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I perform lattice Monte Carlo studies of universal four-component fermion systems in one spatial dimension.
Continuum few-body observables (i.e., ground-state energies and integrated contact densities) are determined
for both unpolarized and polarized systems of up to eight fermions confined to a harmonic trap. Estimates of
the continuum energies for four and five trapped fermions show agreement with exact analytic calculations to
within approximately one percent statistical uncertainties. Continuum many-body observables are determined
for unpolarized systems of up to 88 fermions confined to a finite box, and 56 fermions confined to a harmonic
trap. Results are reported for universal quantities such as the Bertsch parameter, defined as the energy of the
untrapped many-body system in units of the corresponding free-gas energy, and its subleading correction at large
but finite scattering length. Two independent estimates of these quantities are obtained from thermodynamic limit
extrapolations of continuum extrapolated observables. A third estimate of the Bertsch parameter is obtained by
combining estimates of the untrapped and trapped integrated contact densities with additional theoretical input
from a calculation based on Thomas-Fermi theory. All estimates of the Bertsch parameter and its subleading
correction are found to be consistent to within approximately one percent statistical uncertainties. Finally, the
continuum restoration of virial theorems is verified for both few- and many-body systems confined to a trap.
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I. INTRODUCTION

Universal Fermi gases have garnered widespread attention
following their recent realization in ultracold atom experi-
ments. Perhaps the most physically interesting example of such
a system is the unitary Fermi gas in three spatial dimensions.
This system comprises a dilute mixture of spin-1/2 (i.e., two-
component) fermions interacting via a short-range interparticle
potential tuned to produce an infinite two-particle scattering
length. It is universal in the sense that the physical properties of
the system are independent of the short-distance character of
the interaction. As such, unitary fermions are not only relevant
for describing ultracold atoms, but also a variety of physical
systems considered in other disciplines as well.

Early on, the unitary Fermi gas was proposed as an idealized
model for describing dilute neutron matter in neutron stars
[1]. The system had later been realized in ultracold atom
experiments by exploiting properties of a Feshbach resonance
[2–6]. More recently, unitary fermions have gained theoretical
interest as an example of a nonrelativistic conformal field
theory. A greater experimental and theoretical understanding
of this strongly interacting and nonperturbative system has
revealed that despite their simplicity, unitary fermions possess
many rich and rather surprising physical properties.

The unitary Fermi gas is simple in the sense that it is
characterized by a single physical scale, the density ρ. From
purely dimensional considerations, the energy density of the
interacting system must be given by

E(ρ) = ξE0(ρ), (1)

where E0(ρ) is the energy density for free fermions, and the
dimensionless constant of proportionality ξ is a nonperturba-
tive universal quantity known as the Bertsch parameter [7].
A calculation based on density-functional theory [8] suggests
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that for the same system confined to a harmonic trap, the energy
is given by

Eosc(Q) =
√

ξEosc
0 (Q), (2)

where Eosc
0 (Q) is the energy of the corresponding noninter-

acting system in the limit of large total fermion number Q.
The parameter ξ appearing as the square of the constant of
proportionality in Eq. (2) is the same as that in Eq. (1). This
nontrivial relation, including subleading corrections due to a
finite fermion number, was independently confirmed from a
calculation based on a general coordinate invariant effective
field theory description of the system [9,10].

During the past decade, substantial effort has been devoted
toward determining properties of the unitary Fermi gas
using a variety of analytical, numerical and experimental
means (see, e.g., [11] and references therein for a histor-
ical summary of Bertsch parameter determinations made
by various methods). Although analytical calculations have
become quite sophisticated, they generically possess unquan-
tifiable systematic errors due to the nonperturbative nature
of the problem. Numerical simulations, on the other hand,
while in principle provide an exact avenue toward nonpertur-
bative results, are often hampered by signal/noise and sign
problems. Presently the domain of utility for such simulations
have been largely confined to the SU(2) symmetric point,
where population densities and masses associated with each
spin degree of freedom are equal, and its vicinity. Despite
these limitations, however, numerical simulations have been
used quite successfully to obtain reliable quantitative results
where applicable. For example, the current best estimate for
the Bertsch parameter from lattice Monte Carlo studies of an
untrapped Fermi gas have yielded ξ = 0.372(5) [12], whereas
the most accurately determined value for the Bertsch parameter
based on experiment is ξ = 0.376(4) [13].

More recently, interest has turned toward Fermi gases in
lower and mixed dimensions, which might in principle be
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created in ultracold atom experiments using strong optical lat-
tices. It had been argued that such systems, when finely tuned,
can exhibit scale invariance and have universal properties
very much analogous to the conventional three-dimensional
unitary Fermi gas [14]. One particularly interesting example
in one spatial dimension is a dilute four-component gas of
nonrelativistic fermions interacting via an attractive short-
range four-particle potential. In the vicinity of a four-body
resonance, Nishida and Son had demonstrated an exact
mapping between the four-body problem for this system
and the three-dimensional two-body problem for spin-1/2
fermions in the unitary regime [15]. It was argued that in
this regime, the long-distance properties of the four-particle
interaction can be characterized by a single length scale (a).
This scale may be regarded as a one-dimensional analog
of the conventional scattering length, which characterizes
a short-range two-particle interaction in three dimensions.
At resonance, the scattering length diverges and the one-
dimensional system becomes universal in the same sense as
its three-dimensional counterpart: properties of the system
become independent of the details of the interaction. Because
the scale and conformal invariance of the one-dimensional
system is realized at a four-body resonance, its constituents
are often referred to as “unitary fermions” in analogy with the
corresponding three-dimensional system.

Although the mapping does not extend to the many-body
problem, it was nevertheless demonstrated in Ref. [15] that
the zero-temperature few- and many-body properties of the
one-dimensional Fermi gas are in many ways qualitatively
identical to those of the three-dimensional spin-1/2 Fermi gas.
For example, in the strong coupling limit, corresponding to a
small positive scattering length, the one-dimensional system
becomes a dilute gas of tightly bound tetramers, and may
be viewed as a one-dimensional analog of a Bose-Einstein
condensate (BEC) in three dimensions. In the weak coupling
limit, corresponding to a small negative scattering length, the
system exhibits properties that are strikingly similar to those
of the BCS regime in three dimensions (e.g., a gap spectrum
that is exponentially small in the inverse-scattering length).
These two regimes are continuously connected by varying the
scattering length, and in the limit of infinite scattering length,
the one-dimensional system exhibits properties similar to those
of the BEC-BCS crossover.

