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Quantum dynamics of an atom orbiting around an optical nanofiber
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We propose a platform for the investigation of quantum wave-packet dynamics, offering a complementary
approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which
orbit around an optical nanofiber in an optical potential produced by a red-detuned guided light field. We show that
the atomic center-of-mass motion exhibits genuine quantum effects like collapse and revival of the atomic wave
packet. As distinctive advantages, our approach features a tunable dispersion relation as well as straightforward
readout for the wave-packet dynamics and can be implemented using existing quantum optics techniques.
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I. INTRODUCTION

Since the earliest days of quantum mechanics, the study of
localized, time-dependent solutions to bound-state problems
has attracted considerable attention [1]. Quantum mechanical
objects show both particlelike and wavelike behavior and this
duality can be readily explored by analyzing the dynamics
of wave packets. Such localized states behave like classical
objects and follow classical trajectories as long as they do not
disperse. However, for nonlinear dispersion relations, the wave
packet will spread out and the dynamics cannot be described
anymore using classical physics. One of the most prominent
witnesses of genuine quantum mechanical dynamics is when
the collapse of the wave packet is followed by a revival, i.e.,
a relocalization of the wave function [2,3]. This intriguing
quantum effect has been experimentally observed in a number
of systems (see [3] and references therein), and dispersion
engineering of wave packets as well as their collapse and
revival dynamics constitute an active field of current research
[4–6].

Here, we propose an experimental platform for the in-
vestigation of quantum wave-packet dynamics, offering a
complementary approach to existing theoretical models and
experimental systems. Our approach features a tunable dis-
persion relation as well as straightforward readout for the
wave-packet dynamics and can be implemented using existing
quantum optics techniques. It relies on laser-cooled neutral
atoms which are interfaced with an optical nanofiber as initially
proposed in Ref. [7] and thoroughly analyzed in Ref. [8].
In this scenario, an atom orbiting around the nanofiber can
show quantum mechanical dynamics including an initially
classical orbiting motion of the atomic wave packet around
the nanofiber, a spread of the atomic wave function (collapse),
a partial relocalization of the atom (fractional revival) [9],
and, finally, a full quantum revival of the original wave packet.
In the following, we study this dynamics quantitatively, give
analytical expressions for relevant time scales, and derive
the functional dependence of the expected signals when
absorptively probing the dynamics using a nanofiber-guided,
resonant light field.
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II. MODEL AND ANALYSIS

Consider an atom moving in vacuum around a silica
nanofiber in a cylindrically symmetric potential U (r); see
Fig. 1. We use cylindrical coordinates {r,ϕ,z}, with z being
the axis of the nanofiber. Due to the cylindrical symmetry of
the system, the angular momentum Lz = −ih̄∂/∂ϕ of the atom
with respect to the fiber axis z is conserved. In the eigenstate
problem, we have Lz = h̄m, where h̄ is the reduced Planck
constant and m is an integer, called the azimuthal quantum
number. Hence, the atom’s center-of-mass (COM) motional
eigenstates can be written as �νmK = (2π )−1Rνm(r)eimϕeiKz.
Here, ν is the radial vibrational quantum number, K is the
wave number of the matter wave along the z direction, and
Rνm(r) is the radial part of the wave function. We perform the
transformation Rνm(r) = uνm(r)/

√
r . The function uνm(r) is

determined by the equation,
[
− h̄2

2M

∂2

∂r2
+ U

(m)
eff (r)

]
uνm(r) = Eνmuνm(r), (1)

where M is the atomic mass, U
(m)
eff (r) = U

(m)
cf (r) + U (r) is the

effective potential, with the centrifugal potential U
(m)
cf (r) =

h̄2(m2 − 1/4)/(2Mr2), while Eνm is the energy eigenvalue for
the COM motion of the atom transverse to the fiber. Thus, the
radial motion of the atom orbiting around the nanofiber can
be reduced to the motion of a particle in the one-dimensional
effective potential U

(m)
eff (r).

There exist stable bound states for the atom if the effective
potential U

(m)
eff has a local minimum outside of the fiber [8].

This may happen if U is attractive, opposite to the centrifugal
potential U

(m)
cf . In order to produce a cylindrically symmetric

attractive potential, we send a circularly polarized red-detuned
optical field of frequency ω through the nanofiber. When the
nanofiber radius a is small enough, the fiber can support
only the fundamental mode HE11 [10], which generates an
evanescent-wave guided light field around the nanofiber.

