keldysh component of the inverse Green’s function is

DK
2×2(ω) =

(
2iκ + �K (ω) �K (ω)

−[�K (ω)]∗ 2iκ − [�K (ω)]∗

)
, (4.44)

with the self-energy

�K (ω) = −[�K (ω)]∗ = QK (ω)

4Re[QR(ω)�R(ω)]
. (4.45)

In the Dicke model, the natural choice of representation for
the photon degrees of freedom is the x-p basis, i.e., in terms
of the real fields x = 1√

2
(a∗ + a), p = 1√

2i
(a∗ − a), since the

atom-photon interaction couples the photonic x operator to the
atoms. In this basis, the self-energy gives only a contribution
to the x-x component of the inverse Green’s function, and the
inverse response function reads

DR
xp(ω) =

(
2�R(ω) − ω0 κ − iω

−κ + iω −ω0

)
. (4.46)

In the limit of vanishing disorder K → 0, the self-energy
approaches the value �R(ω) = Jωz

2(ω2−λ) , reproducing the result

for the single-mode Dicke model [32,57,58].

V. RESULTS

We now present our predictions from solving the atomic
saddle-point equations Eqs. (4.35), (4.38), and (4.39) and then
extracting the photonics correlations using Eqs. (4.42)–(4.46),
in the same order as in Sec. II. In Sec. V E, we present
signatures for standard experimental observables of cavity
QED by adapting the input-output formalism to the Keldysh
path integral.

A. Nonequilibrium steady-state phase diagram

The phases in the multimode Dicke model shown in Fig. 1
can be distinguished by the two order parameters, namely
the Edwards-Anderson order parameters qEA in Eq. (4.36),
indicating an infinite correlation time τ and the ferromagnetic
order parameter ψ defined [Eq. (4.30)], indicating a global
magnetization:

Normal qEA = 0, ψ = 0,

SR qEA = 0, ψ = 0,

QG qEA = 0, ψ = 0.

In the normal phase, the Edwards-Anderson parameter qEA

and the ferromagnetic order parameter ψ are both zero and
Eq. (4.35) determines implicitly the numerical value of the
Lagrange parameter λN. In contrast, in the SR phase ψ = 0
and the Lagrange parameter can be determined analytically to
be

λSR = ωzω0

ω2
0 + κ2

(
J + K

J

)
. (5.1)
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In the quantum glass phase the Lagrange parameter is pinned
to

λQG = ωzω0

ω2
0 + κ2

√
K. (5.2)

The normal phase is characterized by a vanishing Edwards-
Anderson order parameter, and the corresponding Lagrange
multiplier λN is determined via the integral

0 = 2 − i

∫
ω

QK
reg(ω)

∣∣∣∣
λ=λN

. (5.3)

The normal-SR phase border is located at the line for which
λN = λSR, while the normal-QG transition happens at λN =
λQG. In the same way, the transition between SR phase and
quantum glass phase happens when ψ vanishes for finite
qEA = 0. This is the case for

λSR = λQG ⇔ K = J 2. (5.4)

The phase diagram for the open system for different values of
the photon dissipation κ is shown in Fig. 1. As can be seen from
this figure, the qualitative features of the zero-temperature
phase diagram [10] are preserved in the presence of dissipation.
However, with increasing κ , the phase boundaries between
normal and SR, and QG phases are shifted to larger values of J

and K , respectively, while the QG-SR transition is still located
at the values for which J 2 = K as for the zero-temperature
equilibrium case. Finite dissipation favors neither the QG nor
the SR phase and, as a result, the competition between disorder
and order is not influenced by the dissipative dynamics. The
line at K = 0, i.e., zero disorder, describes the normal-SR
transition for the single-mode Dicke model, which is known

to be located at Jc = ω2
0+κ2

4ω0
ωz [32,57,58]. This result is

reproduced exactly within our approach.

B. Dissipative spectral properties and universality class

The atomic excitation spectrum and the influence of the
system-bath coupling on the atomic dynamics are encoded in
the retarded atomic Green’s function, which is identical to
the atomic linear susceptibility, QR(ω) = χ (1)(ω). It describes
the response of the atomic system to a weak perturbation as,
for instance, the coupling to a weak coherent light field (see
Appendix C 1 ), and its imaginary part determines the atomic
spectral response

A(ω) = −2Im[QR(ω)], (5.5)

which can be measured directly via radio-frequency spec-
troscopy [66,67].

The spectral response A for the normal and SR phase (the
regular part for the latter) is shown in Fig. 9. In order to
describe the low-frequency behavior of the atomic spectrum,
we decompose it into a regular and a singular part, where the
singular part captures the critical mode of the SR phase in terms
of a δ function at zero frequency, which is absent in the normal
phase. The regular part of the spectrum has the same structure
for the normal and SR phases, and a derivative expansion of
the inverse Green’s function yields the low-frequency response
function

QR(ω) = Zδ

[
(ω + iγδ)2 − α2

δ

]−1
, (5.6)

with the analytic expressions for the coefficients given in
Table II. This is the Green’s function of a damped harmonic
oscillator with characteristic frequency ω = αδ and damping
γδ , which is described by classical relaxational dynamics
and correctly determines the atomic spectral response for
frequencies ω < ||αδ − iγδ|| smaller than the pole. The index
δ in Eq. (5.6) indicates that the parameters scale with the
distance to the glass transition,

δ = Kc − K, (5.7)

which happens at K = Kc (δ > 0 in SR and normal phases).
Transforming the response function to the time domain,

QR(t) = Zδe
−γδt cos (αδt) , (5.8)

which describes an excitation of the system with inverse
lifetime γδ = 1/τδ , energy αδ , and quasiparticle residuum Zδ .
For frequencies ω < αδ , the spectral response is determined
by the imaginary part of Eq. (5.6), yielding

A(ω) ≈ Zδγδω

α4
δ

= 2κ

ω0

√
Kδ

ω. (5.9)

This linear behavior is completely determined by parameters of
the quenched and the Markovian bath and vanishes for κ → 0,
resulting in a gap in the spectral weight for the zero temperature
equilibrium case, as discussed in [10]. For ω > αδ , i.e., for ω

larger than the gap, the atomic response function develops a

FIG. 9. (Color online) Regular part of the spectral density A(ω)
in the SR phase for parameters K = 0.05 and J = 0.4 and varying
κ and ω0. For small frequencies ω < αδ the spectral density is linear
in ω and κ and behaves as a square root for intermediate frequencies
ω > αδ . For the nondissipative case (κ → 0), the spectral weight
develops a gap at low frequencies, which is indicated for κ = 10−3

(solid line). The lower panel depicts the low-frequency behavior of A
(red dash-dotted line) for values κ = 0.03 and ω0 = 0.9. The green
(solid) and the black (dashed) line indicate the linear and square-root
behaviors, respectively. Approaching the glass transition, αδ scales to
zero ∝ δ

3
2 .
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nonanalytic square-root behavior,

A(ω) ∝ √
ω − αδ, (5.10)

resulting from the quadratic form in Eq. (4.38). The scaling
of the excitation gap αδ and the ratio Zδγδ

α4
δ

can be obtained
directly from the atomic spectral response, as illustrated in
Fig. 9, bottom panel. At the glass transition, the gap vanishes,
such that the square-root behavior starts from ω = 0.

In Table II, we compare the scaling behavior of the atomic
spectral response close to the normal-QG transition versus
SR-QG transition lines. At the glass transition, Zδ , γδ , and
αδ vanish, which for the latter two results in zero energy
excitations with infinite lifetime and therefore infinite cor-
relation times. The vanishing of the residuum Zδ indicates that
the discrete poles of the system, representing quasiparticles
with weight Z, transform into a continuum represented by a
branch cut in the complex plane as illustrated in Fig. 10. As a
consequence, a derivative expansion of the inverse propagator
is no longer possible in the quantum glass phase.