In the unitary limit, the one-dimensional Fermi gas is
characterized by a single scale, the density of the system.
By dimensional analysis, it follows that the energy density of
the untrapped system must obey Eq. (1), where the free gas
energy density is given by

E0(ρ) = π2ρ3

96m
, (3)

and the constant of proportionality ξ is the one-dimensional
analog of the three-dimensional Bertsch parameter. Similarly,
a calculation based on Thomas-Fermi theory along the lines
of [8] shows that the one-dimensional Fermi gas confined to a
harmonic trap obeys Eq. (2) at unitarity, where

Eosc
0 (Q) = 1

8Q2ω, (4)

and ω is the characteristic frequency of the harmonic potential1

(see Appendix for details). The Bertsch parameter associated
with the four-component Fermi gas need not be the same
as that of the two-component Fermi gas, and at present
there are no known theoretical arguments that establish that
they are. Numerical evidence reported in a companion paper,
however, suggests that the Bertsch parameter for these two
systems are in fact equal to within approximately one percent
statistical uncertainties [16]. The results hint at a possible
duality between the one- and three-dimensional Fermi gases
extending beyond the few-body problem, and in a search for
additional clues provides a partial motivation for further study
of the one-dimensional system.

At finite scattering length the energy density of the
untrapped one-dimensional unitary Fermi gas, normalized
by the the free-gas energy density, can be described by a
universal Bertsch function, �(y), which depends solely on
the dimensionless quantity y = (kF a)−1, where kF = πρ/4 is
the Fermi momentum for free fermions. This function was
shown to behave as [15]

�(y) =

⎧⎪⎨
⎪⎩

1 + 6
π2y

+ · · · y � −1

ξ − ζy + · · · |y| � 1

− 3
4y2 + · · · y � 1

, (5)

where the Bertsch parameter ξ was previously discussed,
and the slope ζ of � at unitarity is a second unknown
nonperturbative constant. The slope of the Bertsch function
in the unitary limit can be expressed as

ζ = 3

2π

C
ρkF

, (6)

where the quantity

C ≡ −(4πm)
dE

da−1

∣∣∣∣
a=∞

(7)

is known as the contact density, evaluated in the unitary limit.
The contact density is a well-defined physical quantity for
both one- and three-dimensional theories (although they are
not necessarily equal), and plays a fundamental role in various
universal (Tan) relations [17–21]. Furthermore, it may be
defined for both few- and many-body systems, at zero- and
finite-temperature, and even away from unitarity.

Other common properties that unitary fermions in one
and three dimensions share follow from the fact that the
Hamiltonians for both systems are invariant under symmetry
transformations generated by the Schrödinger algebra [22,23].
The theoretical implications of these symmetries have been
explored in great detail [24,25], and include:

(i) an operator-state correspondence, which relates the
scaling dimensions of primary operators in free space to the
energy levels (in units of the trap frequency) of the system
confined to a harmonic trap;

(ii) virial theorems for trapped systems, which relate the
expectation value of the potential energy operator to the
expectation value of the untrapped Hamiltonian (as well as
their powers);

1Throughout I work in units where h̄ = 1.
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(iii) and a tower of states in the trapped system which are
separated by 2ω (i.e., breathing modes).

These properties are all generic, holding for both the few-
and many-body systems, and may be explored and verified
numerically via Monte Carlo simulations.

As will be discussed at greater length in Sec. III, one of the
main virtues of the one-dimensional system is that numerical
simulations are unhampered by the algorithmic limitations
that are often confronted in three dimensions. Most notably,
in contrast with the three-dimensional Fermi gas, numerical
studies of the one-dimensional system can be performed
completely free of sign and signal/noise problems irrespective
of any population- or mass imbalance. Given the striking
qualitative similarities between the one- and three-dimensional
unitary Fermi gases, one might hope to gain new qualitative
insights about the latter (particularly within the physical
regime that is currently inaccessible by numerical means) from
quantitative numerical studies of former. On a perhaps more
speculative note, should a rigorous connection such as a duality
between the theories eventually be established, one might
envision that a prescription exists for relating one-dimensional
observables (such as the Bertsch parameter and contact) to
three-dimensional observables. To that end, this work may be
viewed as an initial step toward cataloging the properties of
the one-dimensional system.

In this paper, I perform detailed numerical studies of few-
and many-body systems confined to a harmonic trap and
finite box, and present continuum limit extrapolated results
for their energies and integrated contact densities. In Sec. II, I
summarize the salient features of the lattice description used
for this study, discuss the role of parameters appearing in the
lattice theory, parameter tuning and the continuum limit. In
Sec. III, I introduce a world-line representation for the partition
function, and present explicit definitions for the physical
observables of interest, including the energy of the system
and integrated contact density (contact). In Sec. IV, I present
details pertaining to the algorithm used to simulate the theory,
the simulation parameters considered, and the generation of
statistical ensembles. In Sec. V, I discuss the analysis of data,
including details relating to how continuum, infinite volume,
and thermodynamic limit extrapolations were performed. In
this section, I present continuum extrapolated estimates for
few- and many-body observables confined to a trap and a
box, and for the case of many-body systems, also present
thermodynamic limit estimates for the energies and integrated
contact densities.

The many-body results for the Bertsch parameter presented
in Sec. V were originally reported in Ref. [16]. In this paper,
I go into greater detail regarding the analysis of those results,
as well as present new results for the Bertsch parameter and
integrated contact densities using ensembles of increased size.
From the latter estimates, I determine the universal parameter
ζ as well as make a third determination of the Bertsch
parameter using additional input from a density-functional
theory calculation. In Sec. VI, I summarize the results of
this study and provide some concluding remarks. Finally, in
Appendix, I derive the dependence of the trapped many-body
energy on the parameters ξ and ζ , which were introduced in
Eq. (5), and provide a confirmation of Eq. (2) in the unitary
limit.

II. THEORY

The starting point for this study is an effective field theory
for nonrelativistic fermions interacting via an attractive four-
body contact interaction. The continuum Lagrangian for the
theory, defined in two-dimensional Euclidean space-time with
temporal extent β and spatial extent L, is given by

L = ψ†
(

∂τ − ∇2

2m
+ v

)
ψ − g

4!
(ψ†ψ)4, (8)

where ψσ (τ,x) is a four-component Grassmann-valued spinor
with spin components labeled by the index σ = (a,b,c,d)
and space-time coordinates labeled by the coordinate pair
(τ,x), m is the fermion mass, and g is a coupling associated
with the four-body interaction. In addition, a spin-independent
external potential v(x) is introduced, and given by the two
choices

v(x) =
{

0 (untrapped)
κ
2 x2 (trapped),

(9)

where the parameter κ denotes the oscillator spring constant
associated with a trapping potential. I consider the theory at a
finite temperature T = β−1, employing antiperiodic boundary
conditions in the time direction, and consider a system with
open boundary conditions in the space direction. The boundary
condition choice for the latter is arbitrary, with different
choices leading to different finite volume artifacts which are
ultimately removed in the infinite volume limit.

