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We report on experimental investigations of longitudinal collective oscillations in a highly elongated,
harmonically trapped two-component Fermi gas with resonantly tuned s-wave interactions (“unitary Fermi
gas”). We focus on higher-nodal axial modes, which in contrast to the elementary modes have received little
attention so far. We show how these modes can be efficiently excited using a resonant local excitation scheme and
sensitively analyzed by a Fourier transformation of the detected time evolution of the axial density profile. We
study the temperature dependence of the mode frequencies across the superfluid phase transition. The behavior is
qualitatively different from the elementary modes, where the mode frequencies are independent of the temperature
as long as the gas stays in the hydrodynamic regime. Our results are compared to theoretical predictions based
on Landau’s two-fluid theory and available experimental knowledge of the equation of state. The comparison
shows excellent agreement and thus both represents a sensitive test for the validity of the theoretical approach
and provides an independent test of the equation of state. The present results obtained on modes of first-sound
character represent benchmarks for the observation of second-sound propagation and corresponding oscillation
modes.
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I. INTRODUCTION

In ultracold quantum gases, measurements on collective
oscillations are well established as powerful tools to study
the many-body properties of the system [1,2]. Experiments on
collective modes reveal the dynamics in the different regimes
of superfluid, collisionally hydrodynamic, and collisionless
behavior. The eigenfrequencies can be determined very ac-
curately, which allows to extract valuable information on
the equation of state (EOS), with great sensitivity to subtle
interaction effects in the strongly interacting regime.

In ultracold Fermi gases [3–5], collective modes have been
widely applied to study the crossover from Bose-Einstein
condensation (BEC) to a Bardeen-Cooper-Shrieffer (BCS)
type superfluid. A situation of particular interest is the two-
component Fermi gas with resonant interactions, with an
s-wave scattering length tuned to infinity by means of a
Feshbach resonance [6]. This special case, which lies right
in the center of the BEC-BCS crossover, has attracted a great
deal of interest, mainly attributed to its universal properties.
The resonantly interacting Fermi gas is characterized by strong
interaction effects in the EOS [7–10] and reveals a unique
universal thermodynamic behavior [11].

So far, experiments on collective modes in harmonically
trapped Fermi gases have been restricted to a few elementary
modes. The most simple modes, sloshing modes, do not
provide any information on the properties of the quantum gas,
and their main application is thus to accurately determine the
trap frequencies. Surface modes are insensitive to the EOS,
but they allow to clearly distinguish between hydrodynamic
and collisionless behavior [12,13], and they have been used to
detect the angular momentum in a rotating Fermi gas [14,15].
Elementary compression modes of axial [16,17] and radial
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[16,18–22] character have been very widely studied in the
field. Such modes do not only probe the particular collision
regime, but they also give access to the compressibility of the
gas. However, for a unitary Fermi gas, the eigenfrequencies
of the simple compression modes do not show any variation
across the superfluid phase transition as the temperature is
varied [20,22]. This can be understood as a consequence of the
fact that superfluid and collisional hydrodynamics both lead
to the same frequencies. A rigorous proof for this temperature
independence can be given in terms of an exact scaling solution
of the hydrodynamic equations of motion [23]. The situation
is strikingly different for higher-nodal modes. Here the
frequencies vary across the superfluid phase transition, when
the dynamical regime changes from superfluid to collisional
hydrodynamics [24,25]. Such higher-nodal modes therefore
represent an interesting addition to the experimental toolbox
for probing strongly interacting Fermi gases.

We have recently carried out a series of experiments
on higher-nodal axial modes in the geometry of a highly
elongated trapping potential. First results on the temperature
dependence have already been presented in Ref. [24], and
the general theoretical framework is described in Ref. [25].
In this article we briefly summarize the main theoretical
predictions (Sec. II), we describe the experimental procedures
in more detail (Sec. III), and we present the whole set of our
experimental results obtained for two different higher-nodal
modes (Sec. IV). While we here restrict our attention to
modes of first-sound character, we note that the results are
important as benchmarks for the observation of second-sound
propagation [26] and in view of future experiments on second-
sound modes (Sec. V).

II. THEORETICAL PREDICTIONS

Higher-nodal collective modes in Fermi gases have been
theoretically studied based on Landau’s two-fluid equations
for an isotropic harmonic trapping geometry [27,28]. For real
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experiments, however, the situation of highly elongated har-
monic traps is more relevant. In this geometry, the description
can be reduced to a set of effectively one-dimensional (1D)
hydrodynamic equations, which only depend on the axial
coordinate z. This simplification leads to a powerful approach
to describe sound propagation and collective modes in experi-
mentally realistic situation. The basic approach was introduced
in Ref. [29] for a cylindrical trap geometry with tight radial
confinement. Reference [25] presents a generalization to the
situation of additional weak axial confinement, which readily
describes the commonly used geometry of a highly elongated
trap containing a “cigar-shaped” atomic sample. Here, we
summarize the main elements of this theoretical approach
and the corresponding predictions for higher-nodal modes of
first-sound character.

