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Interpretation of time delay in the ionization of two-center systems
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For the ionization of diatomic molecules the conditions and mechanisms giving rise to large positive and
negative time delays of the ejected electrons are studied. It is shown that for H2 and H+

2 the singularities in the
angular distribution of time delay occur when at a certain energy the amplitudes of all partial spheroidal waves,
except one, turn into zero, i.e., they coincide with the so-called Cooper minimum. By analytical consideration of
the emitted electron wave-packet evolution it is demonstrated that large negative values of the phase derivative
with respect to energy do not violate the causality principle. We also analyze the dependence of time delay upon
the electron energy for Coulomb spheroidal waves with different spheroidal quantum numbers.
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I. INTRODUCTION

Recently the appearance of laser systems that can generate
superintense pulses as short as a few hundred attoseconds [1,2]
gave rise to new capabilities in studying electron dynamics
in atoms and molecules, which were not available earlier
[3,4]. Among these, of particular interest are the methods
of measuring the delay of electron ejection from the atom
subject to photoionization [5–7]. At present the measurements
of ionization delay are already being performed [8–10] in noble
gas atoms using the methods of attosecond streaking [11,12]
and reconstruction of attosecond beating by interference of
two-photon transition (RABITT) [13]. Time delays in pho-
toionization of molecules are a subject of growing theoretical
and experimental interest [14–18].

In particular, the numerical study [18] of the time delay in
the process of single-photon ionization of a hydrogen molecule
H2 revealed an interesting feature, namely, that at certain
energies of the ejected electron the angular distribution of the
molecular photoionization time delay possesses singularities.
Figure 1(a) shows the Wigner time delay tW vs the electron
ejection angle θe for single ionization of an oriented H2

molecule under the condition that the molecular axis is parallel
to the polarization of radiation, R ‖ e. The dependence was
calculated for different energies of the ejected electron using
the ab initio exterior complex scaling method [19]. For the
energy of ionizing radiation photon h̄ω = 84 eV there is a
discontinuity at the angle θe = 39◦, in the vicinity of which tW
tends to ±∞. From Fig. 1(b) one can see that this discontinuity
coincides with the zeros of the ionization single-differential
cross section. Although the probability of electron ejection in
the directions close to this zero is small, it is still possible in
principle to measure the time delay for the electron ejection
in these directions. Large negative values of tW contradict the
causality principle [20], since formally they mean that the
electron is ejected by the molecule long before the absorption
of the photon.

The aim of the present paper is to clarify the origin of
singularities in tW and to resolve the paradox of large negative
delay in two-center systems. We reconsider the physical
meaning of Wigner time delay tW in Coulomb systems; study
the dependence of tW upon the electron energy and ejection
angle by the example of the molecular hydrogen ion H+

2 , a
benchmark two-center system; and analyze the behavior of

the ejected electron wave packet under the conditions of tW
singularities.

Throughout the present paper we use the approximation
of fixed nuclei (the Born-Oppenheimer approximation). After
ionization the nuclei begin to move from each other due
to uncompensated Coulomb repulsion. However, the ejected
electron usually moves away from the nuclei fast enough
to reach a great distance long before the internuclear dis-
tance considerably changes. Experimentally this fact allows
determination of internuclear distance before ionization by
measuring the kinetic-energy release (KER) of the dissociating
nuclei [21]. The exception is the case in which before the final
release the electron appears in a long-living quasistationary
state (QSS) [16,17]. However, H+

2 has no QSS, and in H2 the
energies of all QSSs are lower than the threshold of double
ionization, while the singularities, observed in Fig. 1(a), occur
at the energy values above this threshold. Possible influence
of nuclear motion on the time delay due to the presence of
singularities themselves is separately discussed at the end of
Sec. V.

The paper is organized as follows. In Sec. II the theory
of Wigner’s time delay is briefly recalled and the notion of
ejection delay is introduced as a convenient tool for analyzing
the delay features arising due to deviation of the potential
from the Coulomb one. In Sec. III we study the energy
dependence of the time delay for spheroidal Coulomb waves.
Section IV is devoted to clarifying the origin of singularities in
the angular distribution of the Wigner time delay in two-center
targets, and Sec. V presents the physical interpretation of these
singularities.

Below, we use the atomic units of measurement, unless
otherwise noted.

II. COMMON THEORY OF THE IONIZATION TIME
DELAY

In the framework of quantum mechanics the behavior of a
system, ionized by an external laser field, is described by the
wave function. After the finish of the external action it can be
presented in the form

ψ(r,t) =
∫

f (k)ϕ(−)
k (r)e−i k2

2 t dk, (1)
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FIG. 1. (Color online) (a) Wigner time delay and (b) single
differential cross section dσ

d�e
of the single ionization of molecular

hydrogen H2 vs the ejection angle θe at R ‖ e for different values of
the energy of ionizing radiation photon h̄ω.

where f (k) is the ionization probability amplitude and ϕ
(−)
k (r)

is the wave function of the continuous spectrum, describing
the free particle with the momentum k at the infinitely large
distance.

