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The dynamics of an atom-molecule-conversion system subject to dephasing noises is studied in this paper.
Using a dephasing master equation and mean-field theory, we derive a Bloch equation for the system, and
this equation is compared with the Bloch equation derived by the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy truncation approach. Fixed points of the system are calculated by solving both the Bloch
equation and the master equation. Comparison between these two calculations suggests that while at short times
the mean-field theory (MFT) is a good approximation for the atom-molecule-conversion system, a high-order
hierarchy truncation approach is necessary for the system on a long time scale. Although the MFT cannot predict
the fixed points correctly, its predictions for the stability of the fixed points are consistent with the BBGKY
theory for a wide range of parameters.

DOI: 10.1103/PhysRevA.87.063613 PACS number(s): 03.75.Hh, 03.75.Gg

I. INTRODUCTION

In the realm of ultracold atom-molecule physics, associa-
tion of ultracold atoms into diatomic molecules is an attractive
subject. It inspires much interest due to its applications,
ranging from the production of molecular Bose-Einstein
condensates (BECs) to the study of chemical reactions and
permanent electric dipole moments [1–8]. Coherent oscilla-
tions between an atomic BEC and a molecular BEC have been
theoretically predicted [9,10] by the use of Gross-Pitaevskii
(GP) equations [11–16], the results suggest that the mean-field
theory is a good formalism to describe the conversion of atoms
to molecules in the absence of noise [17,18].

The noise may come from inelastic collisions between
the atoms in the condensates and the noncondensate atoms,
and local and nonlocal fluctuations. The noise may also
come from random variation of the atom-molecule detuning
or magnetic field fluctuations in the Feshbach-resonance
setup [17,19–21]. The presence of noise can dephase the
Bose-Einstein condensates and strongly limit the validity
of the Gross-Pitaevskii equations. There have been several
theoretical studies going beyond the GP equations; for exam-
ple, based on time-dependent field theory, the dynamics of
an atom-molecule-conversion system was studied in [22,23],
where the noise comes from nonlocal fluctuations due to the
time-dependent pair correlations; and within the two-mode
approximation, the authors in Refs. [19,24] explored the master
equation to investigate the atom-molecule-conversion system.

Earlier studies on a bimodal decoherence-free condensate
have shown that the mean-field theory (MFT) may fail near
a dynamical instability [25,26]; this inspires us to explore
whether the MFT is valid for an atom-molecule-conversion
system with noise (dissipation and dephasing). The effect of
dissipation on the dynamics of an atom-molecule-conversion
system was studied in [24]. In this paper we will focus on
the effect of dephasing within the two-mode approximation.
We show that the dynamics of a dephasing atom-molecule-
conversion system is well treated by the MFT on the short
time scale, but it fails to give a correct prediction about the
system at the long time scale. This suggests that we use a
high order of the Bogoliubov-Born-Green-Kirkwood-Yvon

(BBGKY) hierarchy truncation [25,26] to explore the atom-
molecule-conversion system subject to dephasing noises.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the dephasing master equation and derive
a Bloch equation for the system; the solution of the Bloch
equation without dephasing is presented and discussed. In
Sec. III, we calculate the fixed points of the system with
MFT and compare these fixed points with those obtained by
analytically solving the master equation. The Bloch equation
derived from the BBGKY hierarchy equation is presented in
Sec. IV. In Sec. V, we discuss the stability and the features of
the fixed points from both the MFT and the BBGKY hierarchy
truncation. Discussion and conclusions are given in Sec. VI.

II. MODEL

We consider the simplest model for the atom-molecule-
conversion system. By the two-mode approximation, the
model Hamiltonian can be written as [11,19,27]

Ĥ = ε

2
â†â + g

2
(â†â†b̂ + b̂†ââ), (1)

where â and b̂ represent annihilation operators for the atom
and molecule, respectively, g denotes the strength of the atom-
molecule conversion, and ε is the atomic binding energy.