When approaching the glass phase, the frequency interval
which is described by classical relaxational dynamics (i.e.,
[0,αδ]) shrinks and vanishes completely at the transition, where
the system becomes quantum critical. The linear scaling of
A(ω) in combination with the closing of the spectral gap is
taken in thermal equilibrium as the defining property of a
quantum glass. However, for a general nonequilibrium setting,
the closing of the spectral gap is only a necessary but not a
sufficient condition for the glass phase. The unique property
of the glass transition in a nonequilibrium setting is the
emergence of a critical continuum at zero frequency, which
leads to the closing of the gap of the retarded Green’s function
(distinct from the spectral gap). From the structure of the

TABLE II. Atomic spectral response and scaling behavior ap-
proaching the glass transition in two different ways. The normal-
to-glass transition shows logarithmic corrections compared to the
SR-to-QG transition. The logarithmic scaling correction is a typical
feature of the glass transition and has also been found for T = 0
and finite-temperature glass transitions in equilibrium [68,69]. We
see that the lifetime of the excitations γδ scales differently from
the excitation energy αδ , which indicates a strong competition of the
reversible quantum dynamics and the classical relaxational dynamics.
Although the inverse lifetime scales faster to zero than the excitation
energy, there is no point before the transition where one of these
quantities becomes exactly zero, as was the case for the superradiance
transition. The described behavior at the glass transition means that
there is no purely relaxational low-energy theory which is able
to describe the dynamics close to the transition. It does not fall
into the Halperin-Hohenberg classification of dissipative dynamical
systems, but belongs to the universality class of dissipative spin
glasses [36–39].

Analytic expressions SR to QG Normal to QG

QR(ω) = Zδ

[
(ω + iγδ)2 − α2

δ

]−1

αδ =
√

2(ω2
0+κ2)

8
√

K
3
κ

× δ
3
2

∣∣∣ δ

log(δ)

∣∣∣ 3
2

γδ = ω2
0+κ2

16K2κ
× δ2

∣∣∣ δ

log(δ)

∣∣∣2

Zδ = ω0(ω2
0+κ2)

8
√

K
5
κ2

× δ3
∣∣∣ δ

log(δ)

∣∣∣3

low-frequency response function, Eq. (5.6), we see that closing
the spectral gap and a linear behavior of the spectral density
is a nontrivial (and glass) signature only for a system where
time-reversal symmetry is preserved, i.e., γ = 0. On the other
hand, the spectral gap closing is always present for broken
time-reversal symmetry.

Within the glass phase, it is again possible to separate two
distinct frequency regimes delimited by a crossover frequency,

ωc = 2κ

[
1 + ω2

0

ω2
0 + κ2

+
(
ω2

0 + κ2
)2

√
Kω2

z

]−1

, (5.11)

which depends on all system and bath parameters. For ω < ωc,
the atomic spectral density is described by

A(ω) =
ω<ωc

sgn(ω)

√
2κ

(
ω2

0 + κ2
) |ω|

Kω2
0

. (5.12)

This unusual square-root behavior of the spectral density in
the glass phase, illustrated in Fig. 3 and also reflected in the
pole structure Fig. 10, is a characteristic feature for glassy
systems that are coupled to an environment [11,37]. It has been
discussed previously in the context of metallic glasses, where

FIG. 10. (Color online) Schematic illustration of the pole struc-
ture and critical dynamics in the present model: (a) the normal-
to-superradiance transition in the dissipative Dicke model, (b) the
normal-to-glass transition in the zero-temperature equilibrium model,
(c) the normal-to-glass transition in the dissipative model. (a) When
approaching the superradiance transition, two of the polaritonic
modes advance to the imaginary axis and become purely imaginary
before the transition point. This leads to the effective classical
relaxational dynamics close to the transition. At the transition point,
the Z2 symmetry is broken by only a single mode approaching zero
and becoming critical for J → Jc. (b) For moderate disorder K , the
poles are located on the real axis away from zero. For increasing K ,
the poles approach zero, with the closest pole scaling proportional
to |K − Kc| 1

2 . At K = Kc the modes form a continuum which
reaches zero and becomes quantum critical. No dissipative dynamics
is involved. (c) For moderate disorder K , the set of modes is located
in the complex plane, away from zero. For increasing variance K , the
modes get shifted closer to the origin, however, due to the scaling of
real (∝|K − Kc| 3

2 ) and imaginary part (∝|K − Kc|2), they become
neither purely real nor purely imaginary. At K = Kc a continuum of
modes reaches zero.
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collective charges couple to a bath of mobile electrons [11] or
for spin glasses, where the spins couple to an external Ohmic
bath [37]. For intermediate frequencies, ω > ωc, the spectral
density is linear, as it is known for the nondissipative zero-
temperature case. In the limit κ → 0, ωc is shifted to smaller
and smaller frequencies, vanishing for κ = 0. The crossover
frequency ωc sets a time scale tc = 1

ωc
, such that for times

t < tc the system behaves as if it were isolated and one would
observe the behavior of a T = 0 quantum glass for (relative)
time scales t < tc in experiments. On the other hand, the long-
time behavior, t > tc, of the atoms is described by overdamped
dynamics, resulting from the coupling of the photons to a
Markovian bath. This is a strong signature of low-frequency
equilibration of the atomic and photonic subsystem, which
happens exactly at the glass transition (see Sec. V C2).

C. Atom-photon thermalization

We now discuss thermalization properties. The presence
of quenched disorder in our model leads to an action (4.32),
with a nonlinear coupling of the fields Q and thereby with
frequency couplings between atoms and photons for the whole
range of frequencies. These frequency couplings lead to
the equilibration of the photon and atom subsystem for the
whole frequency range. This sort of coupling is not present
in the single-mode Dicke model, where atoms and photons
therefore do not equilibrate, as discussed in [45].

1. Atom distribution function

In order to determine the atomic distribution function
Fat(ω), we make use of the FDR [see Appendix B, Eq. (B3)],
which for the atoms described by a scalar degree of freedom
simplifies to

QK (ω) = Fat(ω)[QR(ω) − QA(ω)]. (5.13)

The atomic correlation function QK is determined via
Eq. (4.39). This equation contains the photonic Keldysh
Green’s function via �K (ω), and it is therefore evident, that
the atomic distribution function will depend on the distribution
function of the bare photons. The bare photon distribution
function fph(ω) is again defined via the FDR, reading

GK
0 (ω) = fph(ω)

[
GR

0 (ω) − GA
0 (ω)

]
, (5.14)

with the bare photon response and correlation functions
G

R/A/K

0 . Decomposing f = fS + fAS into a symmetric
fS(ω) = fS(−ω) and an antisymmetric fAS(ω) = −fAS(−ω)
contribution allows us to rewrite �K (ω) in Eq. (4.39) as

2�K (ω) = GK
0 (ω) + GK

0 (−ω)

= 2fAS(ω)[�R(ω) − �A(ω)] + fS(ω)[gR(ω)

+ gR(−ω) − gA(ω) − gA(−ω)]

= 2

[
fAS(ω) + ω2 + κ2 + ω2

0

2ωω0
fS(ω)

]
× [�R(ω) − �A(ω)]. (5.15)

Inserting this result into the expression for the correlation
function (4.39) and making use of Eq. (4.40) and its complex

conjugate yields

QK
reg =

(
fAS + ω2 + κ2 + ω2

0

2ωω0
fS

)
(QR − QA) (5.16)

and thus identifies the atomic distribution function

Fat(ω) = fAS(ω) + ω2 + κ2 + ω2
0

2ωω0
fS(ω). (5.17)

This very general expression for the atomic distribution
function incorporates the two most important examples, either
a coupling to a thermal or a Markovian bath. For the
coupling to a heat bath, the bare photonic distribution function
is fully antisymmetric with fAS(ω) = coth( ω

2T
),fS(ω) = 0,

which implies that the atoms will be distributed according
to a thermal distribution as well and experience the same
temperature T as the photons. For the case of dissipative
photons, the bare distribution function of the photons is fully
symmetric, with fS(ω) = 1,fAS(ω) = 0. Therefore, the atomic
distribution function for this system is

Fat(ω) = ω2 + κ2 + ω2
0

2ωω0
. (5.18)

For small frequencies ω 	
√

ω2
0 + κ2 , the atomic distribu-

tion function diverges as Fat(ω) ∼ 1
ω

. This is the same asymp-
totic low-frequency behavior as for the thermal distribution
function coth( ω

2T
) ∼ 2T

ω
, such that for low frequencies, the

system is effectively described by a thermal distribution with
a nonzero LET

Teff = lim
ω→0

ωFat(ω)

2
= ω2

0 + κ2

4ω0
. (5.19)

The atomic distribution Fat and LET Teff in Eqs. (5.18)
and (5.19) are identical to the distribution function and
LET of the photonic x component, which is obtained by
expressing the photonic action in terms of the x and p

components, p = i√
2
(a† − a), and subsequently integrating

out the p component. This procedure is shown in Appendix D.
From the resulting action, the x component is described
by a distribution function Fxx(ω) = Fat(ω), resulting from
the coupling of the photons to the Markovian bath. Due to
the combined effect of strong atom-photon interaction and the
presence of disorder, the atoms and the photonic x component
equilibrate, resulting in the same distribution function and
LET.

