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Near-threshold laser-modified proton emission in the nuclear photoeffect
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The change of the probability of proton emission in the nuclear photoeffect due to an intense coherent (laser)
field is discussed near the threshold, where the hindering effect of the Coulomb field of the remainder nucleus
is essential. The ratio of the laser-assisted and laser-free differential cross section is deduced and found to be
independent of the polarization state of the γ field and the two types of initial nuclear state considered. The
numerical values of this ratio are given at some characteristic parameters of the intense field.
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I. INTRODUCTION

The development of coherent electromagnetic sources of
higher and higher intensity with increasing photon energy up
to the hard x-ray range motivates the theoretical study of the
change of the processes of strongly bound systems, such as
nuclear processes, by these intense fields [1]. In this paper,
the change of the nuclear photoeffect due to the presence
of an intense coherent electromagnetic field is studied. This
process is analogous to the laser-assisted x-ray photoeffect
(x-ray absorption), a process which was already discussed [2]
in the late 1980s taking into account gauge invariance [3,4].
The laser-assisted nuclear photoeffect (LANP) and the laser-
assisted x-ray photoeffect (x-ray absorption) are laser-assisted
bound-free transitions. The difference between them lies in
the charged particle (proton or electron, respectively) which
takes part in these processes. Although the LANP was recently
investigated far from the threshold and neglecting the effect
of the Coulomb field of the remainder nucleus [5], in the case
of the laser-assisted x-ray absorption processes it was found
that the most interesting changes due to the presence of the
laser field appear near the threshold [6,7].

Thus, applying the results of [2], the LANP is reexamined
in a gauge-invariant manner and near the threshold, where
the hindering effect of the Coulomb field of the remainder
nucleus is very large so that it must be taken into account. The
effect of the Coulomb field of the remainder nucleus on the
transition rate is approximately taken into account. The laser-
modified differential cross section is compared to the laser-free
differential cross section, and it is shown that their ratio does
not depend on nuclear parameters in the two types of initial
nuclear states investigated and on the state of polarization of
the γ radiation, but it has only a laser parameter dependence.

The process investigated can be symbolically written as

ωγ + nω0 + A+1
Z+1Y → A

ZX + 1
1p, (1)

where A+1
Z+1Y denotes the target nucleus of mass number A + 1

and of charge number Z + 1. The target nucleus absorbs
a γ photon symbolized by ωγ , and n laser photons take
part in the process which is symbolized by nω0. n < 0 and
n > 0 correspond to |n| laser photon emission and absorption,
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respectively. As a result, a free proton 1
1p is emitted and the

remainder nucleus is A
ZX.

The calculation is made in the radiation (pA) gauge,
and in the long-wavelength approximation (LWA) of the
electromagnetic fields, the recoil of the remainder nucleus
and the initial momentum carried by the laser and γ fields are
neglected. In the case of a circularly polarized monochromatic
wave for the vector potential of a laser field,

−→
AL(t) =

A0[cos(ω0t)−→e 1 − sin(ω0t)−→e 2] is used. ω0 is the angular
frequency of the laser. The amplitude of the corresponding
electric field E0 = ω0A0/c. The frame of reference is spanned
by the unit vectors −→e x = −→e 1, −→e y = −→e 2, and −→e z = −→e 1 ×
−→e 2. The vector potential describing the γ radiation is

−→
A γ =√

2πh̄/(V ωγ )−→ε exp(−iωγ t), with h̄ωγ the energy and −→ε the
unit vector of the state of polarization of the γ photon, and V

the volume of normalization.

II. GAUGE-INVARIANT S-MATRIX ELEMENT OF
LASER-MODIFIED PROTON EMISSION IN THE

NUCLEAR PHOTOEFFECT

It is shown in [3] that the electromagnetic transition
amplitudes of a particle (proton) of rest mass m and of charge e

in the presence of a laser field are determined by the matrix
elements of the operator −e−→r · −→

E with the eigenstates of the
instantaneous energy operator

εg = 1

2m

(−→p − e

c

−→
Ag

)2
+ V (r) (2)

in both (rE and pA) gauges. (e is the elementary charge and
the superscript g refers to the gauge.) Accordingly, the gauge-
independent S-matrix element can be written as

Sfi = − i

h̄

∫
dt

∫
d3rψ∗

f (−e−→r · −→
E (t))ψi, (3)

where ψi and ψf are the initial and final states of the proton
in the same gauge and h̄ is the reduced Planck constant.