If the interaction of the particle with the center is
described by a short-range potential, then ϕ

(−)
k (r → ∞) =

(2π )−3/2 exp(ikr). In the limit case t → ∞ the major con-
tribution to the integral Eq. (1) comes from the vicinity of the
stationary point k0 = k0(r,t), in which the derivative of the
integrand phase is zero:

r + dδ

dk
(k0)

r
r

− k0t = 0, (2)

where δ(k) = arg f (k) is the phase of the ionization complex
amplitude. Therefore, at the point r = rn at the moment of
time

t(r) = r

k
+ 1

k

∂δ

∂k
(k), (3)

one can detect the particle having the momentum k = kn with
the maximal probability. Since the ratio r/k is the time required
for the arrival at the point r of the particle that left the center
r = 0 at the time t = 0 and moved with the uniform velocity

k, the expression

tW = 1

k

∂δ(k)

∂k
= ∂δ

∂E
(k) (4)

has the physical meaning of the time delay of the particle
arrival at the distance r from the center with respect to that in
the case of the uniform rectilinear motion.

The interpretation of the energy derivative of the phase
as the time delay was first proposed by Eisenbud [22] and
Wigner [20] (see also [23,24]). In [20] Wigner has shown that
if a particle is incident from the infinity then after passing
the center of a short-range potential the delay with respect to
the free space motion equals 2tW . In the same paper he has
shown that if the potential is attractive then tW > 0 only for
near-resonance energy (i.e., when the particle is captured into
a quasistationary state for a long time). For the rest of the
energy values, (−rpot/k) � tW � 0 (where rpot is the potential
action radius); i.e., tW corresponds to the expected from the
point of view of classical physics. For brevity, below we will
refer to the energy derivative of the phase, tW , as the Wigner
time delay.

If the potential is not short range and at large distances
behaves like the Coulomb one, Z/r , then the asymptotic form
of the wave function becomes essentially different, since now
the phase of the integrand in Eq. (1) contains the term that is
logarithmic in r [25]. The stationary point is now determined
by the solution of the equation

r +
[

− Z

k2
0

ln 2k0r + Z

k2
0

+ dδ

dk
(k0)

]
r
r

− k0t = 0. (5)

So, it is apparent that for the electron, having the momentum k,
the time of arrival at the point separated by r from the Coulomb
center with the charge Z is

t(r) = r

k
− Z

k3
ln 2kr + Z

k3
+ tW . (6)

As mentioned above, in systems with short-range potentials
the Wigner time delay has a simple physical meaning; namely,
it is the delay of the arrival of the particle, ejected from the
force center, as compared to the case of rectilinear and uniform
motion. It is desirable to introduce a quantity for which the
physical interpretation in the case of a field with Coulomb
asymptotic behavior is as clear as that of the Wigner time
delay in the case of a short-range potential. For this aim the
comparison should be made with a certain classical motion in
the Coulomb field. The most rational choice is the motion of a
particle with zero angular momentum, starting from the center
r = 0 at the moment of time t = 0. Such motion is purely
radial and one dimensional, so (see, e.g., [26])

tC(r) =
∫ r

0

dr

p(r)
, (7)

where p(r) =
√

k2 + 2Z/r is the momentum of the particle at
the distance r from the center. Performing the integration, we
get

tC(r) = p(r)r

k2
+ Z

k3
ln

p(r)/k − 1

p(r)/k + 1
. (8)
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The asymptotic form of this expression is

tC(r → ∞) = r

k
− Z

k3
ln

2k2r

Z
+ Z

k3
. (9)

Let us introduce the ejection delay as the delay between a
“quantum” particle and a classical one with � = 0, ejected
from the center at the time moment t = 0, both moving in the
asymptotically Coulomb field, i.e.,

t0 = lim
r→∞[t(r) − tC(r)]. (10)

From Eqs. (6) and (9) it follows that the ejection delay t0 and
the Wigner time delay tW are related as

t0 = tW + Z

k3
ln

k

Z
. (11)

Figure 2(a) shows the Wigner time delays for the ionization
of a helium ion He+ at different values of the final angular
momentum �. It is seen that at small energies tW → − Z

k3 ln k
Z

for all values of �. This fact complicates the detailed analysis of
time delay as a function of � and, generally, the delay features
arising due to deviation of the potential from the Coulomb
one. Moreover, at large E the Wigner time tW for the s wave
(� = 0) becomes negative. In Fig. 2(b) the delays t0 are shown.

 (
)

- ( )/

(a)

 (
)

- ( )/

(b)

FIG. 2. (Color online) Dependence of the time delay upon the
energy of the ejected electron for a helium ion He+. (a) Wigner time
delay. (b) Ejection delay, Eq. (11). The thick solid line is the common
shift of tW relatively to t0. Time delays for � = 0 (solid line), � = 1
(dashed line), � = 2 (dotted line), and � = 3 (dashed-dotted line) are
shown.

