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Dynamic stabilization of ionization for an atom irradiated by high-frequency laser pulses
studied with the Bohmian-trajectory scheme
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We study the atomic ionization process in high-frequency laser pulses by the Bohmian-trajectory scheme.
Combined with the analysis of the trajectories of Bohmian particles and the time-dependent potential well based
on the Kramers-Henneberger transformation, we find that there are two kinds of forces that act on each Bohmian
particle (BP): the classical force from the combined potential of the atomic Coulomb potential and the laser field
and the quantum force. By investigating the forces acting on different BPs, we find that the quantum force plays
an important role in the atomic ionization process in the laser pulse.
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I. INTRODUCTION

Recently, with the development of the laser technique,
especially, the application of the high-order harmonic sources
and the realization of the free-electron laser pulses [1–6],
it is possible to experimentally investigate the ionization
process of an atom in a high-frequency intense laser pulse.
On the other hand, the ionization of an atom in a superintense
high-frequency laser field has been studied theoretically for
more than 20 years. Based on the theoretical research, a
counterintuitive phenomenon has been found: The ionization
probability of an atom in a superintense high-frequency
laser field may decrease with the laser intensity when the
laser intensity exceeds a critical value [7–9]. This ionization
stabilization phenomenon has attracted a lot of interest since
it was found [9–15]. Using the numerical solution of the
time-dependent Schrödinger equation (TDSE), it was found
that the dynamical stabilization of the atomic ionization exists
in both one- and three-dimensional calculations. Furthermore,
the influence of the laser conditions on the stabilization of
atomic ionization has been considered [9–12]. Then, similar
phenomena have been found in the ionization process of
Rydberg atoms in intense laser fields and have been confirmed
by relevant experiments [13–15]. More recently, the ionization
stabilization process has also been studied in the two-electron
atomic system, and the influence of the correlation between
electrons on it has been investigated [16,17].

In general, the stabilization phenomenon of an atom in a
high-frequency laser field can be explained by the Floquet
theory under the Kramers-Henneberger (K-H) transformation
[9,18]. Under the K-H transformation, the interaction between
laser and atom can be expressed by a unified time-dependent
potential function. If the laser’s electric field can be treated as
a monochrome plane wave, the time-dependent problem of the
atom-laser system can be transformed into a time-independent
problem. As the duration of the high-frequency laser pulse is
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very long, the behavior of the electron in an atom can be well
described by a Floquet ground state. However, as the pulse
duration dwindles, several Floquet excited states (shake up)
and even Floquet ionized states (shake off) need to be con-
sidered to express the behavior of the electron. In such cases,
the Floquet method does not have an obvious advantage for
explaining the ionization of the atom explicitly and succinctly.

Although the TDSE calculation may provide an accurate
simulation result, it cannot present a clear physics picture about
the origin of the atomic ionization stabilization. To overcome
this difficulty, we employ the Bohmian-trajectory (BT) scheme
to investigate the atomic ionization under the action of high-
frequency laser pulses. In the BT scheme, the electron is
described by an ensemble of Bohmian particles (BPs) whose
motions are ushered by the wave function of the atom [19,20].
This method has been applied successfully in the study of
quantum chaos [21] and double-slit experiments [21,22].
Recently, the BT scheme has been used to investigate the
interaction between strong laser pulses and atoms or molecules
[23–26]. For example, Lai et al. [23] investigated the quantum-
classical correspondence in the atomic ionization process in an
intense laser field. Takemoto and Becker [24] studied the ultra-
fast electron dynamics of a hydrogen molecular ion in a strong
laser pulse. Sanz et al. [25] investigated the mechanism of high
harmonic generation of an atom irradiated by a laser pulse.

In this paper, we study the ionization stabilization of an
atom in a high-frequency laser pulse using the BT scheme. We
first solve the TDSE and obtain the time-dependent atomic
wave function, then calculate the dynamical behaviors of
Bohmian particles by using the wave function and, at last,
obtain the ionization information of the atom. The BT method
is presented in Sec. II. Using the selected Bohmian trajectories,
we study the dynamic process of the atomic ionization. The
dynamic profile of the Bohmian trajectory in different laser
intensities is analyzed in Sec. III. Finally, the main conclusion
is summarized in Sec. IV.