Our calculation is carried out in the radiation (pA) gauge
because of the choice of the final state of the proton (see
below). The initial state of the proton has the form

ψi = e(i e�r· �A
h̄c

)φ0(−→r )e−i
Eb
h̄

t , (4)
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where φ0(−→r ) is a stationary nuclear state of separation energy
Eb of the proton. The exp(i e�r· �A

h̄c
) factor, where

−→
A = −→

A L(t) +−→
A γ , appears because of gauge transformation since φ0 is the
eigenfunction of the instantaneous energy operator,

εE = 1

2m
−→p 2 + VN (r) + ViC(r), (5)

in the rE gauge. VN (r) is the nuclear potential and ViC(r)
is the Coulomb potential felt by the proton initially, and the
superscript E refers to the rE gauge. The modification of the
initial state due to the laser field is neglected since the direct
effect of the intense laser field on the nucleus has been found
to be negligible [8] at the laser parameters discussed. It is
also supposed that the initial nucleus does not have an excited
state which is resonant or nearly resonant with the applied
γ radiation.

If similarly to [5] the modification of the final state due to
the strong interaction is neglected, then in the final state and
in the pA gauge the instantaneous energy operator εR reads

εR = 1

2m

(−→p − e

c

−→
AL(t)

)2
+ VC(r), (6)

where the superscript R refers to the radiation (pA) gauge and
VC(r) is the Coulomb potential of the remainder nucleus.

An approximated solution of (6), i.e., an approximated
time-dependent state of a particle in the laser plus Coulomb
fields, is the Coulomb-Volkov solution of a proton of wave
number vector

−→
Q [9,10],

ψ �Q(�r,t) = V −1/2ei �Q·�rχ (
−→
Q,−→r ) exp(−iÊt/h̄)f (t). (7)

Here V −1/2ei �Q·�rχ (
−→
Q,−→r ) is the Coulomb function, i.e., the

wave function of a free proton in a repulsive Coulomb field of
charge number Z, V denotes the volume of normalization, −→r
is the relative coordinate of the two particles,

χ (
−→
Q,−→r ) = e−πη/2
(1 + iη)1F1(−iη,1; i[Qr − −→

Q · −→r ]),
(8)

where

η(Q) = Zαf

mc

h̄Q
, (9)

is the Sommerfeld parameter, with αf the fine-structure
constant, and it is supposed that m is much less than the
rest mass of the remainder nucleus. 1F1 is the confluent
hypergeometric function and 
 is the Gamma function [11].

The function

f (t) = exp[iα sin(ω0t + η0)], (10)

where

α = αϑ sin(ϑ) with αϑ = eE0Q

mω2
0

. (11)

Here the polar angles of the wave number vector
−→
Q of the

outgoing proton are ϑ and η0, i.e., they are the polar angles of
the direction in which the proton is ejected.

In the low-energy range (QR � 1, where R is the radius
of a nucleon) and for |−→r | � R, the long-wavelength

approximation yields

|χ (
−→
Q,−→r )|−→r =0

= χC(Q) =
√

2πη(Q)

exp[2πη(Q)] − 1
, (12)

which is the square root of the so-called Coulomb factor. (The
Coulomb factor [χ2

C(Q)] describes well, e.g., the Coulomb
correction to the spectrum shape of beta decay [12].)

For the final state of a proton of wave number vector
−→
Q ,

the LWA of the nonrelativistic Coulomb-Volkov solution ψ �Q
is used,

ψ �Q,LWA(−→r ,t) = χC(Q)V −1/2ei �Q·�r exp(−iÊt/h̄)f (t)

(13)

with Ê = h̄2Q2/(2m) + Up, that is, the energy of the outgoing
proton in the intense field, where Up = e2E2

0/(2mω2
0) is the

ponderomotive energy.
Substituting (4) and (13) into (3) and using

−→
E = − 1

c
∂t

−→
A ,

one can obtain the following form of the gauge-independent
S-matrix element:

Sfi = −χC(Q)√
V

∫
exp[i(Ê + Eb)t/h̄]f ∗(t)

∂

∂t
G[−→q (t)]dt,

(14)
where

G(−→q ) =
∫

φ0(−→r )e−i−→q · −→r d3r (15)

is the Fourier transform of the initial stationary nuclear state
φ0(−→r ) of the proton and

−→q (t) = −→
Q − e

h̄c

−→
A . (16)

[Equation (14) can be obtained directly with the aid of Eq. (27)
of [2].]