The master equation taking only the dephasing noise into
account may be written in the following form [19,28]:

ρ̇ = −i[Ĥ ,ρ] − �[�̂,[�̂,ρ]], (2)

where ρ̂ is the density matrix of system, � is the dephasing
rate, and the Lindblad operator �̂ is the population difference,

�̂ = 2b̂†b̂ − â†â. (3)

The total atom number operator N̂ = 2b̂†b̂ + â†â is conserved

since
∂〈N̂〉

∂t
= 0, so the total atom number N is a constant that

does not change with time in the dynamics. Defining

L̂x =
√

2
â†â†b̂ + b̂†ââ

N3/2
, L̂y =

√
2i

â†â†b̂ − b̂†ââ

N3/2
,

(4)

L̂z = 2b̂†b̂ − â†â

N
,
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where L̂z denotes the number difference between the atoms
and the molecules in the system, L̂x and L̂y can be used to
characterize the coherence of atom-molecule conversion. It is
easy to prove that

[L̂z,L̂x] = 4i

N
L̂y, [L̂z,L̂y] = −4i

N
L̂x,

(5)

[L̂x,L̂y] = i

N
(1 − L̂z)(1 + 3L̂z) + 4i

N2
.

Notice that L̂x,L̂y,L̂z are not the SU(2) generators, because
their commutation relations contain quadratic terms in L̂z.

Nevertheless, in the limit of small atom-molecule-number
difference and large N (N → ∞), L̂x , L̂y , and L̂z really form
a sphere since they satisfy

(L̂x)2 + (L̂y)2 = 1

2
(1 + L̂z)(1 − L̂ z)

2

+ 2

N
(1 − L̂z) + 4

N2
L̂z. (6)

We will call this sphere the generalized Bloch sphere even
when the system is far from the limits. With these definitions,
the Hamiltonian becomes Ĥ = − ε

4NL̂z + g

2
√

2
N3/2L̂x, and

the master equation can be rewritten as

ρ̇ = −i[Ĥ ,ρ] − �N2[L̂z,[L̂z,ρ]]. (7)

From this master equation, the expectation values defined
by Fi = 〈L̂i〉 = Tr(ρL̂i), i = x,y,z are as follows:

∂Fx

∂t
= εFy − 16�Fx,

∂Fy

∂t
= −εFx − �Fz + 3

2
�

〈
L̂2

z

〉 − 16�Fy − R, (8)

∂Fz

∂t
= 2�Fy,

where � = g

√
N
2 , and R = 1

2� + 2�
N

. The lowest-order trun-
cation of Eq. (8) is acquired by approximating the second-
order expectation values 〈L̂iL̂j 〉 as products of the first-order
expectations 〈L̂i〉 and 〈L̂j 〉 [25], namely,

〈L̂iL̂j 〉 ≈ 〈L̂i〉〈L̂j 〉. (9)

With this approximation, Eq. (8) reduces to

∂Fx

∂t
= εFy − 16�Fx,

∂Fy

∂t
= −εFx − �Fz + 3

2
�F 2

z − 16�Fy − R, (10)

∂Fz

∂t
= 2�Fy.

Next we discuss the situation with zero dephasing rate, � = 0,
when Eq. (10) becomes

∂Fx

∂t
= εFy,

∂Fy

∂t
= −εFx − �Fz + 3

2
�F 2

z − R, (11)

∂Fz

∂t
= 2�Fy.

Defining a = ε2 + g2N, b = − 3
2g2N, and c = g2N

2 + 2g2 −
ε2Fz0 with Fz0 the initial value of Fz, the solution of Eq. (11)
can be obtained by solving

∂2Fz

∂2t
+ aFz + bF 2

z + c = 0. (12)

We notice that b must not be zero here, otherwise g = 0, which
would result in � = 0 leading to Ḟz(t) = 0, when F (t)z ≡ Fz0,
i.e., the state of the system remains unchanged. The solution
of Eq. (12) is

Fz = u2 − (u2 − u3)cn2(k(t − t0),m) − a − A

2b
, (13)

where cn(k(t − t0),m) is the Jacobi elliptic cosine func-
tion. u1 > u2 > u3 and u1 = n cos θ − A

2B
, u2 = n cos(θ +

4π
3 ) − A

2B
, u3 = n cos(θ + 2π

3 ) − A
2B

, n = A
B
, cos(3θ ) =

− 1
2 d[( 2B

A
)
3 + 2)], A =

√
a2 − 4bc,B = b, d = −u3

0 −
3A
2B

u2
0, and u0 = Fz0 + a−A

2b
.