The optical potential for the atom is given by Uopt =
−α(ω)|E|2/4, where α(ω) is the real part of the atomic
polarizability at the optical frequency ω and E is the positive-
frequency component of the electric part of the guided light
field. The details of the calculations of the optical potential
Uopt for a cesium atom in the vicinity of a nanofiber can be
found in Refs. [8,11]. We also take into account the attractive
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FIG. 1. (Color online) Schematic of trapping an atom in an
orbit around an optical nanofiber by the evanescent wave of a
quasicircularly polarized red-detuned guided light field.

fiber-induced van der Waals potential UvdW of the atom [8,11].
The combination of the optical potential and the van der Waals
potential yields the potential U = Uopt + UvdW.

We plot in Figs. 2(a)–2(c) the effective potential U
(m)
eff and

the ground-vibrational-state eigenfunction um ≡ uν=1,m for a
cesium atom in its electronic ground state orbiting around
the nanofiber with the azimuthal quantum number m. In the
following, the fiber radius is 200 nm and the wavelength
and power of the trapping light are 1064 nm and 20 mW,
respectively. We note that these parameters are well accessible
experimentally [12,13]. Our calculations show that a trapping
potential with a minimum outside the fiber can be formed when
the azimuthal quantum number m is in the range from 430 to
530. We find that, in this region, the ground-vibrational-state
energy Em ≡ Eν=1,m increases with increasing m and exhibits
a small negative curvature; see Fig. 2(d). We note that we can
tune the dispersion relation by varying the power of the guided
light field, its wavelength, and/or the fiber radius.

In the following, the motion of the atom along the fiber axis
is disregarded because it is independent of the motion in the
fiber transverse plane and, consequently, independent of the
azimuthal quantum number m. Let |ψm〉 be the ground state of

FIG. 2. (Color online) Effective potential U
(m)
eff (solid blue lines)

and ground-vibrational-state eigenfunction um (dashed red lines) for
a ground-state cesium atom orbiting with the azimuthal quantum
number m = 446 (a), 468 (b), and 510 (c) around the nanofiber.
(d) Dispersion relation of the ground-vibrational-state energy Em.

the atomic COM motion transverse to the fiber with the angular
momentum h̄m. The wave function of this angular momentum
state is ψm(r) = (2πr)−1/2um(r)eimϕ and the corresponding
energy is Em. Here, we have introduced the notation r = {r,ϕ}.
Consider a wave packet |ψ〉 = ∑

m cm|ψm〉, which is a linear
superposition of the angular momentum states |ψm〉 with the
corresponding probability amplitudes cm. The temporal evo-
lution of this superposition state is given by the wave function,

ψ(r,t) =
∑
m

cme−iEmt/h̄ψm(r). (2)

We assume that the amplitudes of the individual angular
momentum states are of the standard Gaussian distribution
form, cm = (2π
m2)−1/4 exp[−(m − m0)2/4
m2], with a
peak at m0 and a standard deviation 
m, and are truncated
at mmin < m0 and mmax > m0. In our numerical calculations,
we use m0 = 468, 
m = 6, mmin = 446, and mmax = 510.

Since we have m0 � 
m � 1, we can expand Em in a
Taylor series around m0 according to

Em
∼= Em0 + E ′

m0
(m − m0) + E ′′

m0
(m − m0)2/2, (3)

where E ′
m = dEm/dm and E ′′

m = d2Em/dm2. In our case, we
have |E ′′

m0
| � E ′

m0
which leads to the existence of two different

time scales. Inserting Eq. (3) into Eq. (2) then allows one
to identify these relevant time scales of the evolution of the
wave packet [3]. The classical period of the rotation of the
wave packet in the fiber transverse plane is given by Trot =
2πh̄/E ′

m0
. The characteristic collapse time is defined as the

time at which the spread of phase differences between the
various oscillatory terms in Eq. (2) is about π , that is, when
the interference is most destructive. This characteristic time is
given by Tcoll = 2

√
πh̄/(|E ′′

m0
|
m). The revival time for the

atomic wave packet is defined as the time at which the phase
difference between two neighboring terms in Eq. (2) is 2π ,
that is, when the interference is most constructive. It is given
by Trev = 4πh̄/|E ′′

m0
|. For the parameters used in our numerical

calculations, we have E ′
m0

/2πh̄ ∼= 214 kHz and |E ′′
m0

|/2πh̄ ∼=
2.52 kHz, which lead to Trot

∼= 4.67 μs, Tcoll
∼= 37.3 μs, and

Trev
∼= 794 μs.