II. THEORETICAL METHODS

In order to analyze the atomic ionization process in a
laser pulse by the BT scheme, we need to solve the TDSE
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that describes the interaction between an atom and a laser
pulse. Since the stabilization phenomenon of the atomic
ionization exists in one- or three-dimensional cases, we can
reasonably investigate the dynamic ionization process of an
atom by using the one-dimensional model for simplicity. The
one-dimensional TDSE for an atom in an intense laser pulse is
given by (atomic units are used throughout, unless otherwise
stated)

i
∂ψ(x,t)

∂t
=

[
− 1

2

∂2

∂x2
+ V (x) − E(t)x

]
ψ(x,t), (1)

where V (x) is the soft Coulomb potential describing the
interaction between the electron and the nucleus,

V (x) = −q/
√

x2 + α. (2)

In this paper, we set q = 1 and α = 2, hence, the lowest
bound energy is −0.5, which corresponds to the ground-state
energy of the hydrogen atom. The laser’s electric field E(t) in
Eq. (1) is as follows: E(t) = − ∂A(t)

∂t
, where A(t) is the laser’s

vector potential,

A(t) = E0f (t) sin(ωt + φ). (3)

Here, E0, ω, and φ are the peak amplitude, the frequency,
and the carrier-envelope phase, respectively, of the laser pulse,
and f (t) = sin2(ωt/2τR) is the envelope of the laser’s electric
field with τR being the pulse duration. To solve Eq. (1), in this
paper, a symmetric splitting Fourier-transformation scheme is
adopted [27,28].

To obtain the Bohmian trajectories, we need to generate
an ensemble of Bohmian particles xi,i={1,...,Ntr} by using the
probability density distribution of the atomic ground state
where the initial position of each BP is determined by this
density distribution. Here, we assume that the weight of each
trajectory is the same, i.e., 1/Ntr with Ntr being the total
number of BTs. According to Bohmian mechanics [19,29],
the velocity of the kth BP is

vk(t) = Im

[
1

ψ(x,t)

∂

∂x
ψ(x,t)

∣∣∣∣
x=xk (t)

]
, (4)

where the wave function ψ(x,t) is obtained by solving Eq. (1).
Integrating the above equation, the position of the

Bohmian particle at moment t can be obtained by
xk(t) = xk (t = 0) + ∫ t

0 vk(t ′)dt ′. According to position
xk and velocity vk of each BP, its potential energy in
the combined potential of the atomic Coulomb and the
laser field is Vk = V (xk) − E(t)xk , and its kinetic energy
is Ek = −Re{ψ∗(x,t)ψ ′′(x,t)/[ψ∗(x,t)ψ(x,t)]}/2|x=xk

=
vk(t)2/2 + Q(xk), where vk(t)2/2 is the classical kinetic
energy and Q(xk) is the quantum potential. Summing up the
potential energy Vk and the kinetic energy Ek , the total energy
of each BP is obtained. Therefore, if the BP’s total energy
is larger than zero, it is ionized; otherwise, it is still bound.
By counting the number of the ionized Bohmian particles
at the end of the laser pulse, we may obtain the ionization
probability by the Bohmian-trajectory method.

For the purpose of comparison, we also calculate the
ionization of an atom in a laser pulse using the TDSE method.
By projecting each bound state onto a wave function at the end
of the laser pulse, one can obtain the population amplitude

of the bound state cn = 〈φn|ψ〉, and hence, the ionization
probability of the atom is as follows:

Pion = 1 −
∑

i

|ci |2. (5)

III. RESULTS AND DISCUSSIONS

In this paper, without loss of generality, we set the laser
parameters as that the pulse duration is τR = 10 optical
cycles, the laser carrier frequency is ω = 1, and the peak
intensity of the laser pulse changes from 1015 W/cm2 to about
1017 W/cm2. We should mention that, for the laser conditions
considered here, the dipole approximation is still suitable. This
is because the laser intensity we used here is much smaller than
1018 W/cm2 where Sorngard et al. [16] pointed out that the
nondipole effects begin to play an important role as the laser’s
electric-field strength is larger than 20 (i.e., the intensity is
larger than 1018 W/cm2). Moreover, since we find that our
results are insensitive to the carrier-envelope phase φ of the
laser pulse, we set φ = 0 for simplicity throughout this paper.

Figure 1 presents the atomic ionization probability as a
function of the peak strength of the laser’s electric field.
The solid square in Fig. 1 is the result by solving the
TDSE, whereas, the solid circle and the solid triangle are the
results by the Bohmian-trajectory method with Ntr = 5000
and 50 000, respectively. One can find that the ionization
suppression occurs in Fig. 1 where the atomic ionization
probability increases with laser intensity until it gets its
maximum value at about E0 = 1.8, then the probability
decreases with the laser intensity. In Fig. 1, it shows that
the results by the Bohmian-trajectory method agree well with
that by the quantum numerical calculation, which indicates
that we may study the ionization mechanism by analyzing the
characteristics of the Bohmian trajectories in the ionization
process.