Fz(t) is a periodic function of time with period T =
2K(m)

k
, k =

√−B(u1−u3)
6 , and K(m) = ∫ π/2

0
1√

1−m2sin2(ϕ)
dϕ is the

Legendre complete elliptic integral of the first kind. t0 denotes
the time when Fz becomes Fz0 which can be determined by
solving Eq. (13). Equation (11) describes a rotation of the
Bloch vector F; obviously the norm |F| is conserved in the
MFT when the dephasing rate is zero.

In Fig. 1, we plot the ratio of Na to N as a function of time.
Two results are presented, one coming from Eq. (13), and
the other obtained by solving the master equation with � = 0
numerically. We find that at a short time scale, the two results
are in good agreement; however, at a long time scale, the two
results are evidently different. This suggests that the MFT is
a good approximation to describe the dynamics of the atom-
molecule-conversion system at a short time scale. In addition,
the binding energy of the atom can turn the system from
the self-trapping regime [Fig. 1(a)] to the tunneling regime
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0

0.005

0.01
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Time t

N
a/N

0 0.5 1 1.5 2
0

0.01
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(b)

Time t

N
a/N

FIG. 1. (Color online) The number of atoms in the atomic mode
as a function of time. The red dashed line represents Eq. (13), which
is an analytical solution of the Bloch equation with � = 0 based on
the mean-field theory. In contrast, the numerical simulation of the
Liouville equation (2) with � = 0 is shown by the blue solid line
with Fz0 = 1,Fx0 = Fy0 = 0 at time t = 0. Here and hereafter, ε and
� are rescaled in units of g, and t is then in units of 1/g. Hence all
parameters are dimensionless. N = 100, g = 1. (a) and (b) are for
different ε. (a) ε = 25, and (b) ε = 19.
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[Fig. 1(b)]. This can be understood as a conversion blockage
due to the energy difference between the atoms and molecules.
Note that the binding energy of the molecules is zero.

III. STEADY STATE AND FIXED POINTS

The fixed point of the system is defined by

Ḟx = Ḟy = Ḟz = 0. (14)

By this definition, we can obtain the fixed points in the MFT,

Fxf = Fyf = 0,Fzf = 1

3

(
1 −

√
1 + 3 (1 + 4/N )

)
. (15)

On the other hand, we can obtain the steady state by
analytically solving the master equation (2). Once we have the
steady state of the system, the fixed points can be calculated by
the definition of Fj . The steady state ρs satisfies the following
equation:

ρ̇s = −i[Ĥ ,ρs] + �(2�̂ρs �̂ − �̂�̂ρs − ρs�̂�̂) = 0. (16)

It is easy to prove that the off-diagonal elements of the
density matrix vanish in the steady state due to the de-
phasing. The proof is as follows. Defining the Fock states
|n〉 ≡ |N − 2n,n〉 denoting (N − 2n) atoms and n molecules
(n = 0,1,2, . . . ,N/2), we have the following equation for the
off-diagonal elements of the density matrix:

∂ρmn

∂t
+ i(am − an)ρmn + 16�(m − n)2ρmn + ξ (t) = 0,

(17)

where ξ (t) = i(bmρm−1n + cmρm+1n − bnρmn−1 − cnρmn+1),
an = ε

2 (N − 2n), bn = g

2 [
√

(N − 2n + 1)(N − 2n + 2)(n)],
and cn = g

2 [
√

(N − 2n)(N − 2n − 1)(n + 1)]. The formal so-
lution of Eq. (17) is

ρmn = e−[i(am−an)+16�(m−n)2]t

×
[
� −

∫
ξ (t)e[i(am−an)+16�(m−n)2]t dt

]
, (18)

where � is a constant determined by the initial condition of
ρmn. We find that when t → ∞, ρmn → 0 (m 	= n). This gives
the steady state,