For k → 0 they tend to infinity, but much more slowly, as 1/k2,
rather than as − Z

k3 ln k
Z

. Besides, t0 is positive for all values
E and grows with increasing �. This is because t0 is chosen
such that the centrifugal potential [26] can be considered as a
short-range repulsive one, giving rise to additional delay with
respect to the pure Coulomb field. In free space the centrifugal
potential itself produces no delay. The delay introduced by the
centrifugal potential in the presence of the Coulomb potential
is due to the fact that because of the trajectory bending
the electron spends a longer time in the region of strong
centrifugal potential action, as compared to the free space
motion.

It should be noted that experimental measurements using
the attosecond streaking or RABITT methods yield the time
delays that differ from both tW and t0 because of the so-called
Coulomb-laser coupling [27–31]. The detailed discussion of
this issue will be presented elsewhere.

III. TIME DELAY FOR SPHEROIDAL TWO-CENTER
COULOMB WAVES

Before proceeding to ionization of two-center targets let us
dwell on a one-center centrosymmetric system. This will allow
comparison of the two cases and better understanding of the
two-center specificity.

Assuming the external impact on the system to be weak,
one can calculate the ionization amplitude using the first-order
perturbation theory:

f (k) = 〈k|ŵ|i〉, (12)

where |i〉 is the wave function of the initial state of the system,
|k〉 ≡ ϕ

(−)
k (r) is the wave function of the final state describing

the free electron with the momentum k at infinity, and ŵ is the
operator of external perturbation.

For a centrosymmetric system the wave function can be
expanded as [25]

ϕ
(−)
k (r) = 4π

∑
�m

i�e−iδ�(k)Y ∗
�m(̂k)Y�m(̂r)Rk�(r), (13)

where Rk�(r → ∞) = 1
kr

sin(kr − π�/2 + δ�) is the radial
wave function of the partial spherical wave and δ� is the phase
of the spherical wave. In this case the amplitude is expressed
as

f (k) =
∑
�m

A�m(k)i−�eiδ�(k)Y�m(̂k). (14)

If the transition amplitude A�m = 4π〈Rk�Y�m|ŵ|i〉 differs
from zero only for the one value of �, then, obviously, the
Wigner time delay depends only on the corresponding partial
phase:

tW = dδ�

dE
. (15)

Therefore, if the final state has definite angular momentum,
then the Wigner time delay is completely determined by the
energy and the orbital quantum number and is independent
of the initial state and the particular form of the perturbation
potential.

Now let us proceed to the time delay in the ionization of
two-center targets and dwell on specific phenomena that occur
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in this case. As a benchmark object we choose the simplest
molecule, the molecular hydrogen ion H+

2 , for which the
separation of variables in the time-independent Schrödinger
equation is possible using the spheroidal coordinates

ξ =
∣∣r − R

2

∣∣ + ∣∣r + R
2

∣∣
R

∈ [1,∞),

η =
∣∣r − R

2

∣∣ − ∣∣r + R
2

∣∣
R

∈ [−1,1], φ ∈ [0,2π ),

and the solutions (Coulomb spheroidal functions [32]) are
known [33,34].

The two-center Coulomb continuum wave function may be
presented as a sum of partial spheroidal waves [33]:

ϕ
(−)
k (r) = (2π )3/24π

∑
lm

ϒ∗
lm

(
kR

2
,θe,φe

)
il

× e−iδlmTml

(
kR

2
,ξ

)
ϒ

(
kR

2
, arccos η,φ

)
. (16)

Here the spheroidal harmonics are introduced as

ϒlm(c,θ,ϕ) = Sml(c, cos θ )
exp(imϕ)√

2π
,

ϒlm(0,θ,ϕ) = Ylm(θ,ϕ), (17)

where Sml(c,η) is the normalized quasiangular spheroidal
function [32], m is the quantum number of the angular
momentum projection onto the molecular axis, l is the
quasiazimuthal quantum number, and c = kR/2 is the di-
mensionless parameter. The quasiradial Coulomb spheroidal
function Tml(c,ξ ) has the asymptotic form

Tml(c,ξ → ∞) = 1

cξ
sin

[
cξ + RZ+

2c
ln(2cξ ) − lπ

2
+ δlm

]
,

(18)

where Z+ is the total charge of the nuclei and δlm is the partial
wave phase, entering Eq. (16).

First let us consider the case in which after the ionization an
electron appears in the state with the fixed angular spheroidal
quantum numbers m and l. In analogy with the spherical case
[i.e., Eq. (15)] one can introduce the Wigner time delay for a
spheroidal partial wave:

tW = dδlm

dE
. (19)

The ejection delay t0 for the given Wigner time delay is
calculated using Eq. (11), assuming Z = Z+ = 2; i.e., in this
case t0 is in fact the delay compared to the classical electron,
ejected from the center of a helium ion He+.