Using the ∂tG = (∂qG)
∑j=3

j=1(∂Aj
q)(∂tAj ) identity,

∂

∂t
G =

(
∂

∂q
G

)
e

h̄q

(−→
Q · −→

E − e

h̄c

−→
A · −→

E
)

(17)

with
−→
E = − 1

c
∂t

−→
A , i.e.,

−→
E = −→

E L(t) + −→
E γ .

The
−→
Q · −→

E L term of the last factor of (17) can be neglected
if the pure intense field-induced proton stripping process is
negligible since this term describes the process without the
γ photon. Furthermore, the ratio of the amplitudes of

−→
A γ ·−→

E L and
−→
A L · −→

E γ equals ωL/ωγ � 1. Therefore, the
−→
Q ·−→

E − e
h̄c

−→
A · −→

E = −→
Q · −→

E γ − e
h̄c

−→
A L · −→

E γ approximation is

justified to use, where
−→
E γ = i

√
2πh̄ωγ /V −→ε exp(−iωγ t).

The relative strength of the
−→
Q · −→

E γ and e
h̄c

−→
A L · −→

E γ terms
is characterized by the parameter δ = eA0/(h̄cQ). In the
laser-free case, Q = √

2m�/h̄, where � = h̄ωγ − Eb is the
difference of the photon energy and the proton separation
energy. Numerical estimation shows that δ � 0.05 near � =
50 keV used here and in the case of laser photon energy and
intensity values discussed. Therefore, the

−→
Q · −→

E γ term is the
leading one in the last factor of (17). As to the radiation field
dependence of ∂qG, the effect of

−→
A γ is negligible in −→q (t)

and thus −→q (t) = −→
Q − e

h̄c

−→
A L. It was shown above that the

amplitude of oscillation of −→q (t) due to the intense field can
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be neglected. Therefore, q = Q can be used in ∂qG, and (18)
is obtained as

∂

∂t
G =

(
∂

∂q
G

)
q=Q

e

h̄

−→
Q · −→

E γ

q
. (18)

Using the Jacobi-Anger formula in the Fourier series
expansion of f ∗(t) [13], the S-matrix element can be
written as

Sfi =
∞∑

n=n0

2πδ[ωn(Q)]i

V
χC(Q)

×
(

∂

∂q
G

)
q=Q

e
√

2πh̄ωγ

h̄
ξJn(α)e−inη0 , (19)

where ξ = −→
Q · −→ε /Q, Jn(α) is a Bessel function of the first

kind, and

ωn(Q) = h̄Q2

2m
+ Up + Eb

h̄
− ωγ − nω0. (20)

The terms that are small if the eE0
h̄ω0βk

� 1 condition is
fulfilled (β1 and β2, see below), were neglected in the
calculation.

III. GAUGE-INVARIANT DIFFERENTIAL CROSS
SECTION OF LASER-MODIFIED PROTON EMISSION

IN THE NUCLEAR PHOTOEFFECT

In this paper, two cases of initial nuclear energy −Eb of
the initial state having a different type of space-dependent
part φ0(−→r ) are considered in order to show the general
nature of the effect of the laser on the process. The one
case is the 8B one-proton halo isotope of separation en-
ergy Eb = 0.137 MeV [14] and of initial state φ0(−→r ) =
(2π )−1β

3/2
1 e−β1r/(β1r), with β1 = μ

√
2mEb,1/h̄ and m the

rest mass of the proton (μ = 1.84, β1 = 1.495 × 1012 cm−1).
Although the proton rest mass is more than 12% of the
total rest mass of 8B and the approximation, the fact that
m is much less than the rest mass of the remainder nucleus
is not very good, but following [5] we investigate 8B. In
the other case, the initial state is the νs1/2 shell model
state [15] of the form φ0(−→r ) = Nνe

−ρ2/2F (−ν, 3
2 ,ρ2), with

Nν = β
3/2
2 [
(ν + 3

2 )/(2πν!)]1/2/
( 3
2 ), where ν = 0,1,2, . . .

is the quantum number of the nuclear shell model and 
(x)
denotes the Gamma function. F (−ν, 3

2 ,ρ2) is the confluent
hypergeometric function, ρ = β2r , β2 = √

mωsh/h̄, m is the
nucleon rest mass, and ωsh is the shell model angular frequency
(h̄ωsh = 40A−1/3 MeV, where A is the nucleon number [16],
and β2 = 9.82 × 1012A−1/6 cm−1).