ρs =
N/2∑
n=0

ρn |n〉 〈n| . (19)

For the steady state, it is required that [Ĥ ,ρs] = 0, from
which we obtain ρj = ρj−1. From this together with Trρs = 1,
we obtain ρ0 = ρ1 = ρ2 = · · · = ρN/2 = 1

N/2+1 . Collecting
all together, we have

ρs =
N/2∑
n=0

(
1

N/2 + 1

)
|n〉 〈n| . (20)

The fixed points Fis (i = x,y,z) of the system
can be given by the steady-state Eq. (20) as
Fzs = Tr(ρsL̂z) = ∑N/2

n=0 L̂z( 1
N/2+1 ) |n〉 〈n| = 0. In the

same way, Fxs = Fys = 0. Namely, the fixed point given by
solving the master equation is

Fxs = Fys = Fzs = 0. (21)

It is easy to see that the fixed points given by the MFT and
the master equation are different. This indicates that the MFT is
not a good approach to describe the atom-molecule-conversion
system at a long time scale. This stimulates us to use the
BBGKY hierarchy truncation [25,26] to study the system.

IV. THE BBGKY HIERARCHY OF EQUATIONS OF
MOTION

As aforementioned, the differential equation for the Bloch
vector up to the first order is not a good treatment at a long
time scale. Thus high-order expectation values are required. In
this section, we will obtain an improvement to the MFT using
the next order of the Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy of equations of motion.

Writing 〈L̂2
z〉 in Eq. (8) in terms of the expectation value

Kij = 〈L̂iL̂j + L̂j L̂i〉 − 2〈L̂i〉〈L̂j 〉, i,j = x,y,z, (22)

and truncating the BBGKY hierarchy of equations of motion
for the first- and second-order operators L̂i,L̂i L̂j [25,26],

〈L̂iL̂j L̂k〉 ≈ 〈L̂iL̂j 〉〈L̂k〉 + 〈L̂i〉〈L̂j L̂k〉
+ 〈L̂iL̂k〉〈L̂j 〉 − 2〈L̂i〉〈L̂j 〉〈L̂k〉, (23)

we get the following set of equations for the first- and second-
order moments:

∂Fx

∂t
= εFy − 16�Fx,

∂Fy

∂t
= −εFx − �Fz + 3

2
�

(
1

2
Kzz + F 2

z

)
− 16�Fy − R,

∂Fz

∂t
= 2�Fy,

∂Kxx

∂t
= 2εKxy − 32�Kxx + 32�Kyy + 64�F 2

y ,

∂Kyy

∂t
= −2εKxy − 2�Kyz + 6�FzKyz − 32�Kyy

+ 32�Kxx + 64�F 2
x ,

∂Kzz

∂t
= 4�Kyz,

∂Kxy

∂t
= −εKxx − �Kxz + 3�FzKxz + εKyy − 64�Kxy

−64�FxFy,

∂Kyz

∂t
= 2�Kyy − εKxz − �Kzz + 3�FzKzz − 16�Kyz,

∂Kxz

∂t
= 2�Kxy + εKyz − 16�Kxz. (24)

Equations (24) have been called Bogoliubov back-reaction
(BBR) equations [25,26], because the fluctuations Kij are
driven by the mean-field Bloch vector F, which is physically
described by the Bogoliubov theory. In turn, the Bloch vector
is affected by the fluctuations Kij . This back reaction causes
the trajectory of the system to not be confined to the surface
of the generalized Bloch sphere, which is reminiscent of the
effect of dephasing.

