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�-enhanced sub-Doppler cooling of lithium atoms in D1 gray molasses
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Following the bichromatic sub-Doppler cooling scheme on the D1 line of 40K recently demonstrated
in Fernandes et al. [Europhys. Lett. 100, 63001 (2012)], we introduce a similar technique for 7Li atoms and obtain
temperatures of 60 μK while capturing all of the 5 × 108 atoms present from the previous stage. We investigate
the influence of the detuning between the the two cooling frequencies and observe a threefold decrease of the
temperature when the Raman condition is fulfilled. We interpret this effect as arising from extra cooling due
to long-lived coherences between hyperfine states. Solving the optical Bloch equations for a simplified �-type
three-level system we identify the presence of an efficient cooling force near the Raman condition. After transfer
into a quadrupole magnetic trap, we measure a phase space density of ∼10−5. This laser cooling offers a promising
route for fast evaporation of lithium atoms to quantum degeneracy in optical or magnetic traps.
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I. INTRODUCTION

Lithium is enjoying widespread popularity in the cold-atom
trapping community thanks to the tunability of its two-body
interactions and its lightness. Both the fermionic and the
bosonic isotopes of lithium feature broad, magnetically tunable
Feshbach resonances in a number of hyperfine states [1].
The presence of these broad resonances makes lithium
an attractive candidate for studies of both the Fermi- and
Bose-Hubbard models [2] and the strongly correlated regime
for bulk dilute gases of Fermi [3] or Bose [4–6] character. Its
small mass and correspondingly large photon-recoil energy
are favorable factors for large area atom interferometers [7]
and precision frequency measurements of the recoil energy
and fine structure constant [8]. Under the tight-binding
lattice model, lithium’s large photon-recoil energy leads to a
larger tunneling rate and faster time scale for superexchange
processes, allowing for easier access to spin-dominated
regimes [9]. Finally, lithium’s small mass reduces the heating
due to nonadiabatic parts of the collision between ultracold
atoms and Paul-trapped ions. This feature, together with Pauli
suppression of atom-ion three-body recombination events
involving 6Li [10], potentially allows one to reach the s-wave
regime of ion-atom collisions [11].

However, lithium, like potassium, is harder to cool using
optical transitions than the other alkali-metal atoms. The
excited-state structure of the D2 transition in lithium lacks the
separation between hyperfine states for standard sub-Doppler
cooling techniques such as polarization gradient cooling
[12–14] to work efficiently. Recently, it has been shown by
the Rice group that cooling on the narrow 2S1/2 → 3P3/2

transition produces lithium clouds near 60 μK, about half
the D2-line Doppler cooling limit [15], and can be used for
fast all-optical production of a 6Li quantum degenerate Fermi
gas. However, this approach requires special optics and a
coherent source at 323 nm, a wavelength range where power
is still limited. Another route is to use the three-level structure
of the atom as implemented previously in neutral atoms
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and trapped ions [16–22]. The three-level structure offers
the possibility of using dark states to achieve temperatures
below the standard Doppler limit, as evidenced by the use
of velocity-selective coherent population trapping (VSCPT)
to produce atomic clouds with subrecoil temperatures [23]. In
another application, electromagnetically induced transparency
has been used to demonstrate robust cooling of a single ion to
its motional ground state [19,24].

In this paper, we implement three-dimensional bichromatic
sub-Doppler laser cooling of 7Li atoms on the D1 transition.
Figure 1 presents the 7Li level scheme and the detunings
of the two cooling lasers that are applied to the atoms after
the magneto-optical trapping phase. Our method combines
a gray molasses cooling scheme on the |F = 2〉 → |F ′ =
2〉 transition [25,26] with phase-coherent addressing of the
|F = 1〉 → |F ′ = 2〉 transition, creating VSCPT-like dark
states at the two-photon resonance. Instead of UV laser
sources, the method uses laser light that is conveniently
produced at 671 nm by semiconductor laser sources or solid-
state lasers [27,28] with sufficient power. This enables us to
capture all of the �5 × 108 atoms from a MOT and cool them
to 60 μK in a duration of 2 ms.