The two basic assumptions underlying the 1D hydrody-
namic approach are thermal equilibrium in the radial direction
and a flow field that is independent of the radial position.
This corresponds to conditions of sufficient heat conductivity
and sufficient shear viscosity, which are readily satisfied for
resonantly interacting Fermi gases under common trapping
conditions. Applying the local density approximation, one
can describe the thermodynamics and the flow properties of
the trapped sample using effective 1D quantities, which are
derived by integrating over the transverse degrees of freedom,
such that a thermodynamic quantity q yields a 1D counterpart
q1 = 2π

∫ ∞
0 q r dr .

For a first-sound collective mode with frequency ω, the local
flow speed can be expressed as v(z,t) = vz(z)e−iωt , where the
z-dependent amplitude vz(z) represents the spatial oscillation
of the flow velocity. The hydrodynamic equation that describes
vz(z) takes the form [25]

m
(
ω2 − ω2

z

)
vz − 7

5
mω2

zz∂zvz + 7

5

P1

n1
∂2
z vz = 0 . (1)

Here ωz represents the trap frequency along the axial direction,
m is the atomic mass, P1 is the “1D pressure” (having units
of force), and n1 is the linear number density. The equation is
valid for small-amplitude oscillations, which can be treated as
perturbations by linearizing Landau’s equations.

At zero temperature and in the classical limit of high
temperature the hydrodynamic equation (1) admits analytic
solutions of polynomial form vz = akz

k + ak−2z
k−2 + · · · ,

with integer values of k. At T = 0, where P1(n1)/n1 =
(2/7)[μ0 − (1/2)mω2

zz
2], with μ0 being the chemical potential

at the center of the trap, the frequency of the kth mode is given
by

ω2 = 1
5 (k + 1)(k + 5)ω2

z . (2)

In the classical limit, where P1/n1 = kBT , one finds the
different k dependence

ω2 = 1
5 (7k + 5)ω2

z . (3)

We point out that Eqs. (2) and (3) give the same values
for k = 0 (center of mass oscillation) and k = 1 (lowest axial
breathing mode). In fact, one can prove that the frequencies of
these two lowest modes are temperature independent for the
resonantly interacting gas (unitary Fermi gas), corresponding
to an exact scaling solution of the two-fluid hydrodynamic

equation [23]. On contrary, the frequencies of the k � 2 modes
vary with temperature.

We now focus on the modes with k = 2 and k = 3,
which are experimentally most relevant. Using a variational
approach [30], one can obtain their eigenfrequencies at finite
temperatures as

ω2
k=2 = 129t2 − 25

5(9t2 − 5)
ω2

z (4)

and

ω2
k=3 = 440t3 − 252

5(25t3 − 21)
ω2

z . (5)

In these equations t2 = M0M4/M
2
2 and t3 = M2M6/M

2
4 ,

where we have introduced the dimensionless moments

M� =
∫ βμ0

−∞
dx(βμ0 − x)(�+1)/2fn(x). (6)

Here the phase-space density fn(x) is a universal function [11]
defined by fn(x) = nλ3

T , where n is the three-dimensional (3D)
number density and λT = h/(2πmkBT )1/2 is the thermal de
Broglie wavelength. The dimensionless parameter x = βμ,
with β = 1/kBT and μ being the chemical potential, is
related uniquely to T/TF . The universal function fn(x) can
be determined from the recent EOS measurements [7–10]. In
this work, we make use of the latest results from Ref. [10].

One can also show that the velocity fields for the k = 2 and
k = 3 modes take the form

vk=2
z (z) ∝ 3mω2

zβ

2

M0(x0)

M2(x0)
z2 − 1 (7)

and

vk=3
z (z) ∝ 5mω2

zβ

6

M2(x0)

M4(x0)
z3 − z . (8)

Here the parameter x0 = βμ0 is the value of x at the center of
the trap. Finally, using the equation of continuity under the 1D
formulation ∂tn1 + ∂z(n1vz) = 0, one can calculate the shape
of the density oscillations for each mode.