Figure 3 presents the energy dependence of the ejection
time delay for different partial waves of the H+

2 continuum
with two values of the internuclear distance, R = 2 and 1.4
a.u. The distance R = 2 a.u. is the equilibrium internuclear
distance for H+

2 . The distance R = 1.4 a.u. coincides with the
equilibrium internuclear distance in the hydrogen molecule
H2, which makes it easier to compare the results for H+

2 and
H2.

The delays t0 presented in Fig. 3 for small energies and
any spheroidal quantum number l tend to those of the helium
ion He+ [shown in Fig. 2(b)] with the same corresponding

 (
)

(a)

 (
)

(b)

FIG. 3. (Color online) Ejection time delay vs the ejected electron
energy for partial waves of the continuum in the hydrogen molecular
ion. (a) R = 2 a.u. (b) R = 1.4 a.u. Time delays for l = 0 (solid line);
l = 1,m = 0 (dashed line); l = 1,m = 1 (dotted line); l = 3,m = 0
(dashed-dotted line); and l = 3,m = 1 (dashed-dotted-dotted line)
are shown.

spherical azimuthal quantum number � = l. The explanation
is clear: at large wavelengths the particular form of the
potential near the center becomes unimportant, and the main
contribution comes from the region where the potential
practically coincides with the one-center Coulomb one. At
large energies essential differences from the one-center case
arise. First, a growing difference appears between the curves
with the same l but different m. For m = 1 the results are very
close (they differ by less than 10% for l = 1 and 20% for l = 3
over the entire studied range of energies) to the corresponding
results for the helium ion at � = l.

A spheroidal partial wave may be considered as a sum of
converging and diverging spheroidal waves; i.e., it describes
the process once considered by Wigner: the electron comes
from infinity, passes near the nuclei, and leaves for infinity.
Correspondingly, the quantity 2t0 in this case is the delay of
the electron as compared to the classical one, passed through
the Coulomb center with the charge Z = 2. The spheroidal
functions with m �= 0 are zero near the molecular axis; i.e.,
the probability of detecting the electron in such state near the
molecular axis is extremely small. Hence, we can conclude
that t0 at m �= 0 is close to t0 for a hydrogenlike ion with
Z = 2 and appropriate � just because the electrons move far
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FIG. 4. (Color online) Dependence of the time delay for the
partial wave with l = 1 and m = 0 of the H+

2 continuous spectrum
upon the energy of the ejected electron at different large values of R.

enough from the molecular axis, i.e., in the region where
the acting potential is close to that of a single center with the
charge Z = 2. Now it becomes clear why for l = 3,m = 1 the
deviation from the single-center case is greater: the spheroidal
harmonic ϒ31(η,φ), although tending to zero [as ϒ11(η,φ)] at
η = ±1, i.e., in the vicinity of the nuclei, possesses additional
maxima near η = ±1, so that the electron more strongly
feels the difference between the two-center and single-center
potentials.

For m = 0 the value of t0 is smaller than for the waves with
m �= 0 at the same l. Moreover, the curve for l = 1,m = 0
quickly descends with growing E, crosses the curve for
l = 0, and appears below it. Note that for R = 2 a.u. the
effect of “advance” of the partial wave with l = 1,m = 0 is
more pronounced. Therefore, it seems interesting to trace the
variation of the curve for l = 1,m = 0 under the increase of
R. Figure 4 shows the dependences t0(E) for different values
of R. It is seen that with the growth of R the dip in t0(E) is
shifted toward smaller E and becomes deeper. At R > 2.6 a.u.
the minimal t0(E) becomes negative; i.e., the electron in the
field of two centers, each having the charge Z = 1 (only one
of them approached close enough), arrives faster than in the
field of a single center with the charge Z = 2.

Let us try to explain all these phenomena. The spheroidal
partial wave with l = 0 has the maximal amplitude in the
middle between the potential centers [see Fig. 5(a)], and the
angular distribution is approximately uniform. In the wave
with l = 1,m = 0 the maximal amplitude is achieved near
the nuclei [see Fig. 5(b)]. As a result, the potential along
the electron trajectories for l = 1,m = 0 is deeper than for
l = 0, and, when the wavelength is small enough for the
electron to feel the two-center character of the potential, t0
for l = 1,m = 0 becomes smaller than for l = 0, since in the
former case the electron upon the average moves somewhat
faster. However, this effect itself is not sufficient to make t0
negative, since this happens at large R and large wavelengths
(see Fig. 4); indeed, the negative t0 means that the electron
arrives faster than that from a nucleus with the charge Z = 2,
as if this charge was placed as a whole in the center of
the molecule. The possible explanation is that the electron
with l = 1,m = 0 and the wavelength comparable with R is