We plot in Fig. 3 the spatial profiles of the atomic probability
density |ψ(r,t)|2 in the fiber transverse plane for different
evolution times. Initially, at t = 0, the wave packet is well
localized; see Fig. 3(a). We observe from Fig. 3(b) that for
t ∼ 20 μs, the wave packet has already spread significantly
and |ψ(r,t)|2 is delocalized along a circle in the fiber
transverse plane. Figures 3(c) and 3(d) show that, when the
evolution time t is about 100 μs or 200 μs, the wave packet
partially relocalizes in the form of four and two subpackets,
respectively. These regions are the regions of Trev/8 and Trev/4
fractional revivals [3,9]. According to Figs. 3(e) and 3(f), the
probability density |ψ(r,t)|2 reforms into a structure with a
single dominant peak when the evolution time t is about
400 μs or 800 μs. The structure in Fig. 3(e) is the result
of the half revival realized at Trev/2. Near this time, the wave
packet reforms with the original periodicity, but the phase of
its orbiting motion differs from the initial wave packet [3].
The structure in Fig. 3(f) is the result of the full revival at
Trev. Near this time, the wave packet reforms with the original
periodicity. Its peak value is reduced and its spread is increased
with respect to the original wave packet due to cubic and higher
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FIG. 3. (Color online) Atomic probability density |ψ(r,t)|2 in the
fiber transverse plane at different evolution times. |ψ(r,t = 0)|2 is a
Gaussian wave packet of angular momentum states with m0 = 468,

m = 6, mmin = 446, and mmax = 510.

order terms in the dispersion relation. In the special case where
Trev/Trot is an integer, the full revival is in phase with the initial
time development [3].

III. PROBING THE WAVE PACKET

In order to experimentally reveal the predicted wave packet
dynamics, we propose to probe the orbiting atom by a
weak, resonant, quasilinearly polarized guided field Ep(r)
of frequency ωp. Neglecting the effect of the fiber on the
spontaneous emission rate and the detuning [14], the rate of
the scattering from the atom is proportional to the overlap
between the atomic wave packet and the probe field,

γsca(t) ∝
∫

|ψ(r,t)|2|Ep(r)|2dr. (4)

Assume that the main axis of the polarization of the probe
guided field is aligned at the azimuthal angle ϕ = 0. For the
following, we take advantage of the fact that the intensity of
the quasilinearly polarized fundamental-mode guided probe
field exhibits an azimuthal modulation according to [15]

|Ep(r)|2 ∝ ∣∣e(ωp)
ϕ (r)

∣∣2 + [∣∣e(ωp)
r (r)

∣∣2 − ∣∣e(ωp)
ϕ (r)

∣∣2

+ ∣∣e(ωp)
z (r)

∣∣2]
cos2 ϕ, (5)

FIG. 4. Time dependence of the scattering rate γsca(t) in the
ranges from 0 to 50 μs (a), from 0 to 1000 μs (b), and from 650
to 900 μs (c). The polarization of the guided probe field is aligned at
the azimuthal angle ϕ = 0.

where e
(ωp)
r , e

(ωp)
ϕ , and e

(ωp)
z are the cylindrical components of

the mode profile vector function e(ωp) [10,15]. Hence, we find

γsca(t) ∝ B +
∑
m

cm−1cm+1Vm cos (2
Emt/h̄) , (6)

where 
Em = (Em+1 − Em−1)/2 and the coefficients B and Vm

are

B =
∑
m

c2
m

∫ ∞

a

u2
m

(∣∣e(ωp)
r

∣∣2 + ∣∣e(ωp)
ϕ

∣∣2 + ∣∣e(ωp)
z

∣∣2)
dr,

(7)

Vm =
∫ ∞

a

um−1um+1
(∣∣e(ωp)

r

∣∣2 − ∣∣e(ωp)
ϕ

∣∣2 + ∣∣e(ωp)
z

∣∣2)
dr.