We plot the time evolution of the atom number Na and
the fluctuation Kzz given by the BBR equations and MFT in
Fig. 2 and the time evolution of Fz in Fig. 3. The results from
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FIG. 2. (Color online) Na/N and Kzz versus time. The results
are obtained by the mean-field theory (black dash-dotted line),
the Bogoliubov back-reaction equations (red solid line), and the
numerical solution of the master equation (blue dashed line). The
initial conditions of the system are the same as in Eq. (25).
Parameters chosen are g = 1,N = 100,ε = 30,� = 1 for (a) and (b),
ε = 40,� = 1.8 for (c) and (d), and ε = 10,� = 0.2 for (e) and (f).

numerically solving the master equation (2) are also presented.
To plot the figure, the initial conditions

Fz = −1,

Kxx = Kyy = 4(N − 1)/N2, (25)

Fx = Fy = Kzz = Kxy = Kxz = Kyz = 0

are taken; the corresponding quantum state is the molecular
vacuum state |N,0〉.

We find that the results given by the BBR equations are in
good agreement with those obtained by numerically solving
the master equation. The results from the MFT are different
from those at a long time scale. This difference comes from
the fluctuations Kij , which are ignored in the MFT. Noticing
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FIG. 3. (Color online) Fz as a function of time from the mean-
field theory (red dotted line) and the BBR equations (blue solid line).
The black star denotes the fixed point from the MFT in Eq. (10) and
the green star denotes the fixed point from the BBR equations in Eq.
(24). The parameters of (a), (b), and (c) are the same as in Fig. 2. In
(d), g = 1,ε = 15,� = 0.8,N = 100.

that the fixed points given by the BBR equations are the same
as those from the numerical method but different from those
obtained by the MFT, we emphasize that the stability of the
fixed points from MFT and the BBR equations are the same for
a wide range of parameters in the space spanned by Fx , Fy , and
Fz; this is due to the linear coupling between the Bloch vector
F and the fluctuations Kij in F [see the first three equations in
Eq. (24)].

V. STABILITY OF THE FIXED POINTS WITH ε = 0

In this section, we will discuss the stability of the fixed
points obtained from both the MFT and the BBGKY hierarchy.
For simplicity, let us consider the situation of zero atomic
binding energy, ε = 0. In this case, Eq. (10) reduces to

∂Fy

∂t
= −�Fz + 3

2
�F 2

z − 16�Fy − R,

(26)
∂Fz

∂t
= 2�Fy.

Using the Jacobian matrix defined by

J =
(

∂P
∂Fy

∂P
∂Fz

∂Q

∂Fy

∂Q

∂Fz

)
(Fxf ,Fyf ,Fzf )

, (27)

we can study the stability of the fixed points in the MFT.
Here P = −�Fz + 3

2�F 2
z − 16�Fy − R, Q = 2�Fy . The

eigenvalues of the Jacobi matrix J determine the stability
of the fixed points, which can be given by simple cal-
culations: λ± = 1

2 [−16� ± √
256�2 − 4Ng2(1 − 3Fzf )] =

1
2 [−16� ±

√
256�2 − 4Ng2

√
1+3(1+4/N )]. If

64�2 � Ng2
√

1+3 (1+4/N ) (28)

is satisfied, the Jacobi matrix J has two negative roots, and the
fixed point (15) is a stable junction fixed point. When

64�2 � Ng2
√

1+3 (1+4/N ), (29)

the Jacobi matrix J has two conjugate complex roots; in this
case the fixed point (15) is a stable focus fixed point.

Now we turn our discussion to the fixed points given by
the BBGKY hierarchy of equations of motion. To compare
the stability of fixed points obtained by the BBGKY hierarchy
with the prediction by the MFT, we restrict the discussion
to the space spanned by Fx , Fy , and Fz. This means that
the fluctuations which drive the system away from the fixed
points (steady state) occur only in Fx , Fy , and Fz. We start
with the fixed points in nine-dimensional space. By the same
definition as in the MFT, we obtain the fixed point in the
BBGKY equation (24) (ε = 0),

FxB = FyB = FzB = KxzB = KxyB = KyzB = 0,

KzzB = 2

3
+ 8

3N
, (30)

KxxB = KyyB = 1

2
KzzB.

As mentioned, we discuss the case where the fluctuations are
only in Fx , Fy , and Fz. For ε = 0, Fx decouples from Fy and
Fz, and the discussion reduces to discussing fluctuations only
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in Fy and Fz,

Fy → FyB + δfy,
(31)

Fz → FzB + δfz.