The continuum theory is discretized on an Nτ × (2Ns + 1)
rectangular lattice with lattice sites labeled by the integer co-
ordinate pair n = (nτ ,ns) for nτ ∈ [0,Nτ ) and ns ∈ [−Ns,Ns].
In lieu of continuous fields, one considers fermion fields ψn

(and their Hermitian conjugates ψ
†
n) defined only at the sites of

the lattice. The continuum operators appearing in Eq. (8) are
then defined on the lattice using conventional finite difference
discretizations, following [26]

∂τψ + vψ → 1

bτ

(
ψn − e−bτ vnψn−eτ

)
,

−∇2ψ → 1

b2
s

(
2ψn − ψn+es

− ψn−es

)
, (10)

ψ†ψ → ψ†
nψn−eτ

,

where bτ (bs) is the temporal (spatial) lattice spacing with
τ ≡ bτnτ (x ≡ bsns), and eτ (es) is a unit vector pointing
in the time (space) direction. The lattice-discretized external
potential is given by vn = κ

2 (bsns)2. The physical spatial extent
of the lattice is given by L = bs(2Ns + 1), and the temporal
extent (i.e., inverse temperature) is given by β = bτNτ .

At infinite volume and at zero temperature, the ground-
state energy E of the untrapped four-body system can
be analytically related to the four-body coupling by exact
diagonalization of the four-body transfer matrix. On the lattice
and for positive couplings, the ground-state energy is given by
solutions to the integral equation:

1

2πĝ
=
∫ π

−π

(∏
σ

dp̂σ

2π

)
δ(
∑

σ p̂σ )

e−Ê
∏

σ ξp̂σ
(m̂) − 1

, (11)
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FIG. 1. (Color online) β function, βḡ , plotted as a function of the
rescaled bare coupling ḡ = g/gc.

where ξp̂(m̂) = 1 + �p̂/m̂, and �p̂ = 2 sin2(p̂/2), ĝ =
bτg/b3

s , Ê = bτE, p̂ = bsp, and m̂ = mb2
s /bτ .2 One may

define a four-particle scattering length a by evaluating the
scattering amplitude A(p) for four-particle scattering at
vanishing external momentum p, and requiring

A−1(0) = m

4πa
. (12)

The four-body coupling may then be related to the scattering
length by explicit evaluation of the inverse scattering amplitude
on the lattice. Doing so yields the relation

− m̂

4πâ
= 1

ĝ
− 1

ĝc

, (13)

where â = a/bs , and ĝc is obtained by evaluating Eq. (11) at
vanishing binding energy. Note that for an attractive coupling,
by combining Eqs. (11) and (13), one obtains to leading order
in 1/a (after restoring the lattice spacings) a four-particle
binding energy

−E = 1

2ma2
+ · · · . (14)

This result is very much analogous to that of two particles in
three dimensions at large positive scattering length, and up to
a constant of proportionality follows simply from dimensional
analysis. The unitary limit corresponds to tuning the scattering
length to infinity, or correspondingly, the coupling g to some
O(1) critical value gc.

Note that the physical mass m serves as a conversion factor
between units of length and time, and so one may take bτ ∝ b2

s

providing m̂ is held fixed. The β function

βḡ = − dḡ

d log bs

, (15)

can then be computed for the rescaled bare coupling ḡ ≡ g/gc

using Eq. (13), and by requiring that the physical mass and
scattering length be invariant under changes of the lattice
spacing [27]. The result is given by βḡ = −ḡ(ḡ − 1) and is
plotted in Fig. 1. A continuum theory may be defined at the
zeros of the β function; in this case, one finds that there are two
fixed points: a trivial one at vanishing coupling in the infrared

2Throughout this work, I designate dimensionful quantities mea-
sured in lattice units with a caret.

(IR) corresponding to the free theory, and a nontrivial fixed
point at g = gc in the ultraviolet (UV), corresponding to the
unitary limit. The system is conformal and scale invariant at
both fixed points, and as such, no physical scales are available
to characterize the system in those limits.

For this study, I am primarily interested in the nontrivial
fixed point located at g = gc. Working in the canonical
ensemble, every system of fixed total fermion number Q is
expected to have a zero-energy ground state and a vanishing
integrated contact density. This result simply follows from the
fact that there are no scales in the problem, and therefore all
dimensionful quantities must vanish. Throughout this work,
however, I consider systems of fixed fermion number confined
to either harmonic trap or a finite box. In such cases, scale
invariance is explicitly broken by a new length scale that enters
into the problem, namely, the characteristic size of the system.
To unify the discussion for trapped and untrapped fermions, I
define the characteristic size of the system by L0 = (mκ)−1/4

(trapped) and L0 = 4L/π (untrapped). From dimensional
analysis considerations, the energy of the system must be pro-
portional to the characteristic energy scale ω = 1/(mL2

0), and
the integrated contact density must be proportional 1/L0. This
is true for both the free and unitary Fermi gas, although, the
constants of proportionality will generally differ in each case.
Only in the former are the proportionality constants exactly
calculable, and in the latter case they must be determined
nonperturbatively. As discussed earlier, in the unitary limit,
the energy of the many-body trapped and untrapped systems
are given by Eqs. (1) and (2), respectively, where the constants
of proportionality involving ξ are undetermined. Using the
above definitions for L0, the free-gas energies are given by
Eq. (4) (trapped) and E0(Q) = Q3ω/6 (untrapped). At finite
volume and in the free theory limit, the integrated contact
density vanishes both for trapped and untrapped systems. In
the latter case for the many-body system, this may be seen
by simply differentiating Eq. (5) with respect to the inverse
scattering length and then taking the a → 0− limit.

In the lattice theory, additional scales appear besides L0,
which also violate the scale invariance of the continuum
theory, namely the temporal and spatial lattice spacings.
One may quantify the lattice discretization errors using the
dimensionless parameters εs = bs/L0 and ετ = bτω ≡ m̂ε2

s .
From the latter it is evident that one may independently take
the temporal continuum limit while holding the spatial lattice
spacing fixed by considering the limit m̂ → ∞. For this study,
I fix the anisotropy of the lattice (i.e., fixing m̂ throughout the
study) and then extrapolate the characteristic system size (in
lattice units) to infinity, or equivalently εs → 0. This procedure
allows one to take both spatial and temporal continuum limits
(and infinite volume limits) simultaneously. Further discussion
of the lattice discretization errors and their removal may be
found in Sec. V.