2. Photon distribution function

To compute the photon distribution function, we use the
FDR

GK (ω) = GR(ω)Fph(ω) − FphG
A(ω), (5.20)

which in this case is an equation for the 2 × 2 matrices GR/A/K

and F . The matrix F solving Eq. (5.20) is not diagonal, and the
distribution of the excitations is determined by its eigenvalues
fα . These are shown in Fig. 4 and illustrate the thermalization
process of the system. In the normal and SR phase, the photons
have a lower LET than the atoms, resulting from the frequency
regime for which the dynamics is classical relaxational. As for
the spectral response, when the glass transition is approached,
this classical region is shifted towards ω = 0 and the photon
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LET approaches the atomic effective temperature. At the
transition, the photons and atoms have thermalized completely
in the low-frequency regime.

D. Emergent photon glass

In the glass phase, the condensate order parameter 〈ai〉 ∝
1
N

∑
l〈σx

l 〉 = ψ vanishes for all photon modes (i). However,
there exists a photon version of the Edwards-Anderson
parameter,

q̃EA = lim
τ→∞

1

M

M∑
i=1

〈xi(t + τ )xi(t)〉 ∝ qEA, (5.21)

where x = 1√
2
(a + a†) is the photon x operator and Eq. (5.21)

holds only for the x-x correlations (and for those with
finite contributions to x-x). A nonvanishing photon Edwards-
Anderson parameter implies an infinite correlation time for the
photons, analogous to the atomic qEA parameter. This is best
illustrated by the correlator in the complex basis,

lim
τ→∞〈a(t + τ )a†(t)〉 = 1

2
lim

τ→∞〈x(t + τ )x(t)〉 = q̃EA

2
, (5.22)

where we made use of the fact that the x-p and p-p correlations
vanish for τ → ∞. Equation (5.22) implies that a photon
which enters the cavity at time t has a nonvanishing probability
to decay from the cavity at arbitrary time t + τ , with τ ∈
[0,∞). This highlights a connection to photon localization in
disordered media [49,50].

Close to the glass transition, the properties of the atomic
system are completely mapped to the inverse photon Green’s
function. In the low-frequency and small-κ limit, i.e., ω,κ 	
ω0,ωz, the inverse photon Green’s function Eq. (4.46) has the
expansion

DR
x−p(ω) =

(
−ω0ωzD

R
at (ω)

2(ω2−λ) 0

0 −ω0

)
, (5.23)

such that the atomic low-frequency physics is mapped to the
photon x-x component.

The determinant of DR
x−p vanishes at the zeros of DR

at , such
that the photon propagator shows the same poles or branch
cuts as the atomic propagator, and the scaling behavior at the
glass transition obtained from the photons is identical to the
one obtained from the atoms. The photon response properties
induced by the atom-photon coupling are most pronounced
in the x-x component GR

xx of the retarded photon Green’s
function,

GR
xx(ω) = ω0

(ω + iκ)2 + 2ω0�R(ω) − ω2
0

. (5.24)

For low frequencies, we can perform the same approximation
as above to find

GR
xx(ω) = 2(λ − ω2)

ω0ωzD
R
at (ω)

= 2(λ − ω2)

ω0ωz

QR(ω). (5.25)

Close to the glass transition and in the glass phase, the
atomic retarded Green’s function QR determines the low-
frequency photon x-x response function. This is reflected in
Fig. 11. The discussion of the atomic response and scaling
behavior in Sec. V B remains valid for the photons.

FIG. 11. (Color online) Spectral equilibration. Photon x-x spec-
tral response Axx(ω) = −2Im[GR

xx(ω)] in the glass phase for pa-
rameters K = 0.04,J = 0.12,ωz = 2,ω0 = 1,κ = 0.02. As for the
SR phase, it shows the same low-frequency behavior as the atomic
spectral response −2Im[QR(ω)] (multiplied with a constant ωzω0

2λ
).

As for the atomic spectral density, one can clearly identify the
overdamped regime with the unusual square-root behavior and the
linear regime, separated by the frequency ωc.

E. Cavity glass microscope

We now describe three experimental signatures [cavity
output fluorescence spectrum, photon real-time correlation
function g(2)(τ ), and the photon response via driven homodyne
detection] of the SR and glassy phases and their spectral
properties. The cavity output is determined by the cavity
input and the intracavity photons via the input-output relation
[51,52]

aout(ω) =
√

2κ ã(ω) + ain(ω), (5.26)

with the cavity input annihilation operator ain(ω) and the
averaged intracavity field

ã(ω) = 1√
M

M∑
i=1

ai(ω) (5.27)

accounting for the M distinct cavity modes.

1. Cavity output fluorescence spectrum

The fluorescence spectrum S(ω) describes the (un-
normalized) probability of measuring a photon of frequency ω

at the cavity output [35] and is defined by

S(ω) = 〈a†
out(ω)aout(ω)〉, (5.28)

where a
†
out(ω) and aout(ω) are creation and annihilation oper-

ators, respectively, of the output field. Considering a vacuum
input field, the fluorescence spectrum is expressed solely by
the autocorrelation function of the intracavity field

S(ω) = 〈ã†(ω)ã(ω)〉 =
∫

τ

eiωτ 〈ã†(0)ã(τ )〉 = iG<(ω),

(5.29)

which is the “G-lesser” Green’s function, occurring in the (±)
representation (see [63,70]). Introducing also the “G-greater”
Green’s function

iG>(ω) =
∫

τ

eiωτ 〈ã(τ )ã†(0)〉, (5.30)
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we can express response and correlation functions in terms of
G</>,

GK (ω) = G>(ω) + G<(ω), (5.31)

GR(ω) − GA(ω) = G>(ω) − G<(ω), (5.32)

which yields

S(ω) = i

2
[GK (ω) − GR(ω) + GA(ω)]

= i

2
{GR(ω)[F (ω) − 1] − [F (ω) − 1]GA(ω)}.

(5.33)

In thermal equilibrium [F (ω) = 2nB(ω) + 1], where F is
diagonal in Nambu space, this expression simply reads

S(ω) = nB(ω)A(ω) (5.34)

and the fluorescence spectrum reveals information about the
intracavity spectral density A .

In order to further analyze Eq. (5.33), we decompose the
fluorescence spectrum into a regular part and a singular part
as it was done for the Keldysh Green’s function in Eq. (4.37),

S(ω) = Sreg(ω) + 2πq̃EAδ(ω), (5.35)

with the Edwards-Anderson parameter for the photons q̃EA.
The regular part Sreg is determined by the regular contribu-
tions from the response and distribution function, GR/A,F ,
which we have analyzed in the previous section. For small
frequencies, F (ω) ∝ 1

ω
, and in the normal and SR phase,

(GR − GA) ∝ ω, which leads to a finite contribution of Sreg to
the spectrum. In contrast, in the QG phase, (GR − GA) ∝ √

ω,
such that

Sreg(ω) ∝ 1√
ω

(5.36)

has a square-root divergence for small frequencies ω < ωc
QG

[see Eq. (5.11)]. This divergence is indicated in Fig. 7(c) and
is a clear experimental signature of the glass phase.