Substituting Eq. (31) into Eq. (24), we have

∂δfy

∂t
= −εδfx − �δfz + 3

2
�

(
1

2
KzzB + 2FzBδfz

)
− 16�δfy − R,

∂δfz

∂t
= 2�δfy. (32)

By the same discussion as for Eq. (27), the Jacobian matrix in
this case is

J ′ =
(

∂P ′
∂δfy

∂P ′
∂δfz

∂Q′
∂δfy

∂Q′
∂δfz

)
(FxB,FyB ,FzB )

, (33)

where

P ′ = −εδfx − �δ fz + 3

2
�

(
1

2
KzzB + 2 FzBδfz

)
− 16�δfy

and Q′ = 2�δfy, and the eigenvalues of the Jacobi ma-
trix J ′ are λ′

± = 1
2 [−16� ±

√
256�2 − 4Ng2(1 − 3FzB)] =

1
2 (−16� ±

√
256�2 − 4Ng2). If

64�2 � Ng2, (34)

all λ′
± are negative, and the fixed point (30) is a stable junction

fixed point. Otherwise, if

64�2 � Ng2, (35)

λ′
± are complex and their real parts are negative, and the fixed

point (30) is then a stable focus fixed point.
When the parameters satisfy simultaneously Eqs. (28) and

(34), the stability of the fixed points is the same in the MFT and
the BBGKY hierarchy, i.e., the fixed points are stable junction
points; see Fig. 4. In this situation, the system approaches the
fixed points straightforwardly. When the parameters satisfy
both Eqs. (29) and (35), the stability of the fixed points in the
MFT and the BBGKY hierarchy is also the same. The fixed
points in this case are stable focus fixed points (Fig. 5). The
system goes to the fixed points in a spiral pattern.

When the parameters fall in the range of

Ng2 < 64�2 < Ng2
√

1+3 (1+4/N ), (36)

the system in the BBGKY theory Eq. (24) would go to a
stable junction fixed point, but by the MFT, the system would
approach a stable focus fixed point. We plot the time evolution
of Fz in Fig. 6. From the figure, we can see that the population
difference Fz in BBGKY theory increases monotonically as
t increases (the blue dashed line), but it increases first, then
decreases, and finally reaches the stable state in the MFT. In
addition, comparing Figs. 6(a) and 6(b), we learn that in (a) Fz

changes slowly, while in (b) the change is faster; this is due to
the difference of the dephasing rate �.

Before concluding the paper, we present a discussion of
the time-dependent many-body theory [22,23] and the master
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FIG. 4. (Color online) The fixed points and the approach of the
system to the fixed points. The black and green stars denote the
location of the stable junction fixed point obtained by the MFT and
by the BBR equations [see Eq. (30)], respectively. The red dashed
line (MFT) and the blue solid line (BBR) show how the system
approaches the fixed points. The initial state of the system is |ψ0〉 =
|n〉. Parameters chosen are g = 1,� = 10,N = 300,|ψ0〉 = |10〉 for
(a), � = 12,|ψ0〉 = |90〉 for (b), � = 4,|ψ0〉 = |30〉 for (c), and � =
24,|ψ0〉 = |80〉 for (d).