III. WORLD-LINE REPRESENTATION

The partition function for the lattice theory is defined as a
path integral over fermion fields, weighted by the exponential
of the lattice action (often with a chemical potential introduced
to bias the fermion species numbers toward a desired value).
Conventional approaches for numerical simulation of the
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partition function require first reducing the action to a fermion
bilinear via a Hubbard-Stratonovich transformation (i.e., the
introduction of nondynamical auxiliary fields) [28,29]. In the
case of the four-body interaction appearing in the lattice
expression for Eq. (8), this can most easily be achieved using
a discrete Z4 field coupled to ψ

†
nψn−eτ

(although there are
other equally valid methods as well). One then “integrates
out” the fermion degrees of freedom leaving a path integral
over bosonic auxiliary degrees of freedom weighted by the
exponential of a nonlocal action involving the logarithm
of a fermion determinant. The resulting effective action is
generically complex, rendering standard importance sampling
techniques which require a probabilistic interpretation for
the path integral measure inapplicable. Phase reweighting
and other techniques, while in principle may be applied to
circumvent the problem, are in most cases prohibitively costly
from the standpoint of computational resources and time due
to signal/noise, and other problems.

It was recently demonstrated that a nonrelativistic four-
component Fermi gas in one spatial dimension could be
simulated on a lattice free of sign problems by considering
alternative representations for the partition function [30]. For
this study, I use a path-integral representation, which was
inspired by the so-called hopping parameter expansion [31].
In this approach, one may express the partition function for the
lattice theory as a path integral over all possible self-avoiding
time-directed fermion world lines. The representation is free of
sign problems irrespective of population and mass imbalances,
making it ideally suited for numerical study of few- and
many-body four-component fermion systems. Here, I briefly
summarize the salient features of this formulation; for a more
in-depth discussion, see Ref. [30].

For this study, I consider the canonical partition function
Z(q) ≡ e−βF (q) for a four-component system comprising a
fixed number of fermions qσ for each species σ , and having
total fermion number given by Q = ∑

σ qa . In the world-line
representation, the canonical partition function is given by the
path integral

Z(q) =
∑

cσ ∈C∗(qσ )

⎡
⎣∏

σ

⎛
⎝ ∏

d∈D(cσ )

zL(d)(m̂)

⎞
⎠

×
(

1

2m̂

)Bs (cσ )

e−NτV(cσ )

]
(1 + ĝ)Bτ (∩σ cσ ), (16)

where

zn(m̂) = 1

2n+1
√

1 + 2/m̂

⎡
⎣(1 + 1

m̂
+
√

1 + 2

m̂

)n+1

−
(

1 + 1

m̂
−
√

1 + 2

m̂

)n+1
⎤
⎦ , (17)

and C∗(q) is the set of all possible self-avoiding loops directed
forward in time with a fixed winding number q. An example of
such a configuration for a single species is provided in Fig. 2.
For a given configuration c ∈ C∗(q), Bτ (c) represents the total

FIG. 2. (Color online) A possible configuration c ∈ C∗(2) for an
Nτ = 2Ns + 1 = 6 lattice, reproduced from Ref. [30]. The set of
11 shaded domains d represent D(c); seven of those domains have
L(d) = 1, three have L(d) = 2 and one has L(d) = 3.

number of timelike links associated with the configuration,3

and Bs(c) represents the number of spacelike links associated
with the configuration. D(c) represents the set of all maximal
spacelike linear domains d of length L(d) formed from the
unoccupied sites of c; in Fig. 2, such domains are indicated by
the shaded gray regions. Finally, the potential term in Eq. (16)
is given by

V(c) = 1

Nτ

∑
ñ∈c

v̂ñ− 1
2 eτ

, ñ = n + 1

2
eτ , (18)

where v̂n = bτ vn.
In this study, I focus on two physical quantities as a

function of the fermion population: the energy of the system,
E(q) ≡ limβ→∞ F (q), where F (q) is the free energy of the
system, and the (integrated) contact density discussed in Sec. I.
Although Monte Carlo simulations provide a powerful tool for
estimating observable quantities, the free energy of the system
itself is generally inaccessible due to the nature of algorithms
employed. As previously noted, however, for fermions in the
unitary regime, the only physical length scales in the problem
are the scattering length a and box size L0, up to discretization
errors. Furthermore, the mass parameter is the only quantity
available for converting length scales into energy scales. One
may exploit these observations to gain access to the energy
by noting that ground-state energy of the system must be
proportional to the inverse fermion mass, implying

E(q) = lim
β→∞

dF (q)

d log m
, (19)

up to finite lattice discretization errors.
The energy of the system may be determined using the

Feynman-Hellmann theorem, which may be expressed in the

3Note that in general Bτ (c) = Nτq for every c ∈ C∗(q).
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path-integral language as

dF (q)

d log m
= 1

β

〈
dS

d log m

〉
q

, (20)

where 〈· · ·〉q is an expectation value taken with respect to
a fixed-charge ensemble associated with Z(q). Note that the
full derivative with respect to log m can be written in terms
of partial derivatives with physical length scales held fixed.
Using the relation

d

d log m
= ∂

∂ log m
+
(

∂ log κ

∂ log m

)
L0

∂

∂ log κ

+
(

∂ log g

∂ log m

)
a

∂

∂ log g
, (21)

to differentiate the action in Eq. (20), one obtains three
contributions to the energy

E(q) = T (q) + V (q) + I (q), (22)

in the zero-temperature limit. These contributions may be
identified as the kinetic (T ), potential (V ), and interaction (I )
energies, and correspond to partial differentiation of the the
action with respect to log(1/m), log κ , and log g, respectively.
In the fermion world-line representation, the energy operators
are explicitly given by

bτT (q) = lim
Nτ →∞

1

Nτ

∑
σ

×
〈 ∑

d∈D(cσ )

∂

∂ log m̂
log

zL(d)(m̂)

z2Ns+1(m̂)
− Bs(cσ )

〉
q

,

(23)

bτV (q) = lim
Nτ →∞

1

Nτ

∑
σ

〈V(cσ )〉q , (24)

and

I (q) =
(

− ∂ log ĝ

∂ log m̂

)
I0(q),

(25)

bτ I0(q) = − ĝ

1 + ĝ
lim

Nτ →∞
1

Nτ

〈Bτ (∩σ cσ )〉q .