We investigate the influence of the relative detuning
between the two cooling lasers and observe a threefold
decrease of the temperature in a narrow frequency range
around the exact Raman condition. We show that extra cooling
arises due to long-lived coherences between hyperfine states.
We develop a simple theoretical model for a sub-Doppler
cooling mechanism which occurs in atoms with a �-type
three-level structure, in this case, the F = 1, F = 2, and
F ′ = 2 manifolds of the D1 transition in 7Li. The main physical
cooling mechanism is contained in a 1D bichromatic lattice
model. We first give a perturbative solution to the model and
then verify the validity of this approach with a continued
fraction solution to the optical Bloch equations (OBEs).

II. EXPERIMENT

The stage preceding D1 sub-Doppler cooling is a com-
pressed magneto-optical trap (CMOT) in which, starting
from a standard MOT optimized for total atom number, the
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FIG. 1. (Color online) The D1 line for 7Li. The cooling scheme
has a strong coupling laser (principal beam, black solid arrow) δ2

blue detuned from the |F = 2〉 → |F ′ = 2〉 transition and a weak
coupling laser (repumper, gray solid arrow) δ1 blue detuned from
the |F = 1〉 → |F ′ = 2〉 transition. The repumper is generated from
the principal beam by an electro-optical modulator operating at a
frequency 803.5 + δ/2π MHz, where δ = δ1 − δ2.

frequency of the cooling laser is quickly brought close to
resonance while the repumping laser intensity is diminished
in order to increase the sample’s phase space density [29].
The CMOT delivers 5 × 108 7Li atoms at a temperature of
600 μK. The atoms are distributed throughout the F = 1
manifold in a spatial volume of 800 μm 1/e width. Before
starting our D1 molasses cooling, we wait 200 μs to allow any
transient magnetic fields to decay to below 0.1 G. The light
used for D1 cooling is generated by a solid-state laser presented
in [27]. The laser is locked at frequency ω2, detuned from
the |F = 2〉 → |F ′ = 2〉 D1 transition in 7Li by δ2. It is
then sent through a resonant electro-optical modulator (EOM)
operating at a frequency near the hyperfine splitting in
7Li, νEOM = 803.5 MHz + δ/2π . This generates a small-
amplitude sideband, typically a few percent of the carrier,
at frequency ω1. We define the detuning of this frequency
from the |F = 1〉 → |F ′ = 2〉 transition as δ1 (such that
δ = δ1 − δ2), as shown in Fig. 1. Using about 150 mW of
671-nm light we perform a three-dimensional D1 molasses
as in [25], with three pairs of σ+ − σ− counterpropagating
beams. The beams are of 3.4-mm waist and the intensity
(I ) of each beam is I � 45Isat, where Isat = 2.54 mW/cm2

is the saturation intensity of the D2 cycling transition in
lithium.

We capture all of the atoms present after the CMOT stage
into the D1 gray molasses. The 1/e lifetime of atoms in the
molasses is �50 ms. After being cooled for 1.5–2.0 ms, the
temperature is as low as 40 μK without optical pumping or
60 μK after optical pumping into the |F = 2,mF = 2〉 state
for imaging and subsequent magnetic trapping. In contrast
with [25], we find no further reduction in the steady-state
temperature by slowly lowering the light intensities after the
initial 2.0 ms.