equation approach in the two-mode approximation. We start
with the many-body description for the photoassociation in a
uniform Bose-Einstein condensate [23]. In the two-body case,
the system model reduces to a set of coupled modes; two of
them are atoms in the condensate and molecules. The other
modes represent the noncondensate atom pairs. This treatment
is very similar to the master equation description, when the
noncondensate atom pairs are treated as an environment.
Then the elimination of the modes of noncondensate atom
pairs in the two-body theory would lead to equations of
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FIG. 5. (Color online) Black star and green star denote the
location of the stable focus fixed points predicted by MFT and
the BBR equations, respectively. The red dashed (MFT) and the
blue solid (BBR) lines show the trajectories for the system from
the initial state to the fixed points. Parameters chosen are g =
1,� = 0.12,N = 300,|ψ0〉 = |40〉 for (a), � = 0.2,|ψ0〉 = |82〉 for
(b), � = 0.16,|ψ0〉 = |45〉 for (c), and � = 0.1,|ψ0〉 = |100〉 for (d).
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FIG. 6. (Color online) Red thick line shows how the system goes
to the stable focus fixed points in MFT, while the blue dashed line
shows how the system goes to the stable junction fixed point by
the BBGKY hierarchy in Eq. (24). Parameters chosen satisfying
Eq. (36) are g = 1,N = 80,� = 1.1192,|ψ0〉 = |0〉 for (a), and � =
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motion (almost) equivalent to those in the master equation
description.

To be specific, we take the photoassociation of a Bose-
Einstein condensate [22] as an example. The equation of
motion of the system reads

α̇ = i
�√

2
α∗β,

β̇ = iδβ + i
�∗
√

2
α2 + i

∫
dε ξ (ε) cε, (37)

ċε = −iε cε + iξ ∗(ε)β,

where α = a/
√

N , β = √
2/Nb, and cε represent the c-

number atomic, molecular, and noncondensate atom pair am-
plitudes, respectively. Formally integrating the third equation
of Eqs. (37) and substituting it into the second, we have

β̇ = iδβ + i
�∗
√

2
α2 + i

∫
dεξ (ε)e−iε(t−t0)cε(t0)

−
∫

dε|ξ (ε)|2
∫ t

t0

β(t ′)e−iε(t−t ′)dt ′. (38)

In the Weisskopf-Wigner approximation [29], |ξ (ε)|2 is set to
be a constant around ε = 0, so we can replace ε by 0 in |ξ (ε)|2.

This together with the initial condition cε(t0) = 0 gives

β̇ = iδβ + i
�∗
√

2
α2 − |ξ (0)|2

∫ t

t0

dt ′β(t ′)
∫

dε e−iε(t−t ′). (39)

Finally, we arrive at

α̇ = i
�√

2
α∗β,

β̇ = iδβ + i
�∗
√

2
α2 − �β, (40)

where � = π |ξ (0)|2. On the other hand, under the mean-field
approximation, the coupled equations of α and β can be
derived from a master equation with a dissipation part,

�

2
(2bρb† − ρb†b − b†bρ).

Although the descriptions based on the master equation and the
many-body theory yield a very similar equation of motion for
the condensed atoms and molecules in the photoassociation,
the master equation loses (almost all) information about the
noncondensate atoms, as it is traced out as an environment.
The benefit we gain from the master equation description
is that it reduces the calculation’s complexity. Nevertheless,
eliminating the environmental degrees of freedom in the
many-body theory in the mean-field approximation cannot
give a mixed state for the reduced system.

VI. CONCLUSION

In this paper, the dynamics of an atom-molecule-conversion
system subject to dephasing noises has been explored. We
find that the fixed points given by the mean-field theory and
by numerically solving the master equation are different; this
indicates that the mean-field theory is not a good treatment at a
long time scale for the atom-molecule-conversion system. We
further develop the BBGKY hierarchy truncation approach to
study the atom-molecule-conversion system, and fixed points
are calculated and the stability around the fixed points is
discussed. We observe that for a wide range of parameters the
stability around the fixed points is the same in the MFT and
the BBGKY hierarchy truncation approach. The dynamics of
the atom-molecule-conversion system is also explored, and the
results suggest that the second order of the BBGKY hierarchy
is a good approach for the atom-molecule-conversion system.
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