A further distinction between all three phases is possible
by decomposing the fluorescence spectrum into a coherent
and an incoherent part, where the coherent part describes the
“classical” solution (i.e., the part resulting from the presence of
a photon condensate 〈ã〉 = 0) and the incoherent part describes
the fluctuations. Accordingly, the coherent part is

Sc(ω) = 2π |〈ã〉|2δ(ω) (5.37)

and the incoherent part reads

Sinc(ω) = Sreg(ω) + 2π (q̃EA − |〈ã〉|2)δ(ω). (5.38)

Typical fluorescence spectra characterizing the three distinct
phases are plotted in Fig. 7. For the normal phase, the
spectrum shows central and outer doublets associated with
the hybridized atomic and photonic modes. Above the critical
point for the superradiance transition, the doublets merge since
a single mode becomes critical. However, compared to the
single-mode transition, the central peak is much broader as a
consequence of disorder. Additionally, in the SR phase, the
fluorescence spectrum has a nonzero coherent contribution,
which allows for a unique identification of this phase.

In the glass phase, the doublets have merged after the
emergence of a critical continuum of modes at ω = 0, and
one can clearly identify the square-root divergence for small
frequencies, as discussed above. Additionally, the singular
behavior of S(ω) in the glass phase is of incoherent nature,
since 〈a†〉 = 0. This combination of an incoherent zero-
frequency peak together with the absence of a coherent
contribution uniquely defines the fluorescence spectrum in the
glass phase and allows for a complete classification of the
system’s phases via fluorescence spectroscopy.

The coherent contribution to the spectrum can be deter-
mined via homodyne detection (see below), where 〈ã〉 can be
measured directly.

2. Photon real-time correlation function g(2)(τ )

The time-resolved four-point correlation function of the
output field,

g(2)(t,τ ) = 〈a†
out(t)a

†
out(t + τ )aout(t + τ )aout(t)〉
|〈a†

out(t)aout(t)〉|
, (5.39)

reveals how the correlations in the cavity decay with the time
difference τ . In steady state, g(2)(t,τ ) only depends on the
time difference τ and we write g(2)(τ ). For τ → 0, g(2)(0) is
a measure of the underlying photon statistics in the cavity,
e.g., indicates bunching or antibunching of the cavity photons,
respectively.

In the open Dicke model, due to the effective temperature
(cf. Fig. 4 and Ref. [32]), g(2)(0) > 1, describing photon
bunching, as expected for thermal bosons. We find g(2)(0) = 3
for all the three phases, which stems from the off-diagonal
atom-photon coupling in the Dicke model and coincides with
the findings in Ref. [30] for the normal and SR phase.

In the normal and SR phase, the long-time behavior is
governed by the classical low-frequency dynamics, leading
to an exponential decay,

g(2)(τ ) ∼ 1 + 2e−2κτ . (5.40)

This behavior is well known for the single-mode Dicke model
[30] and remains valid for the multimode case, away from
the glass transition. In contrast, when the glass phase is
approached, the modes of the system form a branch cut in
the complex plane and the correlation function in the glass
phase decays algebraically, according to

g(2)(τ ) ∼ 1 +
(

τ0

τ

) 1
2

, (5.41)

where τ0 = O(1/ω0). This algebraic decay of the correlation
function provides clear-cut evidence for a critical continuum
of modes around zero frequency witnessing the glass phase.
In Fig. 5, we show g(2)(τ ) demonstrating this behavior.

In order to compute the four-point correlation function
(5.39), we make use of Eq. (5.26) and the vacuum nature
of the input field, i.e., the fact that all averages over ain,a

†
in

vanish. As a consequence, the operators for the output field in
Eq. (5.39) can be replaced by the operators for the averaged
cavity field ã; see Eq. (5.27). The denominator in Eq. (5.39) is
then

|〈ã†(t)ã(t)〉|2 = |〈ã∗
−(t)ã+(t)〉|2 = |G<(0)|2. (5.42)
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The numerator similarly is expressed as

〈ã†(t)ã†(t + τ )ã(t + τ )ã(t)〉
= 〈ã∗

−(t)ã∗
−(t + τ )ã+(t + τ )ã+(t)〉. (5.43)

Note that both expressions [Eqs. (5.42) and (5.43)] preserve
the correct operator ordering of Eq. (5.39), according to the
different time-ordering on the (+), (−) contour, respectively.

The four-point function in Eq. (5.43) can be expressed in
terms of functional derivatives of the partition function Z
[Eq. (4.40)] with respect to the source fields μ [Eq. (4.19)]. In
the thermodynamic limit, the macroscopic action, Eq. (4.32),
depends only on atomic and photonic two-point functions and,
equivalent to Wick’s theorem, the four-point function becomes
the sum over all possible products of two-point functions,

G(2)(τ ) = 〈ã∗
−(t)ã∗

−(t + τ )ã+(t + τ )ã+(t)〉
= 〈ã∗

−(t)ã+(t)〉 〈ã∗
−(t + τ )ã+(t + τ )〉

+ 〈ã∗
−(t + τ )ã+(t)〉 〈ã∗

−(t)ã+(t + τ )〉
+ 〈ã∗

−(t)ã∗
−(t + τ )〉 〈ã+(t + τ )ã+(t)〉

= |G<(0)|2 + |G<(τ )|2 + |G<
an(τ )|2, (5.44)

with the anomalous G-lesser function

G<
an(τ ) = −i〈ã(τ )ã(0)〉. (5.45)

Inserting Eq. (5.44) into the expression for the four-point
correlation function yields

g(2)(τ ) = 1 + |g(1)(τ )|2 + |G<
an(τ )|2

|G<(0)|2 , (5.46)

with the two-point correlation function

g(1)(τ ) = G<(τ )

G<(0)
= 〈ã†(τ )ã(0)〉

〈ã†(0)ã(0)〉 . (5.47)

G<(τ ) is the Fourier transform of the fluorescence spectrum
S(ω), as discussed in the previous section, and we therefore
decompose it according to

G<(τ ) = q̃EA + G<
reg(τ ), (5.48)

with G<
reg(τ ) being the Fourier transform of Sreg(ω). In the

infinite time limit, the regular part of G<(τ ) decays to zero,
such that the infinite correlation time value becomes

g(1)(τ ) =
τ→∞

q̃EA

q̃EA + G<
reg(0)

= q̃EA

q̃EA + Nreg
. (5.49)

Nreg denotes the occupation of the noncritical cavity modes.
The way how this value of g(1) is reached in time is determined
by the 1√

ω
divergence of Sreg(ω) for frequencies ω < ωc

smaller than the crossover frequency ωc; cf. Fig. 7. This leads
to

g(1)(τ ) →
τ>τc

q̃EA

q̃EA + Nreg
+

(
τ̃0

τ

) 1
2

, (5.50)

where τc = 2π
ωc

and τ̃0 has to be determined numerically. This
algebraic decay to the infinite τ value of the correlation
function with the exponent ν = 1

2 has also been found in
Ref. [36] for the correlation function of a spin glass coupling
to a finite temperature Ohmic bath, in line with the discussion
of universality in Sec. V B. The finite temperature exponent

results from the nonzero effective temperature of the system,
which influences the correlation function. For the case of
Teff = 0 this exponent changes to ν = 3

2 but the spectral
properties are left unchanged.

The nonzero value of the two-point correlation g(1)(τ ) →
q̃EA

q̃EA+Nreg
for τ → ∞ serves as a possible measure of the

photonic Edwards-Anderson parameter q̃EA in the glass phase:
q̃EA can be inferred from a correlation measurement, if the
total photon number in the cavity Ntot = q̃EA + Nreg has been
measured separately.

Taking the absolute value of g(1)(τ ) in Eq. (5.50) leads to
the dominant contribution

|g(1)(τ )|2 →
τ>τc

(
q̃EA

q̃EA + Nreg

)2

+ 2
q̃EA

q̃EA + Nreg

(
τ̃0

τ

) 1
2

,

(5.51)

as displayed in the asymptotic behavior of the four-point
correlation function Eq. (5.41), where we have absorbed the
prefactors in the definition of τ0 and normalized the long-time
limit to unity.