In order to understand the mechanism of the atomic
ionization stabilization in a high-frequency laser pulse, we
now consider the time evolution of the density distribution of
the electron in the combined potential of the Coulomb and the
laser’s electric field by solving the TDSE. Figure 2 presents the
time evolution of the density distribution as the peak amplitude
of the laser’s electric fields as follows: (a) E0 = 1, (b) 1.8, and

FIG. 1. (Color online) Change in the ionization probability with
the peak amplitude of the laser electric field.
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FIG. 2. (Color online) Evolution of the time-dependent proba-
bility density in different electric fields: (a) E0 = 1 a.u.; (b) E0 =
1.8 a.u.; (c) E0 = 2.8 a.u.

(c) 2.8. As shown in Fig. 2(a), when the laser intensity is low
[Fig. 2(a)], no ionization occurs at the rising and falling edges
of the laser pulse, and the ionization mainly occurs at the
peak of each half-optical cycle around the peak region of the
laser pulse. As the peak amplitude of the laser’s electric field
increases to E0 = 1.8 in Fig. 2(b), the evolution of electron
density is similar to the case of E0 = 1, and the difference is
that more laser cycles are involved in the ionization process
and the ionization probability increases due to the higher peak
amplitude of the laser’s electric field. However, as the peak
amplitude increases to E0 = 2.8 as shown in Fig. 2(c), there
exhibits a very different ionization situation: The ionization of
the electron mainly occurs at the rising and falling edges of the
laser pulse, whereas, there is no electron being ionized around
the peak of the laser field. Consequently, the phenomenon of
the atomic ionization suppression in such a high-frequency
laser pulse can be attributed to the existence of a time region
around the peak of the laser pulse that no ionization has
happened.

In the following, we will explain the above quantum
numerical results by analyzing the characteristics of the corre-
sponding Bohmian trajectories. Figure 3 presents 200 BTs in
the laser field with its peak amplitude: (a) E0 = 1, (b) 1.8, and
(c) 2.8. From Fig. 3, it can be seen that the behaviors of the BTs
agree with the time-evolution features of the electron-density

FIG. 3. (Color online) Time evolution of BTs in different electric
fields: (a) E0 = 1 a.u.; (b) E0 = 1.8 a.u.; (c) E0 = 2.8 a.u.

FIG. 4. (Color online) Change in the K-H potential VK-H(x,t) and
BTs as a function of time.

distribution shown in Fig. 2 where a few Bohmian particles are
ionized around the peak of the laser pulse when E0 = 1, and
then the number of the ionized BPs increases as the amplitude
E0 increases to E0 = 1.8. Especially when the amplitude
increases further to E0 = 2.8, there is no Bohmian particle
running out of the nuclear zone during the time from about
25–45 a.u., indicating that no ionization occurs in this period.

To investigate the origin why the atom is not ionized around
the peak of the laser pulse when E0 = 2.8, we calculate the
time-dependent potential function of the system under the K-
H transformation and compare it with the evolution of BPs.
Applying the K-H transformation, we can obtain the TDSE in
the acceleration form

[
− 1

2

∂2

∂x2
+ VK-H(x,t)

]
�K-H = i

∂�K-H

∂t
, (6)

where VK-H(x,t) = Va[x + α(t)] and α(t) = − 1
c

∫
tA(t ′)dt ′

can be regarded as the motion trajectory of a free electron in the
intense laser pulse. Under this framework, the laser-electron
interaction potential and the nuclear Coulomb potential are
replaced by the unified potential VK-H(x,t). The evolution
of the unified potential is shown in Fig. 4 where the peak
amplitude of the laser field is E0 = 2.8. From the figure, it can
be seen that the central position of the potential changes as the
amplitude of laser field varies. In order to facilitate the analysis,
we present five Bohmian trajectories TrN2, TrP 2 (dotted navy
lines), TrN1, TrP 1 (dashed cyan lines) and TrN0 (solid white
line) in Fig. 4. We can see that trajectory TrN0 is initially
located at the center of the unified potential well, and during
the subsequent motion, it remains located at the central position
of the time-dependent potential VK-H(x,t). For particles TrP 1

and TrN1, they initially locate at the edge of the potential well,
then, during the time from the rising edge to the peak of the
electric field, they follow the profile of the time-dependent
potential VK-H(x,t), whereas, during the falling edge of the
laser pulse, they get rid of the time-dependent potential, and
thus, these two BPs are ionized at the end of the laser pulse.
For the BPs TrP 2 and TrN2, which are initially far away
from the center of the atomic potential, they fail to catch up
with the change in time-dependent potential VK-H(x,t) and,
hence, are ionized rapidly during the rising edge of the laser
pulse.
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FIG. 5. (Color online) Force analysis of the BPs: (a) TrN0,
(b) TrN1, and (c) TrN2. Where the solid black curve denotes the total
force, the dotted blue one denotes the quantum force, and the dashed
red one denotes the classical force.