The differential cross section of LANP has the form

dσ

d�q

=
∞∑

n=n0

dσn

d�q

, (21)

where d�q is the differential solid angle around the direction of
the outgoing proton. n0 < 0 is the smallest integer fulfilling the
� + nh̄ω0 − Up > 0 condition and � is the same in both cases
of the initial state. (The cases n < 0 and n > 0 correspond to
|n| laser photon emission and absorption, respectively.)

The partial differential cross section

dσn

d�q

= σ0,n(Qn)|ξ |2J 2
n (αϑn sin ϑ) (22)

with

σ0,n(Qn) = αf

kγ Qn

2πλ- p

χ2
C(Qn)[∂QG(

−→
Q )]2

Q=Qn
. (23)

Here Qn = √
2m[� + nh̄ω0 − Up]/h̄, ξ = −→

Qn · −→ε /Qn, λ- p

is the reduced Compton wavelength of the proton, and
kγ = ωγ /c,

Qn = εn

λ- p

√
2�

mc2
with εn =

√
1 + nh̄ω0 − Up

�
. (24)

Jn(αϑn sin ϑ) is a Bessel function of the first kind, with αϑn =
eE0Qn/(mω2

0).
In the variable εn, the Coulomb factor χ2

C reads

χ2
C(εn) = KCb

εn

[
exp

[
KCb
εn

] − 1
] , (25)

where KCb = 2πZαf

√
mc2/(2�) with Z the charge number

of the remainder nucleus. The Coulomb factor causes a strong
hindering of the effect in both the laser-assisted and laser-free
cases.

Near the threshold (Qn � β1,β2), the [∂QG]2
Qn

∝ ε2
n in the

case of the two types of initial state discussed, and

dσn

d�q

= σ0Sn|ξ |2. (26)

Here σ0 is a constant that depends on the form of the initial
state and

Sn = ε2
nJ

2
n (αϑn sin ϑ)

exp(KCb/εn) − 1
. (27)

In the laser-free case (αϑn = 0) using ε0(Up = 0) = 1,
J 2

0 (0) = 1, and J 2
n (0) = 0 at n 
= 0, the differential cross

section near above the threshold

dσ th

d�q

= σ0Sth|ξ |2 (28)

with Sth = [exp(KCb) − 1]−1.

IV. NUMERICAL RESULTS

The ratio R of the laser-assisted and the laser-free differen-
tial cross sections,

R =
∞∑

n=n0

Rn, (29)

where Rn = Sn/Sth [(26) divided by (28)], equals the ratio of
the rates of the corresponding processes in an elementary solid
angle in a given direction of the outgoing proton. The rate of
change in one channel,

Rn = exp(KCb) − 1

exp(KCb/εn) − 1
ε2
nJ

2
n (αϑn sin ϑ), (30)

with

αϑn = εnh̄ceE0(h̄ω0)−2
√

2�/(mc2) (31)
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Number of Laser Photons is n

FIG. 1. Laser photon number dependence of Rn [see (30)], that
is, the rate of change in one channel due to the presence of intense
field. The cases n < 0 and n > 0 correspond to |n| number laser
photon emission and absorption, respectively. The charge number of
the remainder nucleus Z = 4, � = h̄ωγ − Eb is the difference of the
gamma photon energy and the proton separation energy, ϑ = π/2,
the laser intensity I = 1020 W cm−2 and the laser photon energy
h̄ω0 = 1.65 eV.

in the variable εn. So Rn and R describe the change caused
by the intense coherent field independently of the state of γ

polarization and the initial states applied.
In our numerical calculation, the laser photon energy h̄ω0 =