An expression for the prefactor appearing in Eq. (25) for the
interaction energy operator I (q) at finite scattering length may
be derived explicitly by differentiating both sides of Eq. (13)
with respect to m̂ while holding all physical length scales fixed.
Doing so yields the useful relation

1

ĝ

(
∂ log ĝ

∂ log m̂
+ 1

)
= 1

ĝc

(
∂ log ĝc

∂ log m̂
+ 1

)
. (26)

Taking the temporal continuum limit with bs held fixed (i.e.,
m̂ → ∞), one finds that ∂ log ĝ/∂ log m̂ → −1, and therefore
I (q) → I0(q). For any finite anisotropy, however, the prefactor
remains nontrivial and its inclusion is crucial for obtaining
correct continuum limit estimates.

Starting from Eq. (7) and using Eq. (13), the integrated
contact density C(q) (not to be confused with the set of closed-
loop configurations C∗ discussed above) may be written as

C(q) = −(mg)2 dE(q)

dg
. (27)

FIG. 3. (Color online) Two of the four allowed local constraint-
preserving configuration updates (the remaining two possibilities are
just mirror images of those shown above).

Taking E(q) as the zero-temperature limit of the logarithm of
the canonical partition function, I obtain

C(q) = − 1

g
(mg)2I0(q) (28)

for the contact. One can derive other expressions for the contact
by combining Eq. (27) and, for example, Eq. (22) (as opposed
to the logarithm of the partition function). Such expressions
are expected to yield the same continuum limit as Eq. (28),
although estimates based upon such formulas are presumably
noisier since they rely on the correlations among the various
energy observables. For this reason, I only consider estimates
of the contact based on Eq. (28).

IV. SIMULATION DETAILS

Monte Carlo simulations were performed for fermions con-
fined to a finite box and a harmonic trap. Ensembles were gen-
erated using a local updating scheme which preserves the con-
straints placed on the configuration space. Particularly, time-
directed links were updated one at a time in accordance with the
updating rules depicted in Fig. 3. Proposed local updates were
either accepted or rejected using a Metropolis accept/reject
step. Whenever a proposed update violated the constraints on
allowable configurations (such as constraints imposed by Pauli
exclusion, or the lattice boundaries) those proposed updates
were rejected with unit probability. It is known that local
updating schemes generically suffer from critical slowing, and
this updating scheme is by no means any different. However,
for the lattice volumes and physical parameters explored in this
study, the efficiency of the updating scheme was found to be
adequate for achieving percent-level estimates of observables
with available computational resources.

All random numbers used in the simulations were generated
using Lüscher’s Ranlux pseudorandom number generator with
a luxury level equal to one [32]. For this study, given the
simplicity of the updating scheme, it was found that the
random number generation was the most time-consuming
part of the simulations. The random number generators
used to generate the configurations for each ensemble were
independently seeded so as to yield uncorrelated ensembles.
Due to inefficiencies in the Monte Carlo algorithm, however,
each ensemble involved configurations which were highly
correlated in Monte Carlo time. Generally, the autocorrelations
in each ensemble depend strongly on the simulation parameters
considered, and so care was taken to prune the ensembles so
as to eliminate such correlations.

One interesting feature of the world-line path-integral rep-
resentation presented in Sec. III over conventional approaches
that work with fermion determinants, is that in some situations
there is no computational limitation on the spatial size of
the lattice. To see this, first note that the computational
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TABLE I. Continuum extrapolated observables for up to eight fermions confined to a harmonic trap.

Q qa qb qc qd E/ω (I) χ 2/d.o.f. E/ω (II) χ 2/d.o.f. E/ω (III) χ 2/d.o.f. CL0 χ 2/d.o.f.

4 1 1 1 1 1.008(5) 1.0 1.01(1) 1.1 1.01(1) 1.0 7.13(4) 0.6

5 2 1 1 1 2.341(6) 0.1 2.34(1) 1.0 2.34(1) 0.5 7.55(5) 0.7

6 3 1 1 1 4.535(6) 3.6 4.50(1) 1.6 4.57(1) 3.0 8.98(4) 2.6
2 2 1 1 3.610(9) 0.4 3.60(2) 2.8 3.61(2) 1.4 8.25(3) 2.4

7 4 1 1 1 7.813(6) 1.1 7.80(2) 1.1 7.83(2) 1.1 9.62(4) 1.2
3 2 1 1 5.796(7) 1.6 5.79(1) 1.2 5.80(2) 2.0 9.30(3) 0.8
2 2 2 1 4.719(7) 0.9 4.71(1) 1.5 4.72(2) 0.3 8.87(3) 1.3

8 5 1 1 1 12.060(6) 0.9 12.05(2) 0.1 12.07(2) 0.1 10.69(2) 1.2
4 2 1 1 9.043(5) 0.6 9.03(1) 0.8 9.05(1) 0.6 10.15(2) 1.4
3 3 1 1 7.964(5) 0.6 7.92(1) 0.6 8.01(1) 0.6 10.34(3) 1.0
3 2 2 1 6.958(8) 0.9 6.96(2) 0.7 6.96(2) 1.5 9.66(3) 2.0
2 2 2 2 4.570(8) 2.7 4.55(2) 6.1 4.59(2) 1.3 19.38(4) 4.4

cost of updating a single configuration by sweeping
through the lattice scales like βQ. At low temperature,
however, the computational cost of a single update scales
implicitly like the square of whatever length scale in the
problem is smallest. This is because, roughly speaking, the
smallest length scale is what determines the energy splittings
in the system. So for example, if the only length scale in the
problem is the volume L, then in order to study the ground-state
properties of the system, one requires β ∼ L2. If smaller length
scales are present, such as a characteristic trap size L0 of a
trapping potential or a finite scattering length a, one can then
increase the spatial volume arbitrarily without increasing the
computational cost of the simulation since the energy splittings
are then determined by those other smaller scales.

The trapped simulations for this study were performed on
a finite lattice chosen such that L � L0, where L corresponds
to the box size. Generally finite volume errors for the trapped
system depend on the likelihood for the few- or many-body
ground-state wave function to lie outside the box [33].
Given that the ground-state wave function for trapped unitary
fermions behaves asymptotically like a harmonic oscillator
wave function, one can expect finite volume artifacts to be
exponentially suppressed in L/L0. All few- and many-body
simulations for trapped fermions in this study were performed
at spatial lattice volumes satisfying L/L0 � 25, and by the

scaling arguments above may effectively be regarded as at
infinite volume. Although not done so in this study, one may
easily monitor the configurations as they are updated and verify
explicitly whether updates carry fermions to the edge of the
box when a confining potential is present. The probability for
such an occurrence during the course of a simulation that has
run for a finite amount of time is exponentially small in L/L0.