We now consider the time-dependent forces that act on the
BPs TrN0, TrN1, and TrN2, which are shown in Figs. 5(a)–
5(c), respectively. Based on the Bohmian-trajectory theory,
the force that can influence the trajectory of a BP in our
atom-laser system can be classified as two kinds: the classical
force Fclassical(t), which comes from the combined potential
of the atomic Coulomb and the laser’s electric field, i.e.,
Fclassical(t) = − ∂vk (t)

∂x
, and the quantum force Fquantum(t), which

comes from the interaction between this BT and other BTs,
i.e., Fquantum(t) = − ∂Q

∂x
. From Fig. 5(a), it can be seen that

the force felt by the BP on trajectory TrN0 is identical to the
classical force (dashed red line), hence, the quantum force
(dotted blue line) plays a negative role in its evolution process,
and its behavior agrees well with the classical trajectory α(t).
On the other hand, from Fig. 5(c), we can find that the BP on
TrN2 bears a large quantum force at about time t = 20, then this
quantum force vanishes rapidly because the BP obtains enough
energy from this sudden “push” to get rid of the bondage of the
atomic potential, resulting in the fact that this BP is ionized at
the end of the laser pulse. Furthermore, as shown in Fig. 5(b),
the BP on trajectory TrN1 is also affected by the quantum force
at about t = 20, but the quantum force is not strong enough to
set it free from the bondage of the atomic Coulomb potential.
Therefore, the BP continues moving under the influence of
the two forces until it is ionized at the end of the laser
pulse.

From the above results, we may find that the quantum force
plays a crucial role in the ionization process of the BPs in
the laser pulse. The above three trajectories can be understood
in the following way: For the BP located at the position very
close to the nucleus, the classical force from the Coulomb
potential and the laser field dominate the behavior of the BP
and make it stay in the center of the K-H potential during
the time evolution, hence, the interaction between it and other
BPs can be ignored; whereas, for the BP initially located at
a position far away from the nucleus, the classical force can
be weak at some moments when the BP is far away from
the nucleus (hence, the Coulomb potential is weak), and the
laser’s electric field is close to zero. Then, at these moments,
the quantum force from other BPs may be larger than the
classical force (because the BPs can be very close to each

FIG. 6. (Color online) (a) Change in Bohmian trajectory and
(b) total force as a function of time in different laser fields. In (c), we
present the force analysis of the Bohmian particle in the laser field
whose peak amplitude is 1.8 a.u. [dotted red line in (b)].

other at these moments during which they oscillate in the laser
field) and changes the trajectory of the BP during its oscillation
in the K-H potential and makes it free from the bondage of the
nucleus at the end of the laser pulse.

From the viewpoint of the BT theory, the ionization
suppression of an atom in a laser pulse indicates that some
Bohmian trajectories, which are ionized in a weak laser
field, become unionized as the laser intensity increases. We
present a trajectory which is ionized when E0 = 1.8 and is
unionized when E0 increases to 2.8 in Fig. 6. From Fig. 6(c),
we may find that the quantum force makes this BP ionized
when E0 = 1.8, and this quantum force decreases as the laser
intensity increases, resulting in the unionization of the BP as
E0 = 2.8. This result confirms that the quantum force plays a
crucial role in the ionization of the BPs in a high-frequency
laser pulse.

IV. CONCLUSIONS

In conclusion, we investigate the ionization stabilization
of an atom in a high-frequency intense laser pulse by using
Bohmian trajectories. We find that there are two kinds of forces
that act on each BT: the classical force from the combined
potential of the atomic Coulomb potential and the laser field
and the quantum force. The competition between these two
forces determines the behavior of each BT. Especially for the
BT initially located at the center of the K-H potential, the
classical force plays a dominate role in it, resulting in the fact
that this BT is unionized; whereas, for the BT initially located
far away from the center of the K-H potential, the quantum
force plays a crucial role in it, resulting in the fact that this BT
is ionized after the laser pulse.
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