ϕ

(a)

ϕ

(b)

FIG. 5. (Color online) Spheroidal partial wave functions in the
xOz plane (Oz||R) for R = 4 a.u. and ke = 1 a.u. (a) l = 0, m = 0.
(b) l = 1, m = 0.

presumably scattered by only one nucleus and leaves in the
opposite z direction. Due to the shift of the scattering center
toward the detection point, t0 acquires a negative contribution.
This effect is clearly evident from the behavior of a classical
electron originally moving along the molecular axis, i.e., along
Oz at x = 0,y = 0. Such an electron will be scattered by the
nearest nucleus and will fly exactly back. Since the scattering
center is closer to the detector by R/2 than the center of the
molecule, the backscattered electron will reach the detector
earlier than that, scattered by a nucleus with the charge Z = 2,
located at the center of the molecule. At large energies, because
of the dependence of the angular spheroidal harmonic upon the
energy (the harmonic appears to be “pushed off” the points
with η = ±1), the maximal amplitude of the wave becomes
shifted from the nuclei toward the molecule center, so that due
to the decrease of the depth of the potential along the electron
trajectories, as well as because of the shift of the turning point
toward the center, the delay t0 at sufficiently large energies
begins to grow.

Thus, the parameter t0 carries information about the
potential in the region which the electron has traveled through.
Since the angular distribution of the differential cross section
at infinity represents a picture of the angular distribution of
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these regions, the comparison of t0 for different partial waves
can provide information on the target structure. However, in
contrast to the spherical case, in which the ejection of an
electron with fixed angular momentum � obeys the angular
momentum selection rules, in the spheroidal case only the
parity selection rule holds. Due to this fact the experimental
measurement of time delays of partial waves is a nontrivial
problem.

IV. TIME DELAY OF H+
2 IONIZATION

Since in the process of the single-photon ionization of
a two-center target, e.g., H+

2 , the dipole transition generally
brings the system to a state containing more than one partial
spheroidal wave, the time delay is expected to depend upon
the ejection angle. To avoid the problem with possible jumps
of the calculated phase of the ionization amplitude f , entering
the time delay definition Eq. (4) and, therefore, the ejection
delay Eq. (11), by 2π (due to the phase uncertainty of
a periodic function) and by π (near the resonances), it is
convenient to calculate the phase derivative as the imaginary
part of the logarithmic derivative of the ionization amplitude
itself, i.e.,

tW = Im

(
1

f

∂f

∂E

)
. (20)

Figure 6 presents the angular distributions of the ejection
delay t0 for different values of energy and internuclear distance,
when H+

2 is ionized from the initial ground state with the
molecular axis parallel to the polarization direction of the
ionizing field. It is seen that, similar to the case of H2

considered earlier [18] (see Fig. 1), the behavior of t0(θe)
demonstrates characteristic “zigzags.” At the same positions
the plots of the differential cross section demonstrate dips [18].
At certain energies (E ∼ 0 eV for R = 2 a.u. and E ≈ 40 eV
for R = 1.4 a.u.) the range of t0(θe) variation becomes huge.
Since for each separate partial wave the delay (Fig. 3) has
no singularities, it is apparent that singularities arise from
superposition of several partial waves. Let us elucidate their
origin. Equation (16) yields the following expression of the
ionization amplitude angular dependence:

f (ke) =
∑
lm

Almi−leiδlmϒlm(c,θe,φe), (21)

where Alm is the amplitude of the transition to the spheroidal
partial wave with the quantum numbers l,m. Figure 7 shows
the amplitudes Al0 of the dipole transition from the ground
state of H+

2 to the partial waves of the continuum depending
on the final energy. In the considered case the direction of
the field polarization is parallel to the molecular axis, and the
initial m value is conserved in the process of ionization. It is
seen that for all energies only the partial waves with l = 1 and
3 are essential.

Consider the ionization amplitude as a sum of contributions
from two dominating partial waves:

f = A10e
iδ1−iπ/2ϒ10 + A30e

iδ3−i3π/2ϒ30. (22)

In correspondence with Eq. (20), tW tends to infinity near
the nodes f (θe0,φe0) = 0, provided that ∂

∂E
f (θe0,φe0) �= 0.

Obviously, the linear combination of two functions with

0 
(

)

 (

(a)

1.4

0 
(

)

 (

(b)

FIG. 6. (Color online) Ejection delay vs the ejection angle for
the photoionization of H+

2 in the ground state in the case of the
ionizing radiation linear polarization direction e ‖ R. (a) R = 2 a.u..
(b) R = 1.4 a.u.

different positions of nodes equals zero only in two cases: (i)
the phases of partial waves satisfy the condition δ30 − δ10 =
Nπ , where N is an integer, and (ii) one of the expansion
coefficients for the given energy turns into zero, so that the
sum actually contains a single spheroidal harmonic. Figure 7
shows that the second statement is valid, i.e., that there are such
values of energy (E ∼ 0 eV at R = 2 a.u. and E = 39 eV at
R = 1.4 a.u.) at which the amplitude for l = 1 turns into zero.
At these energies only, Fig. 6 demonstrates the singularity of
t0(θe).