During the molasses phase, we find a very weak dependence
on the principal laser detuning for 3� � δ2 � 6�. For the
remainder of this article, we use a principal laser detuning of
δ2 = 4.5� = 2π × 26.4 MHz. In Fig. 2(a), the temperature
dependence upon the repumper detuning is displayed for

(a)

(b) (c)

FIG. 2. (Color online) (a) Typical temperature of the cloud as
a function of the repumper detuning for a fixed principal beam
detuned at δ1 = 4.5� = 2π × 26.4 MHz. The dashed vertical line
indicates the position of the resonance with transition |F = 2〉 →
|F ′ = 2〉, the dotted horizontal line shows the typical temperature of
a MOT. (b) Magnification of the region near the Raman condition
with well-aligned cooling beams and zeroed magnetic offset fields.
(c) Minimum cloud temperature as a function of repumper power.

typical conditions. For −9 � δ/� � −6, the temperature
drops from 600 μK (the CMOT temperature) to 200 μK as gray
molasses cooling gains in efficiency when the weak repumper
comes closer to resonance. For −6 � δ/� � −1, the cloud
temperature stays essentially constant but, in a narrow range
near the position of the exact Raman condition (δ = 0), one
notices a sharp drop of the temperature. For δ slightly blue
of the Raman condition, a strong heating of the cloud occurs,
accompanied by a sharp decrease in the number of cooled
atoms. Finally for δ � �, the temperature drops again to a level
much below the initial MOT temperature until the repumper
detuning becomes too large to produce significant cooling
below the CMOT temperature.

Figures 2(b) and 2(c) show the sensitivity of the temperature
minimum to repumper deviation from the Raman condition
and repumper power, respectively. The temperature reaches
60 μK in a ±500-kHz interval around the Raman resonance
condition. After taking the data for Fig. 2(a), the magnetic field
zeroing and beam alignment were improved, which accounts
for the frequency offset and higher temperature shown in
Fig. 2(a) relative to Figs. 2(b) and 2(c). The strong influence
of the repumper around the Raman condition with a sudden
change from cooling to heating for small and positive Raman
detunings motivated the study of the bichromatic-lattice effects
induced by the �-type level configuration which is presented
in the next section.

III. MODEL FOR HYPERFINE RAMAN COHERENCE
EFFECTS ON THE COOLING EFFICIENCY

In order to understand how the addition of the second
manifold of ground states modifies the gray molasses scheme,
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FIG. 3. The � level scheme. An intense standing wave with Rabi
frequency 	2 and a weaker standing wave with Rabi frequency 	1,
detuning δ1, illuminate an atom with three levels in a � configuration.

we analyze a one-dimensional model based on a �-type
three-level system schematically represented in Fig. 3.

A. The model

This model includes only the F = 1,2 hyperfine ground
states and the F ′ = 2 excited state ignoring the Zeeman
degeneracy; hence, standard gray molasses cooling [26] does
not appear in this model. The states are addressed by two
standing waves with nearly the same frequency ω1 � ω2 �
ω = kc but spatially shifted by a phase φ. The principal
cooling transition F = 2 → F ′ = 2 is labeled here and below
as transition 2, between states |2〉 and |3〉 with a Rabi frequency
	2 = �

√
I/2Isat, where I is the laser light intensity and Isat the

saturation intensity on this transition. The repumper transition
is labeled 1, between states |1〉 and |3〉 with Rabi frequency
	1 much smaller than 	2.

The corresponding Hamiltonian for the light-atom interac-
tion in the rotating wave approximation (at ω) is

Ĥa.l. = h̄	2cos(kz) (|2〉〈3| + H.c.)

+ h̄	1 cos(kz + φ) (|1〉〈3| + H.c.)

+ h̄δ2|2〉〈2| + h̄δ1|1〉〈1|. (1)

The usual formalism used to compute the atom’s dynamics
is to consider the light force as a Langevin force. Its mean value
is F(v), and the fluctuations around this mean will give rise to
diffusion in momentum space, characterized by the diffusion
coefficient Dp(v) � 0. In order to calculate an equilibrium
temperature, one needs F(v) and Dp(v). In the limit of small
velocities the force reads

F(v) � −α v, (2)

with α the friction coefficient. If α > 0 the force is a
cooling force; in the opposite case it produces heating. For
a cooling force the limiting temperature in this regime is
given by

kBT � Dp(0)/α. (3)

However, since our model (1) is a gross simplification of the
physical system, we do not expect to be able to quantitatively
predict a steady-state temperature. Instead, in order to reveal
the physical mechanisms in action, we only calculate the force
F(v) and the excited state population ρ33. Restricting our
analysis to the force and photon scattering rate, �ρ33, suffices
to determine whether the action of the weak repumper serves
to heat or cool the atomic ensemble.