Simulations of trapped and untrapped fermions were
performed using temporal extents much larger than the
expected inverse energy splittings of the system in order to
ensure adequate suppression of excited state contamination (or
thermal excitations). For trapped few- and many-body systems,
properties of the Schrödinger algebra imply that the spectrum
contains a tower of breathing modes, each separated by an
amount 2ω [24]. In the case of trapped fermions, the temporal
extent of the lattice was therefore chosen to satisfy βω � 10.
For untrapped many-body systems, the energy splittings are
expected to be of order the Fermi energy, given by EF (Q) =
Q2ω/2, and therefore the temporal extent of the lattice was
chosen to satisfy βEF � 10. Simulations were performed
using a single fixed value of the lattice mass parameter,
m̂ = 1.3, corresponding to a critical coupling ĝc ≈ 3.7237.

Simulations were performed for multiple values of εs in
order to perform continuum limit extrapolations of observables
estimated on ensembles of fixed fermion number. Few-body
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FIG. 4. (Color online) Continuum few-body energies (obtained using definition I) and integrated contact densities for trapped fermions.
The result for the contact determined for q = (2,2,2,2) has been omitted from the plot for clarity purposes, but can be found in Table I.
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TABLE II. Continuum extrapolated observables for up to 56 fermions confined to a harmonic trap.

Q qa qb qc qd ξ
1/2
Q (I) χ 2/d.o.f. ξ

1/2
Q (II) χ 2/d.o.f. ξ

1/2
Q (III) χ 2/d.o.f. CL0/Q

3/2 χ 2/d.o.f.

12 3 3 3 3 0.592(3) 0.8 0.589(3) 1.4 0.591(6) 0.5 0.856(4) 1.0
16 4 4 4 4 0.599(2) 1.0 0.598(2) 0.5 0.601(5) 1.2 0.856(5) 0.2
20 5 5 5 5 0.605(2) 1.3 0.598(2) 0.8 0.607(4) 0.8 0.863(4) 0.4
24 6 6 6 6 0.606(2) 0.8 0.606(2) 0.4 0.607(4) 0.7 0.853(4) 0.3
28 7 7 7 7 0.610(2) 0.9 0.608(3) 1.4 0.611(4) 0.4 0.869(3) 1.0
32 8 8 8 8 0.611(3) 0.7 0.611(4) 0.6 0.609(7) 0.5 0.850(5) 0.8
36 9 9 9 9 0.612(2) 0.9 0.608(3) 0.1 0.616(4) 0.8 0.856(7) 0.9
40 10 10 10 10 0.612(2) 1.1 0.610(4) 0.9 0.616(6) 0.7 0.841(9) 1.3
44 11 11 11 11 0.613(1) 0.7 0.613(3) 0.6 0.612(4) 0.7 0.866(6) 0.8
48 12 12 12 12 0.613(2) 2.7 0.617(4) 0.7 0.608(5) 2.0 0.856(6) 1.0
52 13 13 13 13 0.612(2) 0.7 0.617(3) 0.3 0.607(4) 0.9 0.869(5) 0.3
56 14 14 14 14 0.612(2) 0.4 0.611(3) 3.1 0.617(5) 0.9 0.854(8) 1.0

trapped ensembles (i.e, Q � 8 for all possible q) were
generated for all integer values of 1/εs ∈ [3,12], and consisted
of approximately 800–50000 uncorrelated configurations after
thermalization.4 Note that fewer configurations were generated
at smaller εs as a result of increased autocorrelation times due
to critical slowing, and also because of the associated increase
in β with L2

0.
Trapped and untrapped many-body ensembles were the

same as to those used in Ref. [16], however, the size of the
ensembles have been enlarged, particularly for the untrapped
studies. Trapped many-body ensembles were generated for
Q = 28,32,36,40,44,48,52,56 at integer values of 1/εs ∈
[7,20], subject to the constraint Q1/2εs � 1.0. Ensembles con-
sisted of approximately 200–1300 uncorrelated configurations
with larger ensemble sizes corresponding larger εs and smaller
Q. Untrapped many-body ensembles were generated for Q =
32,48,56,64,72,80,88 for equally spaced values of kF bs =
Qεs ∈ [0.15,0.7]. Ensembles consisted of approximately 600–
1600 uncorrelated configurations, again with larger ensemble
sizes corresponding larger εs and smaller Q.

V. ANALYSIS AND RESULTS

Finite lattice discretization errors may be understood from
the viewpoint of a Symanzik action [34,35], a continuum

4In Ref. [16] I erroneously wrote that all simulations consisted
of 150–350 configurations; this claim in fact only applied to the
many-body simulations and not to the few-body cases Q = 4,5. The
latter ensembles were essentially the same as those used in this study,
and were considerably larger in size.

description of the lattice theory with lattice spacing depen-
dence carried by the undetermined couplings associated with
higher-dimension operators. In principle, one should consider
the inclusion of all possible local operators consistent with
the underlying symmetries of the lattice action. Since the
continuum theory is scale invariant, dimensional consider-
ations imply that operators of scaling dimension �O must
have associated couplings with lattice spacing dependence
that scales like b�O−3

s , where again for a fixed physical mass
and lattice mass parameter, I have used the fact that bτ ∼ b2

s .
Throughout this study, I consider dimensionful observables
expressed in either units of the trap frequency or trap size. Since
quantum corrections to the continuum observables typically
involve powers of coupling constants associated with higher-
dimension operators, one may infer the L0 dependence of such
corrections by requiring that the final result be dimensionless.
Since L0 is the only other dimensionful length scale in
the problem besides the lattice spacings, one concludes that
operators of scaling dimension �O induce volume dependence
scaling like ε�O−3

s for dimensionless observables.
The scaling dimensions of the lowest-dimension few-body

operators have been studied in detail in Ref. [15] and confirmed
numerically in Ref. [16]. For the theory under investigation one
concludes that dimensionless observables for a system of fixed
total fermion number Q (such as the energy measured in units
of ω or the contact in units of L−1

0 ) must scale as

OQ(εs) = OQ + O
(1)
Q εs + O

(5/3)
Q ε5/3

s + · · · , (29)

where OQ is the physical observable in the continuum limit (in-
dependent of m̂), and O

(j )
Q (j = 1,5/3, . . .) are unknown coef-

ficients that depend implicitly on the dimensionless parameter

TABLE III. Continuum extrapolated observables for up to 88 fermions confined to a finite box.

Q qa qb qc qd ξQ χ 2/d.o.f. CQL0/Q
2 χ 2/d.o.f.