The situation of a partial amplitude turning into zero at a
certain value of energy is commonly referred to as Cooper’s
minimum, in honor of J. W. Cooper, who theoretically
predicted this phenomenon for the photoionization of noble
gases [35]. Such a situation takes place for the molecular
case. It was shown [36] that for H2 photoionization the square
modulus of the spherical p wave has a minimum at ω ≈ 82 eV
(i.e., the energy E ≈ 66 eV), so that in the vicinity of this
energy value the contribution of the f wave is dominant.

In the case of H+
2 ionization, considered in this section, the

contribution that turns into zero comes from the spheroidal
wave with the quantum number l = 1, rather than from the
spherical p wave. The remaining wave is the spheroidal wave
with l = 3, so it is more consistent to refer to the phenomenon
as the “spheroidal Cooper’s minimum.”
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0

(a)

0

(b)

FIG. 7. (Color online) Energy dependence of partial components
of the photoionization amplitude for the hydrogen molecular for e ‖
R. (a) R = 2 a.u. (b) R = 1.4 a.u. Partial amplitudes for l = 1 (solid
line), l = 3 (dashed line), and l = 5 (dotted line) are shown.

A spheroidal harmonic can be expanded over the spherical
ones [32]:

ϒlm(c,θ,φ) =
∑

�

dlm
� (c)Y�m(θ,φ), (23)

and correspondingly, the expansion Eq. (21) over spheroidal
harmonics can be transformed into the expansion over the
spherical ones. If c = kR/2 is not very large, the spheroidal
harmonic ϒ30 is rather close to the spherical one, Y30; however,
ϒ30 contains also the contribution from Y10, so that in the
spheroidal Cooper’s minimum the amplitude of the spherical p
wave does not turn into zero. Moreover, since in the vicinity of
Cooper’s minimum the phase difference of spheroidal waves
is δ30 − δ10 ∼ π/2, the amplitude of the p wave does not
turn into zero exactly at any energy, although its square
modulus has a minimum near the energy of the spheroidal
Cooper’s minimum. This is the difference between Cooper’s
minima in two-center systems and in one-center ones, like
noble gas atoms [10,35]. However, since Cooper’s minimum
for H+

2 with the equilibrium internuclear distance R = 2 a.u.
occurs at a very small energy of the ejected electron, and
ϒ30(c → 0,θ,φ) = Y30(θ,φ), the photoionization of H+

2 at
small energies yields purely “octupole” electrons, i.e., those
with � = 3.

Substitution of the expansion Eq. (22) into Eq. (20) in the
vicinity of Cooper’s minimum energy E ≈ EC , for which by
definition A10(EC) = 0, yields

tW = dδ30

dE
+ ϒ10

ϒ30

A′
10(EC)

A30(EC)
sin(δ30 − δ10), (24)

where A′
10(EC) = dA10

dE
|E=EC

. From Eq. (24) it is evident that
Wigner time delay variation with the ejection angle at the
energy EC has no relation to the phase derivatives of the partial
waves but depends on the the difference δ30 − δ10 of phases
themselves. As for the singularities, they arise at the ejection
angles θe, for which the function ϒ30(c,θe,φ) possesses nodes
that do not coincide with the node θe = 90◦ of the function
ϒ10(c,θe,φ).

In order to study the angle-independent part of tW , let us
average it over the directions of ejection:

tW =
∮

tWσ (1)d�∮
σ (1)d�

=
[ ∑

lm

|flm|2
]−1 ∑

lm

Im

(
f ∗

lm

dflm

dE

)
,

(25)

where σ (1) = dσ
d�e

is the ionization differential cross section

and the partial amplitude is expressed as flm = Almi−leiδlm . In
Cooper’s minimum Eq. (25) yields tW = dδ30

dE
. This apparently

agrees with Fig. 8(b), demonstrating that near EC the quantity
t0(E) has a maximum and coincides with the delay of the
partial wave with l = 3.

Although t0(E) is convenient for theoretical analysis, its
experimental determination is a difficult problem. Using the
method of attosecond streaking [11,12], one should repeat
the measurement procedure many times, varying the direction
of the probing radiation polarization with respect to that of
ionizing radiation.

V. INTERPRETATION OF SINGULARITIES IN THE
ANGULAR DISTRIBUTION OF TIME DELAY

In the previous section we determined the conditions that
give rise to singularities in the angular distribution of the
time delay. Now we focus our attention on their physical
interpretation. Although huge values of the time delay appear
in the vicinity of differential cross-section zeros, it is still
possible in principle to measure the time delay. However,
these large negative delays are in apparent contradiction
with the causality principle, since from the formal classical
viewpoint the electron seems to be ejected before the ionizing
impact [20].