We plot in Fig. 4 the time dependence of γsca(t). Figure 4(a)
shows that γsca(t) oscillates with an initial visibility of almost
40%. The oscillations result from the classical rotation of
the atomic wave packet around the nanofiber. With time,
the modulation amplitude reduces and γsca(t) reaches a
quasistationary value for t ∼ 15 μs. The period of oscillations
of γsca(t) as obtained from the numerical evaluation is T (sca)

osc
∼=

2.33 μs, one-half of the classical atomic rotation period
Trot

∼= 4.67 μs. This reduction is due to the fact that the
intensity of the probe field is symmetric with respect to the
reflection {r,ϕ} → {r,ϕ + π} in the fiber transverse plane; see
Eq. (5). In Fig. 4(b), clear-cut resumptions of the oscillation
of the scattering rate γsca(t) appear when the evolution time
is about 200 μs, 400 μs, 600 μs, and 800 μs, corresponding
to Trev/4, Trev/2, 3Trev/4, and Trev, respectively. As a specific
characteristic of our probing scheme, the fractional revival of
the wave packet at Trev/8; see Fig. 3(c), and the fractional
revivals at odd multiples of Trev/8 as well as all higher order
fractional revivals [3] do not give rise to a modulation of
γsca(t). This can be readily understood considering the fourfold
azimuthal symmetry of |ψ(r,t)|2 for these fractional revivals.
In conjunction with the cos2 ϕ dependence of the probe field
intensity, one can easily show that the modulation amplitude
of γsca(t) in Eq. (4) vanishes. Figure 4(c) shows a zoom of
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the signal around Trev. The visibility of the scattering signal
is reduced to about 1/3 of the initial visibility, revealing the
increased spread of the wave packet upon revival; see Fig. 3(f).

In order to further link the wave-packet dynamics with the
predicted signal, γsca(t), we expand 
Em in Eq. (6) into a
Taylor series of the second order around the central azimuthal
quantum number m0 and find


Em
∼= E ′

m0
+ E ′′

m0
(m − m0). (8)

The first term in Eq. (8) leads to the oscillations of the
scattering rate with the period T (sca)

osc = πh̄/E ′
m0

= Trot/2. This
period is the same for the initial and resumed oscillations of
the scattering rate. Note that this also holds for the fractional
revivals at Trev/4 and 3Trev/4 where two diametric wave
packets orbit around the nanofiber. The second term in Eq. (8)
leads to the falloff and the resumptions of oscillations in
the scattering rate. We define the falloff time of γsca(t) as
the time at which the spread of phase differences between
various oscillatory terms in Eq. (6) is about π and find
T

(sca)
fall = πh̄/(2|E ′′

m0
|
m) = √

πTcoll/4. For the resumption
time of γsca(t), we obtain T (sca)

resume = πh̄/|E ′′
m0

| = Trev/4. Based
on the parameters used in our numerical calculations, we find
T (sca)

osc
∼= 2.33 μs, T

(sca)
fall

∼= 16.5 μs, and T (sca)
resume

∼= 199 μs, in
agreement with Fig. 4.

IV. DISCUSSION

The observation of the predicted quantum dynamical effects
for cold atoms orbiting in a light-induced potential surrounding
an optical nanofiber is within the scope of current nanofiber-
based quantum optics experiments. In particular, loading of
atoms and wave-packet preparation in stable orbits around the
nanofiber should be possible by starting with a stationary trap
in which the repulsion of the atoms from the nanofiber surface
is accomplished by means of a blue-detuned nanofiber-guided
light field [7,11–13]. After laser cooling of the atoms into
the vibrational ground state of the two-color optical potential,
the latter can then be set into rotation using polarization
modulators [16]. In this way, a repulsive centrifugal barrier
is built up which consecutively replaces the repulsive blue-
detuned potential, thereby transforming the two-color trap into
the angular-momentum trap (see Appendix).

We like to point out the connection of our loading mech-
anism to experiments on optical centrifuges for molecules
[17]: In both cases, the optical centrifuge and our scheme,
angular momentum is added to a particle using a light field.
However, the difference is that in the case of the optical
centrifuge the accelerating force originates from the strong-
field alignment of the anisotropic particles whereas in the
situation described here, (isotropic) atoms are accelerated by
specifically employing the optical dipole force of a light field
with an azimuthally varying intensity.