1.65 eV. First the case in which the outgoing proton moves in
the plane of polarization of the laser beam [ϑ = π/2 (sin ϑ =
1)] is investigated in the case of Z = 4. Figure 1 shows the
laser photon number dependence of Rn at � = 50 keV with
laser intensity I = 1020 W cm−2. The intensity dependence
of R has been investigated with � = 50 keV. R increases
linearly from R = 1.00 at I = 1018 W cm−2 up to R = 1.12
at I = 1020 W cm−2. Figure 2 depicts the � dependence of R
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1.28
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FIG. 2. The � dependence of R [see (29)] at ϑ = π/2 in the case
of Z = 4 with I = 1020 W cm−2 and h̄ω0 = 1.65 eV. � = h̄ωγ −
Eb is the difference of the gamma photon energy and the proton
separation energy.
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FIG. 3. The ϑ dependence of Rn [see (30)] with I =
1020 W cm−2 and h̄ω0 = 1.65 eV at (a) n = 18 000, (b) n = 14 000,
(c) n = 10 000, and (d) n = 5000. The charge number of the
remainder nucleus Z = 4 and � = 50 keV.

with I = 1020 W cm−2. Figure 3 shows the ϑ dependence
of Rn in the case I = 1020 W cm−2 at (a) n = 18 000,
(b) n = 14 000, (c) n = 10 000, and (d) n = 5000. Finally,
Fig. 4 depicts the ϑ dependence of Rn at n = 10 000 with
different laser intensities: (a) I = 4 × 1019 W cm−2, (b) I =
6 × 1019 W cm−2, and (c) I = 1020 W cm−2. The numerical
calculation in all the cases discussed above has been repeated
at Z = 9, and negligible change has been found.

V. DISCUSSION AND SUMMARY

To compare our results and the results of [5], we investigate
our formulas in the h̄ωγ � Eb limit. In this case, εn → 1,

0 0.5 1 1.5 2 2.5 3
0
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0.6

0.8

1

1.2

1.4

1.6

1.8 x 10-3
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10

00
0

a) b) c)

FIG. 4. The ϑ dependence of Rn [see (30)] with n = 10 000
and h̄ω0 = 1.65 eV at (a) I = 4 × 1019 W cm−2, (b) I = 6 ×
1019 W cm−2, and (c) I = 1020 W cm−2. The charge number of the
remainder nucleus Z = 4 and � = 50 keV.
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� → h̄ωγ ,

αϑn → αϑ = h̄ceE0(h̄ω0)−2
√

2h̄ωγ /(mc2) (32)

and

Rn → J 2
n (αϑ sin ϑ). (33)

Thus in this limit, the n dependence disappears from the
argument of the Bessel function and

R →
∞∑

n=n0

J 2
n (αϑ sin ϑ) � 1. (34)

The cross sections obtained in [5] are symmetric in n

around n = 0 (see the figures of [5]) and the total cross
section is asserted to be unaffected by the laser radiation. This
corresponds to R = 1. In contrast, our result is significantly
asymmetric in n (see Fig. 1), which is a consequence of the
εn dependence of Rn [see (30)]. The change (increase) of the
kinetic energy of the proton is manifested in the increase of εn

from ε−11 000 = 0.761 up to ε18 000 = 1.240. The increase of εn

with increasing n causes an asymmetry in the n dependence
of Fig. 1. The sum of the changes (increments) in the different
channels results in a moderate increment of R (R < 1.28), as
can be seen in Fig. 2.

Summarizing, one can say that near the threshold, R, which
measures the change of the rate of the LANP, has minor

� and intensity dependence and negligible Z dependence.
Furthermore, Rn, which is the rate of change in one channel
(at a definite laser photon number), has a significant laser
photon number and ϑ dependences. R and Rn are the same in
the cases of the two different initial states considered. Since
the numerical results obtained seem to be independent of the
initial nuclear states chosen, it can be expected that R and Rn

have a minor dependence from the form of the initial state in
general.

Regarding the experimental situation at such a high inten-
sity, it is hard to distinguish photoprotons from background
protons that arise as a result of interaction with the hot
electron plasma created by the intense laser field. We also
have to mention that in an experiment, the γ ray pulse from
an accelerator must be synchronized with an intense (e.g.,
attosecond) pulse of a laser system. Moreover, in the case
of 8B, which has a short half-life of about 770 ms, the 8B

nuclei must be created in situ in the laser beam by a nuclear
reaction. Fortunately, most of the heavier nuclei have protons
of a νs1/2 shell model state (the other case investigated) in
their stable ground state. The wispy target determined by
the focal spot of the focused intense laser beam, the low
repetition rate of the laser system, and the angular resolution
of the proton detector together make it very challenging to
carry out a successful near-threshold, laser-modified proton
emission experiment that could produce significant counting
statistics.
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[6] P. Kálmán, Phys. Rev. A 38, 5458 (1988).
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