III. EXPERIMENTAL PROCEDURES

A. Sample preparation

The starting point of our experiment is an ultracold,
resonantly interacting Fermi gas in an elongated optical dipole
trap. This gas is prepared by evaporating a balanced mixture
of fermionic 6Li atoms in their two lowest spin states at a mag-
netic field of 834 G, very close to the center of the well-known
broad Feshbach resonance [6,31]. The atomic cloud contains
typically N/2 = 1.5 × 105 atoms per spin state. For the lowest
temperatures, the waist of the trapping beam (wavelength
1075 nm) is 31 μm, the trap depth is about 2 μK, and the axial
and radial trap frequencies are ωz = 2π × 22.52(2) Hz and
ωr = 2π × 473(2) Hz, respectively. For experiments at higher
temperatures, the beam waist is increased to 38 μm, and deeper
traps are used (up to 16 μK depth) with trap frequencies of up
to ωz = 2π × 23.31(3) Hz and ωr = 2π × 1226(6) Hz. The
corresponding Fermi temperatures TF = h̄(3Nω2

r ωz)1/3/kB

vary between about 0.8 and 1.5 μK.
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To achieve the lowest possible temperatures, we perform
deep evaporative cooling up to the point where the trapping
potential cuts slightly into the Fermi sea, indicated by the
onset of spilling losses in the last stage of the evaporation.
After that, the gas is adiabatically recompressed by increasing
the trapping beam’s power to the extent where the trap depth
becomes at least twice more than the Fermi energy kBTF . This
recompression step is essential to ensure negligible anhar-
monicities in the radial confinement. The essentially perfect
harmonic confinement along the axial direction is ensured by
the magnetic trapping that results from the curvature of the
magnetic field used for Feshbach tuning [32].

We vary the temperature T of the gas by controlled heating,
always starting from a deeply cooled cloud (T/TF ≈ 0.1). In
the low-temperature range (T � 0.2 TF ), we simply introduce
a variable hold time of up to 4 s in which residual trap
heating slowly increases the cloud’s temperature. For the
higher-temperature range (0.2 TF < T < 0.5 TF ), we heat the
sample using parametric heating, modulating the trap power
at about 2ωr , and introducing a sufficient hold time to reach
thermal equilibrium between the different degrees of freedom.
We note that we use deeper traps for samples with higher
T/TF , because plain evaporation puts a limit on the maximum
attainable temperature of the gas.

B. Thermometry

We determine the temperature T of the gas by analyzing
its density distribution in the trap, based on knowledge of the
EOS. Under the local density approximation, one can readily
show for a harmonic trap that the 1D density profile n1(z) is
given by [9,33]

n1(z) = 2π

mω2
r

kBT

λ3
T

fp

(
x0 − 1

2
βmω2

zz
2

)
. (9)

Here the universal function fp(x) is related to the universal
function fn(x) introduced in Sec. II by fp(x) = ∫ x

−∞ fn(y) dy

and is therefore also known from a given EOS. The parameter
x0 is the value of x at the center of the trap.

In the ideal case where one is able to obtain an accurate
in situ measurement of n1(z) by imaging the trapped cloud,
it is straightforward to retrieve the parameters T and x0 by
fitting n1(z) using Eq. (9). However, in reality we have to
deal with imperfections of our absorption imaging scheme. To
extract the temperature in an accurate way, we have adopted
the methods described in detail in the Appendix.

C. Exciting and observing higher-nodal collective modes

We apply a resonant excitation scheme to create a col-
lective oscillation. Figure 1(a) illustrates the basic geometry
of our scheme, in which a repulsive 532-nm green laser
beam perpendicularly intercepts the trapping beam. The laser
beam configuration is similar to the classical scheme for the
excitation of sound waves in quantum gases [34,35]. To excite
a mode, we position the green beam near the antinode of
the mode and modulate its power at the expected frequency of
the mode. The amplitude, duration and shape of the modulation
are carefully adjusted in order not to overdrive the excitation

imaging

time0
0

mode 
evolution

P0

(a)

(b)

po
w

er

FIG. 1. (Color online) Experimental scheme to excite higher-
nodal first-sound longitudinal modes. (a) We illustrate the basic
geometry of exciting the optically trapped cloud with a weak, power-
modulated repulsive laser beam, which perpendicularly intersects the
trapping beam. (b) We show the power modulation of the repulsive
beam for the excitation.

while maintaining sufficient signal-to-noise ratio. We adopt
an excitation pulse that contains eight cycles of sinusoidal
modulation with a half-cycle sine envelope [36]; see the
illustration in Fig. 1(b). We set the maximum barrier height of
the green beam to about 0.01 kBTF . Depending on the order
of the mode to be excited, this is realized with beam waists
ranging from 30 μm to 70 μm and values of the maximum
power P0 between 400 μW and 3 mW. The eight-cycle pulse
is chosen such that the resulting total excitation duration
is not too long as compared to the damping time of the
highest-nodal mode that we can observe. The smooth half-
cycle sine envelope reduces the Fourier width and avoids side
lobes in the spectrum, thereby suppressing the excitation of
unwanted modes. For an efficient excitation of a given mode,
we find that the width of the green beam should well match
the local mode profile at the selected antinode, while the
excitation frequency should be within 1% of the actual mode
frequency.