While the nonzero value of g(1)(τ → ∞) is caused by
critical poles of the system, it does not include any more
information about the pole structure of the system and may, for
instance, be caused by a single critical pole, as it is the case for
the superradiance transition. However, the algebraic decay to
the infinite correlation time value of g(1), and the same for g(2),
is a clear signature of a branch cut in the complex plane and
therefore a continuum of modes reaching to zero frequency.
This, in turn, is a strong signature of the critical glass phase in
the cavity.

3. Photon response via driven homodyne detection

Here we relate homodyne detection measurements of the
output signal to the quadrature response functions in the
Keldysh formalism and calculate the corresponding signal.
This gives predictions for the experimental analysis of the
spectral properties and the scaling at the glass transition, which
have been discussed in previous sections.

In the process of homodyne detection (illustrated in
Fig. 12), the output field aout is sent to a beam splitter, where it
is superimposed with a coherent light field β(t) = β e−i(ωβ t+θ)

with frequency ωβ , amplitude β, and phase θ . After passing
the beam splitter, the intensity of the two resulting light
fields is measured and the difference in this measurement (the
difference current) for the case of a 50/50 beam splitter is
described by

n−(t) = i〈a†
out(t)β(t) − β∗(t)aout(t)〉

= β〈ei(θ− π
2 )aout(t)e

iωβ t + e−i(θ− π
2 )a

†
out(t)e

−iωβ t 〉.
(5.52)

Here, we added a conventional phase shift φ = π
2 of the beam

splitter. For the case of a vacuum input field, Eq. (5.52)
simply measures the steady-state expectation value of the
cavity quadrature components

Xθ− π
2 ,ωβ

(t) = ei(θ− π
2 )ã(t)eiωβ t + e−i(θ− π

2 )ã†(t)e−iωβ t ,

(5.53)
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FIG. 12. (Color online) Illustration of homodyne detection of a
weakly driven cavity. The cavity is driven via a weak coherent input
field η(t) entering the cavity through one of the mirrors. Then a
homodyne measurement is performed on the output signal of the
driven cavity. For this, the output signal is superimposed with a
reference laser β(t) via a 50/50 beam splitter and the difference
current of the two outgoing channels is measured. From this, the
response function of the photons in the cavity can be measured
by tuning the relative phases and frequencies of β(t) and η(t), as
explained in the text.

with the intracavity operators ã, as defined in Eqs. (5.26) and
(5.27). This quantity indicates a finite superradiance order
parameter 〈ã〉, but for the steady state contains no further
information.

This situation changes when the input field is changed from
the vacuum state to a weak coherent laser field η(t). For this
special case, the difference current in Eq. (5.52) is modified
according to

n−(t) = i(η∗β − β∗η)(t) + i
√

2κ〈ã†(t)β(t) − β∗(t)ã(t)〉
= i(η∗β − β∗η)(t) +

√
2κ|β| 〈Xθ− π

2 ,ωβ
(t)

〉
. (5.54)

For the special case of the input field coming from the same
signal as the reference laser, we have η(t) = β(t) (which
we assume from now on for simplicity) and the first term
in Eq. (5.54) vanishes. The main difference here is that the
quadrature operator Xθ,ωβ

(t) is not evaluated for the steady
state but for a state which has been perturbed by the weak
laser field β(t). For a weak laser amplitude |β| 	 1, the system
stays in the linear response regime and the difference current is
proportional to the retarded Green’s function for the quadrature
component Xθ+ π

2 ,ωβ
as we proceed to show.

The interaction between the cavity photons and the radi-
ation field outside the cavity is commonly described by the
Hamiltonian

Hint = i
√

2κ(ã†ain − a†
inã), (5.55)

which, after a transformation to the Keldysh action and
replacing the input fields by the coherent light field β(t), enters
the action as

Sint =
√

2κ

∫
ω

(ã∗
c ,ã

∗
q )(ω)iσ x

(
βc

βq

)
(ω) + H.c., (5.56)

which is exactly the form of a source term in quantum field
theory, generating all Green’s functions of the system via
functional derivatives with respect to the fields β. Expressing
the action (5.56) in terms of Keldysh components of the

quadrature fields Xθ,ωβ
yields

Sint =
√

2κ

∫
ω

(
Xc,θ− π

2 ,ωβ
,Xq,θ− π

2 ,ωβ

)
(ω) σx

(|βc|
|βq |

)
(ω).

(5.57)

The linear response 〈Xθ− π
2 ,ωβ

〉(1)(t) of the quadrature expecta-
tion value is expressed as (see Appendix C)〈

Xθ− π
2 ,ωβ

〉(1)
(t) = −2κ|β|2

∫
t ′
GR

Xθ− π
2

,ωβ
(t − t ′), (5.58)

with the quadrature response function

GR
Xθ− π

2
,ωβ

(t − t ′) = −iθ (t − t ′)
〈[
Xθ− π

2 ,ωβ
(t),Xθ− π

2 ,ωβ
(t ′)

]〉
.

(5.59)

For the specific choice of θ = π
2 ,

Xθ− π
2 ,ωβ

=
√

2xωβ
= [ã(t)eiωβ t + ã†(t)e−iωβ t ], (5.60)

the response function GR
Xθ− π

2
,ωβ

(t − t ′) = 2GR
xωβ

(t − t ′) be-

comes the x-x retarded Green’s function in a frame rotating
with the laser frequency ωβ . In this case, the difference current
is a direct measurement of the x-x response,

n−(t) = −4κ|β|2
∫

t ′
GR

xωβ
(t − t ′), (5.61)

which we have discussed in detail in Sec. V D. The frequency
dependence of xωβ

, indicated by the subscript ωβ , coming from
Eq. (5.53), can be used to scan through different frequency
regimes and directly access the atom and photon x-x spectral
response.

VI. CONCLUSION

We have developed the nonequilibrium theory of the multi-
mode Dicke model with quenched disorder and Markovian
dissipation and provided a comprehensive characterization
of the resulting phases in terms of standard experimental
observables. The main theoretical findings relate to the inter-
play of disorder and dissipation. We establish the robustness
of a disorder induced glass in the presence of Markovian
dissipation. This concerns, for example, the presence of an
Edwards-Anderson order parameter and the algebraic decay
of correlation functions in the entire glass phase. Central
quantitative aspects, such as the decay exponents of the
correlation functions, are strongly affected by the presence
of dissipation. Disorder leads to enhanced equilibration of
the atomic and photonic subsystems for both the spectral
(response) and their statistical properties. The spin-glass
physics of the atoms is mirrored onto the photonic degrees
of freedom. We presented direct experimental signatures for
the atomic and photonic dynamics that allow unambiguous
characterization of the various SR and glassy phases.

Several directions for future work emerge from these
results. In particular, the realization of disorder may not be
governed by an ideal single Gaussian probability distribution
in experimental realizations of multimode Dicke models. This
may concern, for example, effects relating to the finite number
of cavity modes (M) or effective two-level atoms (N ). 1/N

corrections contain information on the critical behavior close
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to the conventional Dicke transition [29,32], with similar
features expected for the glass transition. While we expect
the main glassy features to be robust to such finite-size effects,
it would be interesting to study a concrete cavity geometry
with specific information of the cavity mode functions.

Furthermore, with our focus on the stationary state we did
not touch upon the interesting questions of glassy dynamics
[37,65] in this work (for thermalization dynamics of the
single-mode Dicke model, see [71]). An interesting problem is
a quantum quench of the open, disordered system. In particular,
the nonuniversal short-time and transient regimes should
contain more system specific and nonequilibrium information.
In the long-time limit, the nature of aging and dependencies
on the aging protocol remains to be explored.
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APPENDIX A: PHOTON FIELDS FOR
SUPERRADIANT PHASE

In order to describe a system where the particle number
is not conserved, as is the case for the photons in the Dicke
model, we introduce the spinor field

Aα,j (t) =
(

aα,j (t)

a∗
α,j (t)

)
, (A1)

containing the bosonic fields aα,j (t),a∗
α,j (t) for a quantum state

j and with index α = q,c. The corresponding adjoint field is

A
†
α,j (t) = (a∗

α,j (t),aα,j (t)). (A2)

The action for a quadratic problem is (for simplicy we consider
only a single quantum state)

S =
∫

t,t ′

(
A†

c(t),A†
q(t)

)
D4×4(t,t ′)

(
Ac(t ′)
Aq(t ′)

)
, (A3)

where

D4×4(t,t ′) =
(

0 DA
2×2(t,t ′)

DR
2×2(t,t ′) DK

2×2(t,t ′)

)
= (G4×4)−1 (t,t ′)

(A4)

is the inverse Green’s function. The Keldysh correlation and
retarded Green’s function are also 2 × 2 matrices, which can

be expressed in terms of operator averages according to

GR
2×2(t,t ′) = (

DR
2×2

)−1
(t,t ′)

= −iθ (t − t ′)

〈(
[a(t),a†(t ′)] [a(t),a(t ′)]

[a†(t),a†(t ′)] [a†(t),a(t ′)]

)〉

(A5)

and

GK
2×2(t,t ′) = − (

GR
2×2 ◦ DK

2×2 ◦ GA
2×2

)
(t,t ′)

= −i

〈(
{a(t),a†(t ′)} {a(t),a(t ′)}
{a†(t),a†(t ′)} {a†(t),a(t ′)}

)〉
.