From (1) the mean light force on the atoms is computed by
taking the quantum average of the gradient of the potential,
F = 〈−∇Ĥa.l.〉 = −Tr[ ρ̂ Ĥa.l.], with ρ the density matrix,
yielding the wavelength-averaged force F ,

F(v) = k

2π

∫ 2π
k

0
dz F (z,v), (4)

F(v) = h̄k2

π

∫ 2π
k

0
dz sin(kz)(	2Reρ23 + 	1Reρ12). (5)

The spontaneous emission rate averaged over the standing
wave is simply given by the linewidth of the excited state
multiplied by its population:

�′ = k

2π

∫ 2π
k

0
dz � ρ33. (6)

So, both the force and the spontaneous emission rate are
functions of the density matrix ρ, the evolution of which is
given by the OBEs,

i
d

dt
ρ = 1

h̄
[ĤAL,ρ] + i

(
dρ

dt

)
spont. emis.

. (7)

As we are focusing on the sub-Doppler regime, we assume

v 	 �/k, (8)

with v being the velocity. The inequality holds for T 	 13 mK
for lithium. This inequality allows us to replace the full time
derivative in the left-hand side of (7) by a partial spatial
derivative times the atomic velocity,

d

dt
→ v

∂

∂z
.

Using the notation 	i(z) = 	i cos(z + φi) and setting h̄ =
k = 1 from here on,

iv
∂ρ22

∂z
= −2i	2(z) Im(ρ23) + i

�

2
ρ33, (9)

iv
∂ρ11

∂z
= −2i	1(z) Im(ρ13) + i

�

2
ρ33, (10)

iv
∂ρ23

∂z
=

(
δ2 − i

�

2

)
ρ23 + 	2(z) (ρ33 − ρ22) − 	1(z)ρ21,

(11)

iv
∂ρ13

∂z
=

(
δ1 − i

�

2

)
ρ13 + 	1(z) (ρ33 − ρ11) − 	2(z)ρ12,

(12)

iv
∂ρ21

∂z
= (δ2 − δ1)ρ21 + 	2(z)ρ31 − 	2(z)ρ23. (13)

The solution of these equations yields the expression of
F(v) and �′. This semiclassical model is valid only for veloc-
ities above the recoil velocity vrec = h̄k/m (corresponding to
a temperature mvrec/kB of about 6 μK for lithium). Different
theoretical studies [17,18,20,22,30,31] as well as experiments
[16,32] have been performed on such a � configuration
in standing waves or similar systems. However, in our 7Li
experiment, we have the situation in which the � configuration
is coupled to a gray molasses scheme which involves a different
set of dark states. This fixes the laser light parameters to
values that motivate our theoretical exploration. Thus, we
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concentrate on the situation corresponding to the conditions of
our experiment.

To solve the OBEs (9)–(13), we first introduce a per-
turbative approach that enables us to point out the relevant
physical mechanisms. We further extend the analysis by an
exact approach in terms of continued fractions.

B. Perturbative approach

In our perturbative approach we choose a Rabi frequency
	2 between 2� and 4� and 	1 	 �,	2,δ2 as the ratio of
the repumper to principal laser power is very small, typically
(	1/	2)2 � 0.03, under our experimental conditions. We
further simplify the approach by considering only the in-phase
situation φ = 0; any finite phase would lead to divergencies of
the perturbative approach at the nodes of wave 1. The validity
of these assumptions are discussed in Sec. III C.