Once a collective mode is excited, we record the axial
density profiles n1(z,t) of the gas for a variable time delay t

after the excitation pulse, where n1(z,t) is the number density
integrated over the transverse degrees of freedom. These
profiles are obtained with a probe beam that perpendicularly
intercepts the trapping beam, and are taken 600 μs after
suddenly releasing the atoms from the optical trap [37]. To
enhance the visibility, we subtract a background profile n̄1(z)
obtained from averaging the profiles over all measured delay
times. This gives a differential density variation function
δn1(z,t) = n1(z,t) − n̄1(z), which is finally normalized to the
maximum linear density n̄1(0) at the trap center. In the top
panel of Fig. 2, we show examples of this signal for the k = 1,
2, and 3 modes for the coldest samples with T/TF ≈ 0.1.
One can see that the adjacent antinodes always oscillate in
opposite directions, similar to standing waves on a guitar
string.
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FIG. 2. (Color online) Observed collective modes in the time domain and in frequency space versus axial position. The three columns
refer to the mode orders k = 1, 2, and 3. The normalized density variation signals δn1(z,t)/n̄1(0) (top row), their Fourier transforms δñ1(z,ω)
(middle row), and the mode profiles δñk

1 (bottom row). The measurements were taken for our coldest samples with T/TF ≈ 0.1. The arrows in
the bottom panel show the positions of the repulsive excitation beam for each mode. Note that for efficient excitation we adjust the width of
the excitation beam to match the local profile at the chosen antinode. While, for k = 1 and 3, the beam is centered and addresses the central
antinode, the beam is spatially offset for the k = 2 mode.

D. Analyzing the eigenmodes: Extracting mode profiles,
frequencies, and damping rates

The first step to analyze the observed time-dependent
profiles δn1(z,t) is a Fourier transform, yielding a represen-
tation of our data in frequency space, δñ1(z,ω) [38]. For this
purpose we employ a fast Fourier transform (FFT) algorithm.
Corresponding results are shown in the middle panel of Fig. 2,
as calculated for each time-dependent oscillation profile in the
top panel. The discrete nature in frequency space becomes
evident, with very little noise in the background.

It is straightforward to extract the mode profiles δñk
1(z) from

the FFT results by setting δñk
1(z) = δñ1(z,ωk), where ωk is the

eigenfrequency of the kth mode. The corresponding mode
profiles for the k = 1, 2, and 3 modes are shown in the bottom
panel of Fig. 2. Experimentally, we make use of the mode
profiles and the frequencies obtained in this way to optimize
the beam waist and the modulation frequency in our excitation
scheme. We proceed iteratively, which eventually allows for
an optimum excitation of a single mode.

To extract the mode frequencies more precisely than it is
possible by simply analyzing the peaks in the corresponding
Fourier spectrum, we adopt the following algorithm. We
project δn1(z,t) onto the mode profile δñk

1(z) to obtain a mode

amplitude function A(t) = ∫ ∞
−∞ δn1(z,t)δñk

1(z) dz. Then we
fit a simple damped harmonic oscillation to A(t) to obtain the
frequency and the damping time of the mode. This projection
procedure is analogous to the projection of a superposition
wave function onto one of the orthogonal eigenstates of a
quantum system. It greatly enhances the signal-to-noise ratio
and results in very low statistical uncertainties for the mode
frequencies, with relative uncertainties as low as in the range
of a few permille.

In Fig. 3 we show examples of A(t) for the k = 1, 2, and 3
modes obtained from samples with T/TF ≈ 0.1. For the k = 1
compression mode (upper panel), the observed behavior does
not show any damping. Even data taken after a much longer
delay time of 3 s (not shown) do not reveal any significant
damping. In contrast, the higher-nodal modes show clear
damping. At the lowest temperatures, the 1/e damping time
for the k = 2 mode (middle panel) is about 1.5 s, and that for
the k = 3 mode (lower panel) is about 0.3 s.

We finally note that we have not succeeded in observing
modes with k � 4, despite of considerable efforts. We believe
that this is due to a fast increase of damping with the mode
order, which is clearly indicated by our data for the k = 1,2,3
modes. Large damping affects both our resonant excitation
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FIG. 3. (Color online) Evolution of the k = 1 (top), k = 2
(middle) and k = 3 (bottom) mode amplitudes at T/TF ≈ 0.1. The
black circles represent the experimental data for A(t) normalized to
the maximum value Amax of |A(t)|. The red solid lines are the fits to
the data based on simple damped harmonic oscillations.

scheme and the detection of the mode by means of a Fourier
transform, which may explain a huge difference between the
observed mode with k = 3 and the unobserved mode with
k = 4.