(A6)

In Eq. (A6), the ◦ operation represents convolution with respect
to time.

For the Dicke model with strong atom-photon coupling, it
is reasonable to transform to the x-p representation in terms
of real fields

x(t) = 1√
2

[a∗(t) + a(t)], p(t) = 1√
2i

[a∗(t) − a(t)]. (A7)

This is done via the unitary transformation for the fields,

(x(t),p(t)) = (a†(t),a(t))
1√
2

(
1 −i

1 i

)
︸ ︷︷ ︸

=V

, (A8)

and the Green’s function,

GR
x−p(t,t ′′) = V †GR

2×2(t,t ′)V =
(

GR
xx(t,t ′) GR

xp(t,t ′)

GR
px(t,t ′) GR

pp(t,t ′)

)
.

(A9)

The same can be done for the advanced and Keldysh
Green’s functions, leading to the expressions for response and
correlation functions as discussed in the main text.

APPENDIX B: MARKOVIAN DISSIPATION VS
QUENCHED DISORDER

As anticipated in the main text, the quenched bath, resulting
from the coupling to a static distribution, is fundamentally
different from the Markovian bath, represented by the fast
electromagnetic field outside the cavity. While the dynamics
of the quenched bath is frozen on the time scales of the system,
the dynamics of the Markovian bath happens on much faster
time scales than those of the system. As we will see, both
types of bath inherently lead to nonequilibrium dynamics
of the system since the system-bath equilibration time be-
comes infinite. For both cases this implies a nonequilibrium
fluctuation-dissipation-relation (FDR), connecting response
and correlations via a nonthermal distribution function.

1. Nonequilibrium fluctuation dissipation relation

Correlation and response properties are not fully indepen-
dent of each other but connected via fluctuation-dissipation
relations, which we briefly introduce in this part. In a system
with multiple degrees of freedom, the response properties
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are encoded in the retarded (advanced) Green’s function
GR(A)(t,t ′), which is defined as

GR
ij (t,t ′) = −iθ (t − t ′)〈[ai(t),a

†
j (t ′)]〉, (B1)

with the commutator [·,·], the system creation and annihilation
operators a

†
i ,ai and GR(t,t ′) = [GA(t ′,t)]†. The correlation

function, on the other hand,

Cij (t,t ′) = 〈{ai(t),a
†
j (t ′)}〉 = iGK

ij (t,t ′), (B2)

is defined via the anticommutator {·,·} and defines the Keldysh
Green’s function GK (t,t ′) [62,63,70].

The fluctuation dissipation relation states

GK (ω) = GR(ω)F (ω) − F (ω)GA(ω) (B3)

and relates the response and correlations of the system via
the distribution function F (ω). In thermal equilibrium, the
distribution function is fully determined by the quantum
statistics of the particles and the temperature T according to

Fij (ω) = δij [2nB (ω) + 1] , (B4)

with the Bose distribution function nB . As a result, in
equilibrium, it is sufficient to determine either response or
correlation properties in order to gain information on each of
these.

2. Effective system-only action

In this part, we present a derivation of a system-only action
after elimination of the bath variables via Gaussian integration.
Depending on the nature of the bath, different distribution
functions will be imprinted to the system. We start with the
general action of the bath, which we consider to be well
described by a quadratic action and in the (±) basis,

SB =
∑

μ

∫
t,t ′

(ζ †
+μ(t),ζ †

−μ(t))

(
G++

μ G+−
μ

G−+
μ G−−

μ

)−1

× (t,t ′)

(
ζ+μ(t ′)

ζ−μ(t ′)

)
, (B5)

with the bath variables ζμ and the bath mode index μ, which
will be chosen as a continuous index below. The Green’s
functions for the uncoupled bath variables are assumed to be
in equilibrium and read

G+−
μ (t,t ′) ≡ G<

μ (t,t ′) = −in(ωμ) e−iωμ(t−t ′), (B6)

G−+
μ (t,t ′) ≡ G>

μ (t,t ′) = −i[n(ωμ) + 1] e−iωμ(t−t ′), (B7)

G++
μ (t,t ′) ≡ GT

μ(t,t ′) = θ (t − t ′)G>
μ + θ (t ′ − t)G<

μ, (B8)

G−−
μ (t,t ′) ≡ GT̃

μ(t,t ′) = θ (t − t ′)G<
μ + θ (t ′ − t)G>

μ, (B9)

with the bath frequencies ωμ and the familiar Green’s functions
G-lesser, G-greater, the time-ordered and the anti-time-
ordered Green’s function. The linear coupling between system
and bath is

SI =
∑

μ

√
γμ

∫
t

(a†
+(t),a†

−(t))

(
1 0

0 −1

)(
ζ+μ(t)

ζ−μ(t)

)
+ H.c.,

(B10)

where a† and a are the system’s creation and annihilation
operators, respectively. For simplicity we consider only a
single quantum state of the system, but a generalization to
many states is straightforward. The partition function is of the
general form

Z =
∫

D[a,a†,ζμ,ζ †
μ]ei(SS+SI+SB)

=
∫

D[a,a†]eiSS

{∫
D[ζμ,ζ †

μ]ei(SI+SB)

}
︸ ︷︷ ︸

eiSeff

, (B11)

where SS is the bare action of the system. Now we integrate
out the bath via completion of the square. The contribution
iSeff,μ of the μth mode to the effective action reads

Seff,μ[a,a†] = γμ

∫
t,t ′

(a†
+(t), − a

†
−(t))

×
(

G++
μ (t,t ′) G−+

μ (t,t ′)

G+−
μ (t,t ′) G−−

μ (t,t ′)

)(
a+(t ′)

−a−(t ′)

)
.

(B12)

The signs for the operators on the − contour come from the
backward integration in time. Thus, the mixed terms will
occur with an overall − sign, while the ++ and −− terms
come with an overall +. Summing over all the modes μ we
obtain the effective action of the bath for the field variables of
the subsystem. We now take the continuum limit of densely
lying bath modes, centered around some central frequency
ω0 and with bandwidth ϑ . That is, we substitute the sum
over the modes with an integral in the energy � weighted
by a (phenomenologically introduced) density of states (DOS)
ν(�) of the bath∑

μ

γμ �
∫ ω0+ϑ

ω0−ϑ

d� γ (�)ν(�) (B13)

and obtain

Seff[a,a†] = −
∫ ω0+ϑ

ω0−ϑ

d�γ (�)ν(�)
∫

t,τ

(a†
+(t), − a

†
−(t))

×
(

G++
� (τ ) G+−

� (τ )

G−+
� (τ ) G−−

� (τ )

)(
a+(t − τ )

−a−(t − τ )

)
,

(B14)

where in addition we have used the translation invariance of
the bath Green’s function, G

αβ

� (t,t ′) = G
αβ

� (t − t ′) to suitably
shift the integration variables. Equation (B14) is a general
expression for an effective system action resulting from a
coupling of the system to a bath of harmonic oscillators with
a coupling that is linear in the bath operators. In the case of
a strong separation of time scales, the effective action can be
further simplified. Here we consider two extreme and opposite
limiting cases, namely a Markov and a quenched disorder bath.