We perform an expansion in powers of the Rabi frequency
	1 and the atomic velocity such that the complete expansion
reads

ρij =
∑
n,l

ρ
(n,l)
i,j (	1)n(v)l . (14)

This expansion of ρ allows us to recursively solve the OBEs.
Using an expansion similar to Eq. (14) for the force, we find

α = −
∞∑

n=0

F (n,1)(	1)n. (15)

We plug the perturbative solution of the OBEs into Eq. (5) and
find, to the lowest order (n = 2) in 	1,

α � − (	1)2

2π

∫ 2π

0
dz sin(z)

(
	2Re ρ

(2,1)
23 + Re ρ

(1,1)
13

)
. (16)

The spontaneous emission rate to lowest order in v and 	1

reads

�′ = �
(	1)2

2π

∫ 2π

0
dz ρ

(2,0)
33 . (17)

Figure 4 presents the results from (15) and (17) compared
with the experimental data. It shows that indeed a narrow
cooling force appears near the Raman resonance condition
and that the photon scattering rate vanishes at exact res-
onance, hinting at an increase of cooling efficiency with
respect to the gray molasses Sisyphus cooling mechanism
which achieves a temperature near 200 μK over a broad
range. The strong heating peak for small, positive repumper
detuning is also a consequence of the negative value of
α, and the heating peak shifts towards higher frequency
and broadens for larger intensities of the principal laser. In
contrast, the friction coefficient and scattering rate in the
range −6 � δ/� � −3, which correspond to a repumper near
resonance, do not seem to significantly affect the measured
temperature.

To gain further physical insight into this cooling near the
Raman condition, it is useful to work in the dressed-atom
picture. Given the weak repumping intensity, we first ignore
its effect and consider only the dressing of the states |2〉 and
|3〉 by the strong pump with Rabi frequency 	2. This dressing

FIG. 4. (Color online) Comparison of experimental data with
the perturbative approach results for a detuning of the pump δ2 =
2π × 26.4 MHz = 4.5�. (a) Temperature versus repumper detuning,
experiment; we indicate the MOT temparature by the dotted line.
Panels (b) and (c) show, respectively, the friction coefficient α and
photon scattering rate �′ for 	2 = 3.4� (red dashed curve) and 2.1�

(blue solid curve). The intensity ratio (	1/	2)2 is 0.02. The vertical
dashed line indicates the position of δ1 = 0.

gives rise to an Autler-Townes doublet structure which follows
the spatial modulation of the standing wave:

|2′〉 ∝ |2〉 − i	2(z)/δ2|3〉, (18)

|3′〉 ∝ −i	2(z)/δ2|2〉 + |3〉. (19)

Since the pump is relatively far detuned (in the conditions
of Fig. 4 	2/δ2 � 0.45), the broad state |3′〉 carries little |2〉
character. Conversely, the narrow state |2′〉 is mostly state
|2〉. It follows that |3′〉 has a lifetime �|3′〉 � �, while |2′〉
is relatively long lived with a spatially dependent linewidth
�|2′〉 = �(	2(z)/δ2)2, which is always ��/6 for the param-
eters chosen here. In order to reintroduce the effects of the
repumping radiation, we note that the position in δ of the
broad state is δ|3′〉 � −δ2 − 	2(z)2/δ2 and the narrow state
δ|2′〉 � 	2(z)2/δ2. As coherent population transfer between
|1〉 and |2′〉 does not change the ensemble temperature, we
consider only events which couple atoms out of |2′〉 to |1〉
through spontaneous decay and therefore scale with �|2′〉.
The rates of coupling from |1〉 into the dressed states can
be approximated by the two-level absorption rates:

γ|1〉→|2′〉 ∼ 	1(z)2

2

�|2′〉(z)

[�|2′〉(z)/2]2 + [δ − δ|2′〉(z)]2
, (20)

γ|1〉→|3′〉 ∼ 	1(z)2

2

�

(�/2)2 + [δ − δ|3′〉(z)]2
. (21)