E. Checking for systematic errors

The real experiment is an approximation to the ideal sce-
nario of a small-amplitude oscillation in a perfectly harmonic
trap, as described in the theoretical approach in Sec. II.
Here we investigate in how far our data are influenced by
anharmonicities of the trapping potential and nonlinear effects
arising from the finite amplitude of the mode, and we identify
the conditions that ensure a reliable comparison between the
measurements and the theoretical predictions.

The axial compression mode (k = 1) serves us as a
benchmark to rule out a significant effect of anharmonicities.
This mode has been studied extensively before [16,17] and, in
the unitarity limit, its frequency is temperature independent
as long as the gas remains hydrodynamic [23]. Only for
very shallow traps, we observe a k = 1 mode frequency that
is lower than expected. We find that trap depths of twice
the noninteracting Fermi energy are sufficient to observe a
frequency very close to the ideal value of ωk=1 = √

12/5 ωz

throughout the full temperature range explored in the present
work. Deviations from this value remain below 0.3% and no
significant temperature dependence is observed.

We checked for a possible nonlinear behavior by delib-
erately overdriving the collective modes. We measured the
frequency and damping time of each collective mode versus
the power of the excitation beam. Figure 4 shows the results of
such a measurement for the k = 3 mode for the coldest samples
used in our work. The measurements show that the frequency
stays constant within the measurement uncertainties up to a

z
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FIG. 4. (Color online) The normalized oscillation frequency (a)
and 1/e damping time (b) of the k = 3 mode versus the power P0

of the green excitation beam [36]. The three insets in (a) show the
axial density profiles of the atom cloud at the turning points of the
mode oscillation for three different excitation powers. The error bars
denote the standard errors obtained from fitting A(t).

power P0 ≈ 1 mW. The fact that the spatial profile is already
strongly affected (see insets) shows that the mode frequency is
rather robust against nonlinearities. The mode damping time
exhibits a similarly robust behavior with a slight trend to be
affected already at somewhat smaller excitation amplitudes.
The excitation power P0 is always kept small enough to avoid
significant effects on the mode frequencies.

IV. EXPERIMENTAL RESULTS

Here we present our main experimental results and compare
them with the predictions of Sec. II. We consider the
two modes with k = 2 and k = 3 and discuss how their
eigenfrequencies and the corresponding mode profiles depend
on the temperature. We furthermore present data on the
temperature-dependent damping of the two modes.

In Figs. 5(a) and 5(b), we show the measured mode
frequencies ωk=2 and ωk=3 versus temperature, normalized to
the axial trap frequency ωz. The two limiting cases of a T = 0
superfluid and a classical collisionally hydrodynamic gas are
indicated by the upper and the lower horizontal dashed lines in
both panels, see Eqs. (2) and (3). The theoretical predictions
according to Eqs. (4) and (5) and the EOS from Ref. [10] are
shown by the solid lines. For comparison, the hypothetical
frequencies calculated with the EOS of a noninteracting Fermi
gas are shown by the dashed lines. For the k = 2 mode we
have applied both thermometry methods as described in the
Appendix, with the open symbols representing the results from
the wing-fit method (Appendix 2) and the filled symbols from
the potential-energy method (Appendix 3). For the k = 3 mode
we have applied only the first method.

For the k = 2 mode [Fig. 5(a)], the measured mode fre-
quencies are in almost perfect agreement with the theoretical
predictions based on the EOS from [10]. In comparison, the
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SÁNCHEZ GUAJARDO, TEY, SIDORENKOV, AND GRIMM PHYSICAL REVIEW A 87, 063601 (2013)

FIG. 5. (Color online) Comparison between experimental and
theoretical first-sound frequencies for (a) the k = 2 and (b) the k = 3
mode. (a) The reduced temperature T/TF is obtained by the two
different methods described in the Appendices 2 (open red symbols)
and 3 (filled black symbols). (b) T/TF is extracted by only using the
first method. The theoretical curves (solid lines) are obtained with
Eqs. (4) and (5) using the EOS of Ref. [10]. For comparison, we also
show the mode frequencies (dashed curves) that would result from
the same equations but using the EOS of the ideal Fermi gas. In both
panels, the upper and lower thin horizontal dashed lines mark the
zero-T superfluid limits and the classical hydrodynamic limits whose
values are given by Eqs. (2) and (3), respectively. The dash-dot vertical
lines indicate the critical temperature Tc/TF = 0.223(15).