3. The Markov approximation

The Markov approximation is appropriate when there exists
a rotating frame in which the evolution of the system is slow
compared to the scales of the bath, i.e., ωsys 	 ω0,ϑ , such
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that the system is considered as being static on the typical time
scale of the bath. This leads to a temporally local form of the
resulting effective action. As an example, we derive the (±)
part of the effective action,

S+−
eff = −

∫
dt a

†
−(t)

∫
dτ

∫ ω0+ϑ

ω0−ϑ

d�

2π
γ (�)

× ν(�)G+−
� (τ )a+(t − τ )

Markov≈ −γ ν

∫
dt a

†
−(t)

[∫
dτ

∫ ω0+ϑ

ω0−ϑ

d�

2π
G+−

� (τ )

]
× a+(t−δ)

Eq. (B6)= iγ ν

∫
dt a

†
−(t)

[∫
dτ

∫ ω0+ϑ

ω0−ϑ

d�

2π
n(�)e−i(�−ω0)τ

]
× a+(t−δ)

≈ 2iκn̄

∫
dt a

†
−(t)a+(t−δ). (B15)

In the second line, we made use of the Markov approximation;
i.e., the time evolution of the system is much slower than the
one of the bath in the rotating frame, and the coupling and
DOS are constant over the relevant frequency interval. In the
third line, we replaced the Green’s function by its definition
(in the rotating frame). Finally, in the last line, we introduced
the particle number n̄ = n̄(ω0) at the rotating frequency and
the effective coupling 2κ = γ ν. Performing these steps for all
the four contributions to the action in the (±) basis leads to the
action

Seff[a,a†] =
∫

dt (a†
+(t),a†

−(t))�Mar

(
a+(t)
a−(t)

)
, (B16)

which is local in time, containing the Markovian dissipative
self-energies

�Mar = iκ

(
2n̄ + 1 −2(n̄ + 1)
−2n̄ 2n̄ + 1

)
. (B17)

Transforming this self-energy to the Keldysh representation,
we finally obtain

�Mar = iκ

(
0 1

−1 4n̄ + 2

)
. (B18)

The additional contribution to the distribution function FMar(ω)
for the Markovian case is obtained from the FDR for the self-
energies

�K (ω) = F (ω)[�R(ω) − �A(ω)]. (B19)

For the case when the system couples only to the Markovian
bath or to an additional thermal bath, these contributions are
infinitesimal and only those from the Markovian bath have to
be taken into account, yielding

iκ(4n̄ + 2) = F (ω)2iκ, (B20)

i.e., the distribution function

F (ω) = 2n̄ + 1. (B21)

In this expression, the frequency-dependent particle distribu-
tion n(ω) has been replaced by the relevant particle number

n(ω0) of the bath. The interpretation of this is that the dynamics
in the bath are so fast compared to the system that the for the
full frequency regime, the system couples only to the slowest
bath modes (in the rotating frame), located at ω = ω0. This
makes it impossible for the system to equilibrate with the bath
and it can therefore not be described by a thermal distribution,
i.e., stays out of equilibrium.

4. The quenched bath

The quenched bath is located in the opposite limit of
the Markovian bath; i.e., it constitutes of a system bath
coupling, such that there exists a rotating frame for which the
system dynamics is much faster than the bath dynamics, i.e.,
ω0,ϑ 	 ωsys. The corresponding approximation is to assume
that the bath is static on the relevant time scale of the system
and the resulting effective action for the system is infinite
range in time. In this case, the contribution to the action for
the (+−)-component reads

S+−
eff = −

∫
dt a

†
−(t)

∫
dτ

∫ ω0+ϑ

ω0−ϑ

d�

2π
γ (�)ν(�)

×G+−
� (τ )a+(t − τ )

quenched≈ iγ ν

∫
dt

∫
dτ a

†
−(t)

[∫ ω0+ϑ

ω0−ϑ

d�

2π
n(�)

]
× a+(t − τ )

= 2iκN̄

∫
dω

2π
a
†
−(ω) δ(ω) a+(ω). (B22)

In the second line, we inserted the definition of the Green’s
function and made the approximation of a slowly varying bath
as well as a constant DOS and coupling, ν,γ . In the third line,
we replaced γ ν = 2κ and inserted the average particle number
of the bath N̄ .

Repeating these steps for all contributions to the action in
the (±) basis and subsequently transforming to the Keldysh
basis, we have the self-energy

�Q(ω) = iκδ(ω)

(
0 1

−1 4N̄ + 2

)
. (B23)

This contribution is structurally different from the one from
integrating out the Markovian bath, since it only acts at ω = 0.
As a result, the distribution function for the system is changed
only for ω = 0 compared to the uncoupled, bare system.
Therefore,

F (ω) =
{

2N̄ + 1 if ω = 0,

Fbare(ω) if ω = 0,
(B24)

where Fbare is the distribution of the bare system. In contrast
to the Markovian case, where we obtain a constant distribution
for all frequencies and therefore higher system frequencies are
strongly pronounced, the quenched bath shifts the occupation
distribution to the very slowest modes of the system, therefore
implying very slow dynamics on the system. This is reflected
in the modified FDR and the appearance of a glassy phase, as
discussed in Sec. IV B.

The picture obtained from these extreme cases of possible
system bath couplings is quite transparent. For an equilibrium
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system, one assumes that the bath is such that for any possible
frequency of the system, there exists a continuum of modes in
the bath, such that thermalization of the system will happen
on the whole frequency interval. In contrast, when the bath
modes are located at much higher frequencies than the system,
all the system modes interact the strongest with the slowest
bath modes, leading to a distribution function as depicted in
Eq. (B21) and avoiding direct thermalization. On the other
hand, for a bath that evolves on much slower time scales
than the system, the picture is reversed, and only the slowest
modes of the system interact with all the bath modes in an
equivalent way. For the extreme case of a static bath, all the bath
modes interact with the system’s zero-frequency mode, and
the distribution function becomes the one in Eq. (B24). This is
again a nonequilibrium distribution, such that the system does
not directly thermalize.

APPENDIX C: LINEAR RESPONSE IN THE
KELDYSH FORMALISM

A common experimental procedure to probe a physical
system is to apply a small external perturbation and measure
the system’s corresponding response. If the perturbation is
sufficiently weak, the measured response will be linear in the
generalized perturbing force. Here we review this construction
in the Keldysh formalism in order to provide the background
for the connection to the input-output formalism of quantum
optics made in the text.

We consider a setup, where the Hermitian operator Ô = Ô†

is measured after a perturbation of the form

Hper(t) = F (t)Ô (C1)

has been switched on at t = 0. Here, the (unknown) real valued
field F (t) ∝ �(t) is the corresponding generalized force.

The expectation value

〈Ô〉(t) = 1

Z
Tr(ρ̂(t) Ô) (C2)

is evaluated by introducing a source field h(t), such that

〈Ô〉(t) = 1

Z

δZ(h)

δh(t)

∣∣∣∣
h=0

, (C3)

where

Z(h) = Tr(e−βH+∫
dt h(t)Ô(t)). (C4)

Expressing Z in a real-time Keldysh framework, we have

Z(h) =
∫

D[ψ∗,ψ]eiS0[ψ∗,ψ] eiδS[h,ψ∗,ψ], (C5)

where S0 is the unperturbed action and [ψ,ψ∗] are the complex
fields representing the creation and annihilation operators of
the system (in the ± basis). The term

δS[h,ψ∗,ψ] =
∫

dt
(
h+(t)O+(t)[ψ∗

+,ψ+]

− h−(t)O−(t)[ψ∗
−,ψ−]

)
(C6)

contains the source fields h± coupling to O± which polynomi-
als in ψ∗,ψ . The expectation value (C2) transforms according
to

〈Ô(t)〉 = 〈O+(t)〉 = 〈O−(t)〉 = 1
2 〈O+(t) + O−(t)〉, (C7)

whereas the averages on the right always mean averages
with respect to the functional integral. In terms of functional
derivatives of the partition function, we find

〈Ô(t)〉 = − i

2

(
δ

δh+(t)
− δ

δh−(t)

)
Z(h)

∣∣∣∣
h=0

= − i√
2

δ

δhq(t)
Z(h)