32 8 8 8 8 0.432(2) 0.4 1.225(6) 1.8
48 12 12 12 12 0.413(3) 0.3 1.192(4) 2.1
56 14 14 14 14 0.406(2) 0.9 1.183(3) 0.4
64 16 16 16 16 0.401(2) 0.4 1.177(3) 2.8
72 18 18 18 18 0.397(2) 1.1 1.162(5) 1.0
80 20 20 20 20 0.395(2) 0.6 1.162(3) 1.5
88 22 22 22 22 0.393(2) 1.0 1.154(6) 0.7
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FIG. 5. (Color online) Thermodynamic limit extrapolation of continuum energies and integrated contact densities for the trapped Fermi gas.

m̂. The term linear in εs is the leading lattice spacing error
attributed to an untuned 4 → 4 operator with a derivative inser-
tion having scaling dimension �O/2 = 2. The subleading cor-
rection is attributed to a parity-odd 5 → 5 operator with scaling
dimension �O/2 = 7/3. Note that the lattice action does not
give rise to 2 → 2 or 3 → 3 interactions as a result of the point-
split nature of the four-body interaction defined in Eq. (10).

Continuum limit extrapolations of the dimensionless ener-
gies and integrated contact densities were performed for sys-
tems of fixed fermion number by fitting estimated observables
to Eq. (29) truncated at order ε

5/3
s . For each observable, fits

were performed over a range of εs values, and the maximum εs

included in the fit was varied in order to evaluate the robustness
of the extrapolation. Plots of the fit results for all few- and
many-body observables are provided in Ref. [36]. Included
are: (i) plots of the estimated observable OQ(εs) for fixed Q as
a function of εs , and the fit curve obtained using Eq. (29) and
its associated error band, and (ii) plots of the extrapolated fit
value OQ and associated errors as a function of the maximum
εs included in the fit.

For trapped systems, three different definitions of the energy
were considered:

E =

⎧⎪⎨
⎪⎩

T + V + I (I)

2V (II)

2(T + I ) (III)

.

Definitions (II) and (III) follow from the virial theorem for
trapped unitary fermions, and definition (I), given by Eq. (22),

is simply the average of the latter two. Although the virial
theorem is violated at finite εs , in the continuum limit the three
definitions are expected to converge. One may either use the
three definitions to confirm restoration of the virial theorem in
the continuum limit for each fixed charge system, or one may
use the three definitions to gauge the systematic errors in the
extrapolations. For trapped estimates of the energy, I indicate
which energy definition is used by the Roman numerals (I),
(II), and (III). Energy estimates for untrapped systems use
definition (I) with V = 0, and all estimates of the contact use
Eq. (28).

Continuum limit estimates for each trapped few-body
observable are provided in Table I along with the
corresponding χ2 per degree of freedom (d.o.f) as a
measure of the goodness of fit. Plots summarizing the fit
results are also provided in Fig. 4. For the two cases Q = 4,5,
the energies in units of ω are known analytically to be unity and
7/3 respectively; these results follows from the operator-state
correspondence and knowledge of the scaling dimensions of
few-body operators [15]. Continuum extrapolations of the
energies yield results statistically consistent with the exactly
determined values to within 1% and 0.5% statistical errors,
respectively. Extrapolation results for the Bertsch parameter,
ξQ, and the integrated contact density, CQ, defined at a
finite Q, are tabulated in Tables II and III for the trapped
and untrapped many-body systems. Plots summarizing the
continuum extrapolation results are shown in Figs. 5 and 6.

Thermodynamic limit extrapolations of the continuum ob-
servables ξQ and CQ (appropriately normalized) were carried
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FIG. 6. (Color online) Thermodynamic limit extrapolation of continuum energies and integrated contact densities for the untrapped Fermi
gas.
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TABLE IV. Thermodynamic limit extrapolated observables for
fermions confined to a harmonic trap. Parameters without uncertain-
ties may be regarded as fixed during the fitting procedure.

O O (p) p χ 2/d.o.f. Fit interval

ξ
1/2
Q (I) 0.6121(6) 0 n/a 0.3 28–56

ξ
1/2
Q (II) 0.612(1) 0 n/a 1.6 28–56

ξ
1/2
Q (III) 0.612(2) 0 n/a 0.7 28–56

CQL0/Q
3/2 0.860(1) 0 n/a 2.6 12–56

out for the many-body systems. The leading dependence on
1/Q for these quantities is presently unknown, but is expected
to be of the form

OQ = O + O(p)Q−p + · · · . (30)

Following the approach of Ref. [16], I use an ansatz fit
function for the Bertsch parameter extrapolation. For trapped
fermions, I fix O(p) = 0 and determine the parameter O

using a constant linear least-squares fit over a fit range in
which observables appear independent of Q (within statistical
uncertainties). For untrapped fermions, I use the ansatz
p = 1 and determine the fit parameters O and O(p). Fit
results for each case are presented in Table IV (trapped) and
Table V (untrapped) along with the fit range used, and the
goodness of fit. Fit results and associated error bands are
plotted in Figs. 5 and 6. Within this analysis, I obtain the
Bertsch parameters ξ = 0.375(1) (I), ξ = 0.374(1) (II), and
ξ = 0.375(2) (III) for trapped fermions, and ξ = 0.370(2) for
untrapped fermions. These results are consistent to within
about two standard deviations, and are also consistent with
the analysis of Ref. [16]. Similar fits were performed for the
contact and yield the values limQ→∞ CQL0/Q

3/2 = 0.860(1)
(trapped) and limQ→∞ CQL0/Q

2 = 1.119(5) (untrapped) in
the thermodynamic limit.

Having determined the energies and integrated contact
densities for the trapped and untrapped many-body systems,
it is then possible to determine the subleading parameter ζ

appearing in Eq. (5). In the untrapped case the relationship is
trivially given by

lim
Q→∞

CQL0

Q2
= 2π

3
ζ. (31)

Plugging in the value for the contact obtained from Table V
yields ζ = 0.534(3). A far less trivial relation can be derived
for the trapped Fermi gas using Thomas-Fermi theory (see
Appendix for details). Particularly, from Eq. (A9) one finds

TABLE V. Thermodynamic limit extrapolated observables for
fermions confined to a finite box. Parameters without uncertainties
may be regarded as fixed during the fitting procedure.