disagreement with the dependence that would result from
the EOS of the ideal Fermi gas highlights the important
role of interactions. At the lowest temperature realized in
our experiment (T/TF ≈ 0.1), the frequency lies close to
the T = 0 superfluid limit (ωk=2/ωz = 2.049), but already
shows a significant down-shift amounting to almost 1%.
This illustrates the high sensitivity of the mode frequency
to finite-temperature effects. At the highest temperatures
(T/TF ≈ 0.45) our data show a clear trend to go below
the asymptotic high-temperature value (ωk=2/ωz = 1.949),
which corresponds to the classical hydrodynamic case. This
nonmonotonic temperature dependence can be understood
based on the first-order correction to the EOS resulting from
the virial expansion [39] at high temperatures.

For the k = 3 mode [Fig. 5(b)], the general behavior is
very similar to the k = 2 mode, with the main difference that
the relative frequency change from superfluid to collisional
hydrodynamics (ωk=2/ωz = 2.530 and 2.280, respectively) is
about two times larger. For temperatures below 0.2 TF we find
similarly good agreement as in the k = 2 case. However, for
higher temperatures there is a significant trend to lie above the
predicted frequencies, so that we never observe values below
the high-temperature limit. This discrepancy is most likely
due to dissipative effects, which manifest themselves in mode
damping. Landau’s equations used as a basis for describing
the collective modes do not contain dissipative terms and can

FIG. 6. (Color online) Measured amplitude damping rates 	k of
the k = 2 (blue open circles) and the k = 3 (red filled diamonds)
modes versus temperature, normalized to the axial trap frequency ωz.

therefore not make any predictions on the damping behavior.
We can therefore address the question of damping only from
the experimental side.

In Fig. 6 we show the normalized damping rates for the
amplitudes of the k = 2 (blue open circles) and the k = 3 (red
filled diamonds) modes, measured at various temperatures.
The damping rate of the k = 3 mode is always several times
higher than that of k = 2, and it strongly increases as the
cloud gets hotter. It is evident that the situation, where we
have observed significant deviations in the mode frequencies
(k = 3 and T/TF � 0.2), coincides with the case of highest
damping rates (exceeding 10 s−1). It is known that violation of
the 1D condition assumed in Sec. II would result in a damping
of the collective oscillation. Therefore, a higher damping rate
could naturally be accompanied with a larger deviation from
the prediction using the 1D formulation of the Landau’s two-
fluid model. This supports our interpretation of the observed
frequency deviation in terms of dissipative effects.

For an accurate determination of temperature-dependent
frequency shifts in our experiment, the k = 2 mode turns out
to be superior to the k = 3 mode. Our results indicate that
the advantage of the latter mode to exhibit larger frequency
changes is overcompensated by the larger damping, which
introduces larger statistical uncertainties (see error bars in
Fig. 5) and apparently also systematic errors. However, for
larger trap aspect ratios than applied in our experiment, the
situation may be different and higher modes may provide
further interesting information.

In Figs. 7(a) and 7(b), we finally show the observed spatial
profiles of the k = 2 and k = 3 modes, in comparison to
the corresponding theoretical predictions. For both modes we
present data sets for the lowest temperature that we could
realize (T/TF ≈ 0.1) and for the highest temperature explored
(T/TF ≈ 0.45). In the first case, the situation is deep in the
superfluid regime, whereas the second case corresponds to the
classical hydrodynamic case. For reference, Fig. 7(a) shows
the corresponding spatial profiles of the unperturbed cloud,
from which we obtained the temperature following the method
of Appendix 3. The agreement between the experimentally
observed mode profiles and the theoretical predictions is
remarkable. Within the experimental uncertainties and with the
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FIG. 7. (Color online) Comparison of experimental mode profiles
(data points) and theoretical predictions (solid lines) for two different
temperatures. (a) We show the cloud profiles obtained with a 2-ms
TOF. The solid lines show the density profiles obtained from the
EOS [10] with T/TF = 0.10 and 0.45. (b) We show the experimental
and theoretical k = 2 mode profiles at the indicated temperatures.
(c) The comparison for the k = 3. The z scale is normalized to the
Thomas-Fermi radius ZTF of the zero-T interacting gas, which is a
factor of ξ 1/4 ≈ 0.78 [10] smaller than in the noninteracting case.

mode amplitude being the only fit parameter, we find a perfect
match. This again highlights the validity of the theoretical
1D framework and power of our experimental approach to
higher-nodal collective modes.