∣∣∣∣
h=0

. (C8)

The second equality results from a rotation to the RAK
representation and determines the time-dependent expectation
value of Ô(t) for a system described by the action S0. In order
to incorporate the perturbation (C1), we add the perturbation
to the bare action of Eq. (C5),

S0 −→ S0 +
∫

dt [F+(t)O+(t) − F−(t)O−(t)] . (C9)

Now we can expand the expectation value of Ô to various
orders in the force. The zeroth order simply is the expectation
value in the absence of the perturbation:

〈Ô(t)〉(0) = − i√
2

δ

δhq(t)
Z(h,F )

∣∣∣∣
F=h=0

. (C10)

The linear order term is then obtained via

〈Ô(t)〉(1) =
∫ t

−∞
dt ′ F+(t ′)

[
δ

δF+(t ′)
〈Ô(t)〉

]
F=0

+F−(t ′)
[

δ

δF−(t ′)
〈Ô(t)〉

]
F=0

, (C11)

which after a translation into the RAK representation reads

〈Ô(t)〉(1) = 1

2

∫ t

−∞
dt ′

{
F+(t ′)

[
δ

δF+(t ′)
〈O+(t) + O−(t)〉

]
F=0

+ F−(t ′)
[

δ

δF−(t ′)
〈O+(t) + O−(t)〉

]
F=0

}

= 1

2

∫
dt ′ F (t ′)

{[
δ

δF+(t ′)
+ δ

δF−(t ′)

]
〈O+(t) + O−(t)〉

}
F=0

= − i

2

∫
dt ′F (t ′)

[
δ

δF+(t ′)
+ δ

δF−(t ′)

] [
δ

δh+(t)
− δ

δh−(t)

]
Z(h,F )

∣∣∣∣
h=F=0

= −i

∫
dt ′F (t ′)

δ2

δFc(t ′)δhq(t)
Z(h,F )

∣∣∣∣
F=h=0

= −
∫

dt ′F (t ′)GR
OO(t,t ′), (C12)
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where we made use of (at the point where we extract physical
information) F+(t) = F−(t) ≡ F (t), and furthermore that t ′ �
t , such that the last equality indeed yields the retarded Green’s
function for the operator O. The integral in (C12) runs from
minus infinity to plus infinity, whereas the retarded Green’s
function defines the upper bound as t and the force F (t ′)
sets the lower bound as t0 since it vanishes for t < t0 when
the perturbation is switched on at t = t0. Since the integral
formally runs from minus infinity to plus infinity, we can
switch to frequency space, where for the time-translational
system (stationary state) we find

〈Ô〉(1)(ω) = −F (ω)GR
OO(ω). (C13)

1. Example: Laser-field-induced polarization of cavity atoms

The polarization of an atomic two-level system can be
expressed as

P (t) = 〈μRσx(t) + μIσ
y(t)〉, (C14)

or after a rotation around the z axis as

P (t) = μ〈σx(t)〉. (C15)

We are interested in the response of the polarization to a
perturbation of the system by a coherent monochromatic light
field. Since the coupling of the light field is proportional to the
polarization, the corresponding Hamiltonian reads

H (t) = �(t)σx, (C16)

where �(t) = θ (t)μE(t) is the generalized force and E(t) is
the electric field. The corresponding action for this problem is
then

S = S0 + δS[h,�,φ]

= S0 +
∫

dt hq(t)φc(t) + hc(t)φq(t)

+�q(t)φc(t) + �c(t)φq(t), (C17)

where we have replaced σx with the real fields φ as in
Sec. IV A. Applying (C12), we then find

P (1)(t) = −i μ

∫
dt ′�(t ′)

δ2

δ�c(t ′)δhq(t)
Z(h,�)

∣∣∣∣
�=h=0

= −μ

∫
dt ′�(t ′)QR(t − t ′), (C18)

where QR(t − t ′) is the retarded atomic propagator as in the
previous sections. Now we again switch to frequency space
and use the definition of �, such that we find

P (1)(ω) = μ2E(ω)QR(ω), (C19)

where we have absorbed the θ function into the electric field.
This equation identifies the retarded atomic Green’s function
that we used in the previous section with the linear atomic
susceptibility χ (1)(ω), which is commonly used in a quantum
optics context.

APPENDIX D: DISTRIBUTION FUNCTION OF THE
PHOTON x COMPONENT

In this section, we derive the distribution function for the
photonic x component and show that it is identical to the atomic

distribution function, proving that the atoms equilibrate with
the photon x component.

The Keldysh action describing the bare photon degrees
of freedom is given by Eq. (4.3) and we express this action
directly in the Nambu basis, using the vector

A4(ω) =

⎛
⎜⎜⎜⎝

ac(ω)

a∗
c (−ω)

aq(ω)

a∗
q (−ω)

⎞
⎟⎟⎟⎠ , (D1)

the photonic action reads

Sph =
∫

ω

A
†
4(ω)D4×4(ω)A4(ω), (D2)

with the inverse Green’s function in Nambu representation,

D4×4(ω)

=
(

02×2 (ω + iκ) σ z + ω012×2

(ω − iκ) σ z + ω012×2 2iκ12×2

)
.

(D3)

The action (D2) can also be expressed in terms of real fields
by performing the unitary transformation(

xα(ω)
pα(ω)

)
= 1√

2

(
1 1
i −i

)(
aα(ω)
a∗

α(−ω)

)
, (D4)

with α = c,q. After this transformation, we express the action
in terms of the real field

V4(ω) =

⎛
⎜⎝

xc(ω)
pc(ω)
xq(ω)
pq(ω)

⎞
⎟⎠ , (D5)

such that

Sph =
∫

ω

V T
4 (−ω)Dx−p(ω)V4(ω), (D6)

with the inverse Green’s function

Dx−p(ω) =

⎛
⎜⎝

0 0 −ω0 κ − iω

0 0 −κ + iω −ω0

−ω0 −κ − iω 2iκ 0
κ + iω −ω0 0 2iκ

⎞
⎟⎠ . (D7)

The action (D6) is quadratic in the fields xα and pα and we can
eliminate the p fields from the action via Gaussian integration.
The resulting action is

Sx = 1

ω0

∫
ω

XT (ω)Dx(ω)X(ω), (D8)

with the field

X(ω) =
(

xc(ω)
xq(ω)

)
(D9)

and the inverse Green’s function

Dx(ω) =
(

0 (ω + iκ)2 − ω2
0

(ω − iκ)2 − ω2
0

2iκ(κ2+ω2+ω2
0)

ω0

)
. (D10)

The distribution function Fx(ω) for the x field is obtained via
the fluctuation-dissipation relation

DK
x (ω) = Fx(ω)

[
DR

x (ω) − DA
x (ω)

]
, (D11)
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yielding

Fx(ω) = ω2 + κ2 + ω2
0

2ω0ω
. (D12)

This is indeed identical to the atomic distribution function that
we have computed in Sec. V C, which proves that the atoms
equilibrate with the photon x field.
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[5] S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Phys. Rev. Lett.
107, 153001 (2011).

[6] T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, Nature (London)
488, 57 (2012).

[7] T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, and
H. Haeffner, New J. Phys. 13, 075012 (2011).

[8] P. Strack and V. Vitelli, arXiv:1302.4453 (2013).
[9] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Phys. Rev.

Lett. 107, 277201 (2011).
[10] P. Strack and S. Sachdev, Phys. Rev. Lett. 107, 277202 (2011).
[11] M. Müller, P. Strack, and S. Sachdev, Phys. Rev. A 86, 023604

(2012).
[12] B. Olmos, I. Lesanovsky, and J. P. Garrahan, Phys. Rev. Lett.

109, 020403 (2012).
[13] D. Poletti, J.-S. Bernier, A. Georges, and C. Kollath,

arXiv:1212.4254 (2012).
[14] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
[15] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Lett.

55, 1530 (1985).
[16] V. Bapst, L. Foini, F. Krzakala, G. Semerjian, and F. Zamponi,

Phys. Rep. 523, 127 (2013).
[17] E. Miranda and V. Dobrosavljević, Rep. Prog. Phys. 68, 2337
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