It is common to assume that if the molecule is affected
by a laser pulse with a Gaussian envelope, and the pulse is
long enough, then the momentum distribution of the electrons,
ejected as a result of ionization, is also Gaussian [18]. At large
distances from the center the Gaussian momentum distribution
gives rise to a Gaussian wave packet in space. Following the
Ehrenfest theorem, the behavior of the wave-packet center
(even for non-Gaussian packets) coincides with the motion
of the classical particle. But the packet center position itself
depends on the shape distortions, caused by quantum effects.
Therefore, it is necessary to consider the problem in terms of
the wave-packet shape evolution.
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FIG. 8. (Color online) Energy dependence of the averaged delay
t0 for the photoionization of H+

2 (solid line) and the delay t0 for partial
waves with l = 1 (dashed line) and l = 3 (dotted line). (a) R = 2 a.u.
(b) R = 1.4 a.u.

Let the ionizing extreme UV pulse have the Gaussian
envelope function, the carrier frequency ω0, and the duration
T , so that the field strength is expressed as

E(t) = E0 exp

(
− t2

2T 2

)
sin ω0t. (26)

In the case of a weak ionizing field the first-order perturbation
theory yields the following expression for the wave function,
describing the ejected electron wave packet:

ψ(r,t) ∼
∫

f (kn) exp

[
− w2

0(k − k0)2

2

]
eikr−iEtdk. (27)

Here w0 = k0T is the initial spatial width of the packet, k0 =√
2(ω0 − I1) is the central momentum (I1 being the ionization

potential), and f (k) = 〈k|z|1σg〉 is the amplitude Eq. (12) of
ionization by a continuous wave having the frequency ω =
k2/2 + I1 in the first Born approximation.

Consider the dipole matrix element Eq. (22) for the
energy near Cooper’s minimum. From Eq. (24) it is ob-
vious that the partial time delay determines only the gen-
eral angle-independent time shift. Since we are interested
in the interpretation of the second term in Eq. (24), we
will assume for simplicity that the derivative of the phase
is zero. Near Cooper’s minimum A10(E) � A′

10(EC)(E −

EC) ≈ A′
10(EC)(k − kC)kC ; therefore, from Eq. (22) it follows

that

f (k) ≈ −(k − kC)kCA′
10(EC)ieiδ10ϒ10(θe,φe)

+A30(EC)ieiδ30ϒ30(θe,φe). (28)

Apparently, at the angles corresponding to zeros of the function
ϒ30(θe,φe), the electron wave packet becomes essentially
non-Gaussian. Hence, the case of Cooper’s minimum requires
special consideration.

The electron wave function after ionization in the k

representation has the form

ψ(k) = f (k)
√

w0√
π

exp

[
− w2

0(k − k0)2

2

]
. (29)

Let us introduce the coefficients of its expansion

Cn =
∫

ϕn(k − k0)ψ(k)dk (30)

over the basis of functions

ϕn(k) =
√

w0

2nn!
√

π
Hn(w0k) exp

[
− w2

0k
2

2

]
, (31)

where Hn(x) is the Hermite polynomial. In coordinate repre-
sentation the functions in Eq. (31) describe expanding wave
packets:

ψn(x,t) =
√

1

2nn!
√

πw
Hn(x/w)

× exp

[
− x2

2w2

(
1 − it/w2

0

) − iβn(t)

]
, (32)

where w(t) = w0

√
1 + (t/w2

0)2 is the packet width grow-
ing in time and the phase is expressed as βn(t) = (n +
1/2) arctan(t/w2

0) − nπ/2. The functions ϕn(k − k0) in the
coordinate representation correspond to ψn(x,t) exp(ik0r −
i

k2
0
2 t). Here and below, x = r − k0t .

If the width 1/w0 of the packet momentum distribution is
small and f (k) has no singularities or zeros higher than the
first order; thus, only the first two coefficients of the expansion,
C0 and C1, are not small. It is easy to show that in this case the
shift of the packet center of mass 〈x〉 = 〈r〉 − k0t with respect
to the case of uniform motion with the velocity k0 is

〈x〉 = 2
Re[C∗

1C0〈ψ1|x|ψ0〉]
|C0|2 + |C1|2 . (33)

Here the dipole matrix element is expressed as

〈ψ1|x|ψ0〉 = w√
2
ei(β1−β0). (34)

Using the asymptotic expression ei(β1−β0) = 1 − iw2
0/t +

O(t−2), we get

〈x〉 �
√

2
Re[C∗

1C0]

|C0|2 + |C1|2
t

w0
+

√
2

Im[C∗
1C0]

|C0|2 + |C1|2 w0. (35)

The first term in this expression grows linearly in time, thus
describing the velocity shift:

�k = d〈x〉
dt

=
√

2

w0

Re[C∗
1C0]

|C0|2 + |C1|2 . (36)
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This correction arises as the momentum distribution is different
from Gaussian centered at k = k0. Indeed, �k turns into zero
if C1 = 0, the coefficient C1 describing the deviation from the
Gaussian shape.