V. CONCLUSIONS AND OUTLOOK

We have presented an efficient toolbox to excite and
detect higher-nodal axial collective modes in a resonantly
interacting Fermi gas. Our results (see also Ref. [24]) reveal
the pronounced temperature dependence below and near the
superfluid phase transition, which is theoretically predicted in
the framework of a 1D two-fluid hydrodynamic model [25].
The observed temperature dependence is a unique feature of
higher-nodal modes and has not been observed in any other
collective mode studied in Fermi gases so far. The excellent
agreement of the experimentally observed mode frequencies
with the theoretical predictions provides a stringent test for
the validity of this 1D approach and provides an independent
confirmation of the recently measured EOS [10] of the
resonantly interacting Fermi gas.

We have also reported preliminary studies on the mode
damping behavior, which show a strong increase of the mea-
sured damping rates with the order of the mode investigated.
Dedicated experiments on damping could provide valuable

information on the viscosity and the thermal conductivity of
the strongly interacting Fermi gas, which may provide further
insight into fundamental questions related to viscosity [40–42].
A better understanding of damping would also be important
to understand the limitations of the theoretical approach [25]
applied to describe the modes.

Generalizations of our experiments to first-sound collective
modes in the BEC-BCS crossover regime [4–6] and to
spin-polarized Fermi gases [17,43,44] will be rather straight-
forward. A very exciting prospect is the extension to second-
sound modes [25,28], where the superfluid and the normal
component oscillate in opposite phase. A recent experiment
[26] shows the propagation of second-sound pulses along the
trap axis, in agreement with a theoretical description based
on the same approach that is used in the present work. This
observation may, in principle, be interpreted in terms of a
superposition of several second-sound modes, but the selective
excitation and observation of individual modes of this kind
remains an experimental challenge for future experiments.
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APPENDIX: TEMPERATURE DETERMINATION

The recorded in situ density profiles n1(z) are influenced
by imperfections in the imaging process. While, under our
experimental conditions, the limited resolution and optical
aberrations do not play any significant role, we have identified
another problem (Appendix 1) that can considerably affect our
thermometry. We here discuss our strategies to circumvent this
problem, presenting our two methods (Appendices 2 and 3) to
extract the temperature from the observed profiles.

1. Imperfections of absorption imaging

In situ absorption images and images taken with a short
time of flight (TOF) reveal an apparent reduction of the
effective absorption cross section, which predominantly occurs
in the denser regions of the cloud. To illustrate this effect, we
show in Fig. 8 how the apparent atom number, i.e., the atom
number obtained under the assumption of the full absorption
cross section, depends on the TOF after release from the trap
for two experimental settings corresponding to a number of
N = 1.2 × 105 atoms (red diamonds) and 4.8 × 105 atoms
(black circles) in the trap. Only after a TOF of 2 ms the
apparent atom number reaches a constant maximum value,
which corresponds to the true atom number. It is evident that
our in situ imaging underestimates the actual atom numbers by
about 15% for the data set with N = 1.2 × 105, and by about
30% for N = 4.8 × 105.

We do not fully understand the reason for this reduction,
which is clearly related to the high density of the cloud, but
it is not related to a “blackout” effect, in which the imaging
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×

FIG. 8. (Color online) Apparent atom numbers obtained with
different times of flight while keeping other experimental parameters
unchanged. The red diamonds and the black circles represent the data
sets with N = 1.2 × 105 and 4.8 × 105 atoms, respectively.

light is completely absorbed by a very dense cloud. In our
case, the maximum optical density is about one, which can
be properly accounted for by the exponential decrease of the
transmission with increasing column density. We speculate that
the underlying mechanism is related to multiple scattering of
a photon by a few neighboring atoms when the atoms are very
closely packed, thereby reducing the effective absorption cross
section of the atoms [45]. For our geometry, this effect should
be important when the photon’s “mean free path” becomes
comparable to the radial size of the cloud, which is indeed the
case for our experimental conditions.

By analyzing profiles obtained for different times of flight
we found that the imaging problem mainly affects the center
of the cloud, where one finds the largest density. Therefore
the problem does not only result in smaller apparent atom
numbers, but it also distorts the density distribution n1(z) of the
cloud as obtained by in situ absorption imaging. To determine
the temperature of the cloud in spite of this problem, we
have adopted the two different methods described below. Each
method has its own systematic uncertainties. Their accuracies
can only be judged a posteriori by their mutual agreement and
also by their agreement with certain theoretical predictions.

Both methods rely on the accuracy of the total atom number
N . We obtain this number through a very careful calibration
of the imaging process and the imaging system. For imaging,
we typically adopt a 10-μs-long imaging pulse and keep the
probe intensity less than 4% of the saturation intensity. These
parameters keep the total number of photon scattering events
per atom small, thereby minimizing the photon-recoil-induced
Doppler-detuning effect [46,47] on the light 6Li atoms. We
estimate the uncertainty in the resulting atom number to be
typically about 10%, in any case below 20%.