O O (p) p χ 2/d.o.f. Fit interval

ξQ 0.370(2) 2.0(1) 1 0.1 32–88
CQL0/Q

2 1.119(5) 3.5(3) 1 1.0 32–88

for the trapped case

lim
Q→∞

CQL0

Q3/2
= 8

√
2

9ξ 1/4
ζ. (32)

Plugging in estimates for the trapped contact and Bertsch
parameter quoted in Table IV yields ζ = 0.535(2), which is
fully consistent with the untrapped result. Interestingly, one
may also combine the results of Eqs. (31) and (32) by equating
ζ in each formula to obtain a third determination of the Bertsch
parameter which depends solely on the estimates of the contact
for each system. Doing so yields the value ξ = 0.372(8), which
is consistent with the other determinations based on estimates
of the energy.

VI. CONCLUSION

I have performed lattice Monte Carlo studies of four-
component fermion systems confined to a finite box and a
harmonic trap in one spatial dimension. I presented numerical
estimates of the energies and integrated contact densities for
both few- and many-body systems in the unitary limit. The
techniques used for this study relied upon a recently developed
fermion world-line representation for the canonical partition
function. The main advantage of this representation is that it
is free of sign problems for both polarized and unpolarized
systems. Although not considered here, the representation is
also free of sign problems when there is a mass imbalance.

It was demonstrated in Ref. [15] that the unitary four-
component gas at zero temperature has physical properties that
are qualitatively identical to spin-1/2 fermions at unitarity in
three dimensions. Numerical studies of the one-dimensional
system might therefore provide new qualitative and perhaps
even quantitative insights into the nature of such nonrelativistic
conformal field theories. The main findings of this study
are:

(i) a less than one percent level determination of continuum
few-body observables for up to eight fermions confined to
a harmonic trap, providing indirect estimates of the scaling
dimensions of few-body operators based upon the operator
state-correspondence;

(ii) two independent determinations of the Bertsch param-
eter ξ to less than one percent statistical uncertainties based
on estimates of the the continuum ground-state energies for
trapped and untrapped many-body systems;

(iii) a third determination of the Bertsch parameter to within
about two percent statistical uncertainties based on estimates
of the associated integrated contact densities and theoretical
input from a calculation based on Thomas-Fermi theory;

(iv) two independent determinations of the parameter ζ

to within about a half percent statistical uncertainties from
estimates of the integrated contact densities for trapped and
untrapped many-body systems;

(v) and finally, verification of the restoration of the virial
theorems for all systems of fixed fermion number considered.

Perhaps the most surprising finding of this study is an
apparent numerical equivalence of Bertsch parameters for
the one- and three-dimensional unitary Fermi gases. This
observation and its implications were originally reported in
Ref. [16]. Presently there are no known theoretical arguments
for why these parameters should be equal. Providing the
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equality is not by chance, one might naturally expect that
conformal symmetry and scale invariance plays a crucial role
in explaining the result. Should a duality between the one-
and three- dimensional systems be rigorously established in
the unitary limit, then one might envision the existence of
a simple prescription for relating other observables between
the two theories. Unfortunately, in the case of the contact,
it remains an open question what that prescription might
be.

One of the main deficiencies in the analysis presented
in Sec. V is that although the finite volume scaling of
dimensionless observables is well understood from analysis
of the Symanzik action, presently there is no theoretical
understanding of how continuum many-body observables
depend on the fermion number away from the thermo-
dynamic limit for this system. Consequently there is an
inherent unquantifiable systematic error associated with the
thermodynamic limit extrapolations of many-body continuum
observables. However, the good agreement in ξ and ζ obtained
from independent untrapped and trapped studies, as well as
the reasonable goodness of fits, provide some confidence
that the ansatz fit functions used for the thermodynamic
limit extrapolation are reliable. In the case of the Bertsch
parameter, results are further supported by a third consistent
estimate obtained by combining estimates of the contact for
each system and additional theoretical input. Nevertheless, a
theoretical understanding of the scaling with 1/Q is highly
desirable and an obvious place to start for improving the
study.

Generally speaking, local updating schemes such as the
one used in this study suffer from critical slowing. It would
be interesting to explore whether a worm algorithm, or
continuous-time Monte Carlo approach could be applied
to the nonrelativistic fermion world-line formulation in or-
der to improve the efficiency of the simulations. Doing
so might allow numerical simulations far closer to the
continuum and infinite volume limits, and would be an
important step toward achieving a high-precision (sub-percent
level) determination of the Bertsch parameter. As previously
discussed, such precision estimates could have important
implications for the three-dimensional unitary Fermi gas as
well.
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APPENDIX: TRAPPED MANY-BODY ENERGIES
FROM THOMAS-FERMI THEORY

Here, I briefly derive Eq. (2) and its subleading correction
in 1/a using a simple density-functional theory calculation

following Ref. [8]. The Thomas-Fermi density functional for
harmonically trapped fermions is given by

Eosc
TF [ρ] =

∫
dx [E(ρ(x)) + ρ(x)v(x)] , (A1)

where

E(ρ) = E0(ρ)

(
ξ − ζ

kF a
+ · · ·

)
(A2)

is the energy per unit volume of the system with E0(ρ) defined
in Eq. (3), and v(x) is the external harmonic trapping potential
defined in Eq. (9). The task is to minimize Eosc

TF [ρ] with respect
to ρ(x), subject to the constraint that the total number of
fermions

Q =
∫

dx ρ(x) (A3)

is held fixed. Introducing a Lagrange multiplier μ (i.e., a
chemical potential) to enforce Eq. (A3) as a constraint, one
finds that the functional is extremized by solutions to

ρ2 − 8ζ

3πξa
ρ = ρ2

0

(
1 − x2

x2
0

)
(A4)

with

ρ0 =
√

32mμ

ξπ2
, x0 =

√
2μ

mω2
. (A5)

Solving Eq. (A4) perturbatively in (ρ0a)−1 yields the
solution

ρ(x) = ρ0

(
1 − x2

x2
0

)1/2

+ 4ζ

3πξa
+ · · · (A6)

up to corrections of order O(ρ0a)−2. Combining Eq. (A3) with
Eq. (A6), one may relate the chemical potential to the charge,
finding

Q = 4μ√
ξω

+ 8ζ

3πξa

√
2μ

mω2
+ · · · (A7)

Inverting this relation yields μ as a function of Q, given by:

μ = 1

4

√
ξQω − 1

3πa

√
2Qω

m

ζ

ξ 1/4
+ · · · . (A8)

Plugging Eq. (A6) back into Eq. (A1), and using Eqs. (A5)
and (A8) yields

Eosc(Q) =
√

ξEosc
0 (Q) − 2

9πa

√
2ω

m
Q3/2 ζ

ξ 1/4
+ · · · ,

(A9)

for the energy for trapped fermions in the unitary regime,
where Eosc

0 (Q) is given by Eq. (4).
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