The second term in Eq. (35) describes the delay of the packet
center arrival at the point r compared with the arrival time
r/(k0 + �k) corresponding to the case of uniform rectilinear
motion:

tWP = 〈x〉 − �kt

k0
=

√
2w0

k0

Im[C∗
1C0]

|C0|2 + |C1|2 . (37)

The delay tWP of the packet center of mass arises due to the
temporal variation of the packet shape, i.e., actually, because
of the fact that the common phases of the wave packet
without a node, β0(t), and the packet with a node, β1(t),
have different time dependences. The functions in Eq. (32) are
solutions of the time-dependent Schrödinger equation with the
Hamiltonian of a harmonic oscillator with variable frequency
� (t) = 1/

√
w(t), obtained from the free particle equation by

transformation to the time-scaled coordinate system [37,38]
x/w(t). The phases βn(t) = −nπ/2 + ∫ t

0 εn(t)dt are time in-
tegrals of the eigenenergies εn = (n + 1/2)� of the harmonic
oscillator with variable frequency � (t). We can conclude that
the delay tWP is a consequence of the specific quantization
that arises when the free particle motion is considered in the
time-scaled coordinate system.

Consider the case in which the central frequency of the
ionizing laser pulse coincides with Cooper’s minimum, i.e.,
when k0 = kC . Then,

C0 = −A30(EC)ieiδ30ϒ30, (38)

C1 = 1√
2w0

kCA′
10(EC)ieiδ10ϒ10. (39)

Equation (37) at w0 → ∞ yields the expression that does not
depend upon w0 and completely coincides with the second
term in Eq. (24). The shift of the central momentum at w0 →
∞:

�k = 1

w2
0

ϒ10

ϒ30

A′
10(EC)

A30(EC)
cos(δ30 − δ10); (40)

i.e., for w0 = ∞ the velocity shift turns into zero. Near
the node θe0 of the angular distribution, i.e., at ϒ30(θe →
θe0,φe) → 0, the wave-packet center time delay takes the form

tWP = 2w2
0

k2
C

A30(EC)

A′
10(EC)

sin(δ30 − δ10)
ϒ30

ϒ10
.

Thus, actually, in the vicinity of the node of the cross section
the time delay does not tend to infinity. On the contrary, for
any final w0 its value tends to zero or, more rigorously, to the
delay of the partial spheroidal wave with l = 1, neglected for
simplicity in the above consideration. In fact, in the vicinity of
the direction θe = θe0 the energy spectrum of ejected electrons

is double humped, which causes problems with determination
of time delay, considered in [39] for Cooper’s minimum of an
atom.

The maxima of |tWP| are attained at |C0| = |C1|. The
maximal possible delay or advance is

max
�e

|tWP| = w0

k0

sin(δ30 − δ10)√
2

= T
sin(δ30 − δ10)√

2
; (41)

i.e., it apparently does not exceed the uncertainty of the
ionizing laser pulse arrival time. This uncertainty is equal to
the pulse duration T . Thus, there is no contradiction with the
causality principle.

If the laser pulse is long enough to allow manifestation
of large tWP, the nuclear motion cannot be neglected. This is
clear not only from general considerations but also from the
fact that tWP(θe) can be large only in a very close vicinity of the
node θe0 of the angular distribution, and the position of angular
distribution nodes depends upon the internuclear distance [40].
Hence, even a minor shift of the nuclei, accumulated by the
time when the ejected electron appears far enough from the
residual molecular ion not to feel the variation of potential,
is expected to cause a shift of the node position, sufficient to
provide a considerable change of tWP. Obviously, in this case
the assumption of classical nuclear motion, used to determine
the initial internuclear distance from KER [21], also becomes
invalid.

VI. CONCLUSION

To provide a better understanding of certain features in
the angular dependence of the time delay observed earlier in
numerical simulations of photoionization of H2, we reconsider
the theory of ionization time delay in terms of spheroidal
Coulomb wave functions. The energy dependence of the time
delay is studied for partial two-center spheroidal Coulomb
waves. It is shown that for the energies, coincident with those
of Cooper’s minimum (in which the amplitude of one of the
partial waves of the ejected electron turns into zero), at angles
coinciding with the nodes of the angular spheroidal function
having the quantum number l = 3 the angular distribution of
the Wigner time delay for two-center targets has singularities,
in the vicinity of which the time delay takes large positive and
negative values. By analyzing the dynamics of the wave packet
of the ejected electron, it is shown that these singularities do
not lead to violation of the causality principle, since in the
process of ionizing the molecule by an external laser pulse
with finite duration the real delay or advance does not exceed
the duration of the laser pulse.
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