2. Wing-fitting method

In the first method, we obtain the cloud’s temperature by
fitting Eq. (9) to the wings of a 1D density profile taken after
a 600 μs TOF [37], with N determined independently from
a corresponding 2-ms TOF image. The wings, where n1(z) is
relatively small and the total absorption is weak, are essentially

FIG. 9. (Color online) Typical fit to the wings of the 1D density
distribution to determine T/TF from Eq. (9). The filled circles
represent the data used for fitting, and the solid line is the full profile
according to the fit. The open circles represent the remaining data
that were not used in the fit because of the problem to determine
the correct linear density in the center of the cloud. Here a TOF of
600 μs was applied, the total atom number is N = 4.2 × 105, and the
temperature is T/TF = 0.36.

free of the image distortion as described above. An example for
a typical wing fit is shown in Fig. 9. The figure also illustrates
the difference between the true density profile as reconstructed
by the wing fit (solid line) and the distorted observed one (data
points).

In practice, we adjust the number of data points used for
the wing fit until we obtain an atom number very close to the
actual value obtained using a sufficiently long TOF. Sometimes
we have to use different numbers of data points in each wing
when the profile on the wings is not fully symmetric. This
issue is caused mainly by optical aberrations in the imaging
system. Nevertheless, we always find the same T/TF within
an uncertainty of 10% to 15% using this procedure for samples
prepared by the same experimental sequence. We also do not
observe a clear deviation in the so obtained temperature when
varying the TOF from 0 to 600 μs. Our experience shows that
the accuracy of T/TF obtained from this method is not very
sensitive to slight distortions in the wing profiles. Instead, it
depends more crucially on the correct atom number N .

3. Potential-energy method

In the second method, we characterize the temperature in
a model-independent way that does not require any a priori
knowledge of the EOS. Based on the virial theorem [48] we
can obtain the total energy E of the harmonically trapped cloud
from its potential energy, which can be calculated from the 1D
density profile n1(z) according to E = 3mω2

z

∫ ∞
−∞ n1(z)z2 dz.

We define a dimensionless parameter E/E0, where E is
normalized to the energy of a noninteracting, zero-temperature
Fermi gas with the same number of atoms, E0 = 3

4NkBT .
To obtain an accurate value for E/E0 it is essential to have

accurate knowledge of n1(z). Here we overcome the above-
discussed distortion problem by “reconstructing” the correct
profile. We measure the density profiles of the cloud for two
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FIG. 10. (Color online) Relation between E/E0 and T/TF for a
3D harmonic trap. The solid and the dashed lines correspond to the
results obtained using the EOS from Ref. [10] and the EOS of the
noninteracting Fermi gas, respectively.

different times of flight, 600-μs and 2 ms. The corresponding
profiles n1(z,600 μs) and n1(z,2 ms) provide complementary
information. While the 600-μs profile provides accurate
information on the wings, it underestimates the central part
of the cloud. In contrast, the 2-ms profile suffers in the wings
from the expansion, but gives accurate information on the
central part of the cloud. With an appropriate algorithm to
combine this information we can reconstruct the full profile
with reasonable accuracy. The reconstructed profile shows

approximately the correct atom number and it maintains the
wing distribution, which has large weights ∝z2 in the total
energy E.

We can now convert E/E0 into T/TF using the EOS from
Ref. [10]; for a related discussion see Ref. [42]. Using the
universal thermodynamic relations of a resonantly interacting
Fermi gas, one can show that E/E0 is related to the x0 = βμ0

at the center of the trap by

E

E0
= 4(2π )1/2M2(x0)

3(3
√

2π )1/3M
4/3
0 (x0)

, (A1)

while the x0 is related to T/TF by

T

TF

= (2π )1/2

[24
√

2πM0(x0)]1/3
. (A2)

Figure 10 shows the conversion between E/E0 and T/TF for a
resonantly interacting Fermi gas in comparison with the ideal
non-interacting Fermi gases. For the resonantly interacting
Fermi gas at T = 0, E/E0 = √

ξ . Here ξ is the Bertsch
parameter, for which Ref. [10] gives the value ξ = 0.376(4).
For the ideal Fermi gas at T = 0, E/E0 = 1 by definition.

We finally note that we applied both methods to various
data sets to check whether they produce consistent results.
In general we find satisfying agreement with each other, as
the example of the data set in Fig. 5(a) shows. At very low
temperatures, the wing-fit method shows a trend to give slightly
lower values of T (up to ∼10%) as compared to the potential-
energy method. This indicates small systematic uncertainties
of our methods.
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