The proposed system can be seen as a two-dimensional
“artificial atom” where the orbiting atom and the nanofiber
take the role of the valence electron and the ion core,
respectively, while the Coulomb attraction is replaced by a
tunable light-induced potential. In view of the tunability of
the dispersion relation, this would then implement a versatile

experimental platform for the investigation of quantum wave-
packet dynamics.
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APPENDIX: TRAP LOADING AND WAVE-PACKET
PREPARATION

A possible experimental sequence to load the trap and to
prepare the initial wave packet in our system is shown in
Fig. 5. The sequence consists of a smooth transformation
of the two-color trap [12], followed by an abrupt switching
of the optical potentials. The dotted black line in Fig. 5(a)

FIG. 5. (Color online) Smooth transformation of the trapping
potential. (a) (Solid red and dashed blue lines) Optical powers
of the red- and blue-detuned trapping fields, respectively; (dotted
black line) rotational frequency of the polarization plane of the
blue-detuned trapping field. (b) (Solid red and dashed blue lines)
Radial and azimuthal trapping frequencies, respectively; (dotted black
line) rotational frequency of the polarization plane of the blue-detuned
trapping field. All quantities are given as a function of the mean
angular momentum quantum number m̄. The parameters of the
nanofiber are identical to what is assumed in the main text.
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shows the rotation frequency f of the polarization plane of the
blue-detuned trapping field while its power is indicated by the
dashed blue line. Both quantities are given as a function of the
mean angular momentum quantum number m̄. The rotation
frequency is monotonously increased, reaching f ≈ 190 kHz
at the end of the smooth transformation. The corresponding
mean angular momentum matches m0 = 468, as assumed in
the main manuscript. We note that f is not linearly proportional
to m̄ because the radial distance of the trapping minima slightly
varies during the sequence.

The power of the blue-detuned laser is reduced from about
15 mW to about 0.15 mW. This final power of the blue-detuned
laser provides sufficient azimuthal confinement such that the
azimuthal width of the initial wave function matches the width
of the wave packet shown in Fig. 3(a) of the main manuscript,
corresponding to a final azimuthal trap frequency ≈ 15 kHz
[see the dashed blue line in Fig. 5(b)]. In order to release the
prepared wave packet into the angular momentum trap, the
blue-detuned laser and, thus, the azimuthal confinement are
abruptly switched off. The wave packet will then propagate
freely and undergo collapse and revival dynamics.

For the above sequence, the red-detuned trapping field is
chosen in a standing wave configuration in order to ensure
axial confinement of the atoms. The power of this field is
continuously adjusted [Fig. 5(a), solid red line]. This ensures
that the trapping potential is sufficiently deep throughout the
entire sequence and that the radial position of the two-color
trap matches the radial position of the angular-momentum trap
at the end of the smooth variation.

In order to start the loading sequence with a well-defined
center-of-mass wave function, the atoms have to be prepared
in their motional ground state which is possible using standard
side-band cooling techniques [18,19]. The trap transformation
is then ideally carried out in such a way that no vibrational
excitation is present just before abruptly switching the trapping
fields. This either calls for an adiabatic transformation of
the potentials [20] or for a nonadiabatic optimal control
sequence [21]. In both cases, the implementation requires
the specification of a suitable temporal variation of the
experimental parameters as a function of time. In particular,
the rotation frequency f (t) has to be defined. Evaluating the
vibrational excitation probability for a given f (t) implies
solving the time-dependent three-dimensional Schrödinger
equation for the time-varying trapping potential over the entire
sequence and is beyond the scope of this work. A first analysis
of the classical stability of the trap during the variation of the
rotation frequency indicates that a region of instability can
occur if the rotation frequency lies between the radial and
the azimuthal trapping frequencies [22]. In order to minimize
the resulting vibrational excitation, a compromise between
a slow variation of the trap parameters and a fast crossing
of the instability region has to be found. The latter will
profit from approaching the radial and the azimuthal trapping
frequencies. In particular, when the trapping frequencies are
equal, even an adiabatic variation can be implemented. Under
these circumstances, the collapse and revival dynamics should
prevail and should be observable with the method that is
proposed in the main text.
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