Finally, these results are valid only in the limit |δ| > �	2
2/δ

2
2

(see, e.g., [33]) when state |1〉 is weakly coupled to the radiative
cascade. Near the Raman resonance, the dressed state family
contains a dark state which bears an infinite lifetime under the
assumptions made in this section but is, in reality, limited by
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FIG. 5. (Color online) The cascade of levels dressed by transition
2 with a schematical representation of state |1〉. Traces show typical
cycles of atoms pumped from |1〉 and back depending on the detuning
of wave 1. The detuning of the repumper modulates the entry point
into the cascade of the dressed states, leading either (a) heating or (b)
cooling processes.

off-resonant excitations and motional coupling. This dark state
reads

|NC〉 = (	2|1〉 − 	1|2〉)/
√

	2
1 + 	2

2, (22)

which we must add in by hand.
Using this toy model, we now explain the features of Fig. 4

and Fig. 2. Figure 5 represents the cascade of dressed levels
where each doublet is separated by one pump photon. It gives
rise, for example, to the well-known Mollow triplet. Condition
(8) states that if an atom falls in state |3′〉 it will rapidly decay to
|2′〉 without traveling a significant distance. However, the atom
will remain in |2′〉 long enough to sample the spatial variation
of the standing wave and gain or lose energy depending on the
difference of light shift between the entry and the departure
points, as in most sub-Doppler cooling schemes.

Let us first analyze the spontaneous emission rate shown
in Fig. 4(c). It reaches two maxima, the first one for δ ∼ δ|3′〉
and the second one for δ ∼ δ|2′〉, and it goes to exactly zero at
δ = 0. The two maxima are simply due to scattering off the
states |2′〉 and |3′〉. At δ = 0, �′ goes to zero due to coherent

population trapping in |NC〉. It is the presence of this dark state
which leads to the reduced scattering rate of photons around
δ = 0 and the suppression of the final temperature of the gas
in the region around the Raman condition.

The friction coefficient, Fig. 4(b), displays a more com-
plicated structure with variations in δ. It shows a dispersive
shape around δ|3′〉, remains positive in the range δ|3′〉 < δ < 0,
diverges at δ = 0, and reaches negative values for δ > 0 up
to δ|2′〉, where it drops to negligible values. This structure for
α can be explained using our toy model. Let us consider the
different scenarios corresponding to both sides of δ near 0,
they follow formally from Eqs. (20) and (21) and the spatially
varying linewidth of |2′〉.

For the case of the repumper tuned slightly blue of the
narrow doublet state, δ > δ|2′〉, shown in Fig. 5(a), the atoms
are pumped directly from |1〉 into |2′〉. However, this pumping
happens preferentially at the antinodes of the standing wave
as the repumper intensity is greatest, the linewidth of |2′〉 is
the largest, and the light shift minimizes the detuning of the
repumper from the |1〉 → |2′〉 transition for the φ = 0 case
considered here. On average, the atoms exit this state at a
point with a smaller light shift through a spontaneous emission
process either into the cascade of dressed states or directly back
to |1〉. As a result, we expect heating and α < 0 in this region.

For repumper detunings between δ|3′〉 and 0, Fig. 5(b), we
predict cooling. For this region, the atoms are initially pumped
into |3′〉. Here the light shift modifies the relative detuning,
favoring coupling near the nodes of the light. Spontaneous
decay drops the atoms near the nodes of the longer-lived |2′〉,
and they travel up the potential hill into regions of larger light
shift before decaying, yielding cooling and a positive α. These
sign changes of α and the decreased scattering rate due to |NC〉
in the vicinity of the Raman condition explain the features of
our perturbative model.

We conclude this section by stating that the experimentally
observed change of sign of the force close to the Raman
condition is well described in our perturbative model. The
model further reveals the importance of Raman coherence and
the existence of a dark state. The dark state together with
the friction coefficient associated with cycles represented in
trace 5(b) correspond to a cooling mechanism analogous to
that of gray molasses. In this way, the bichromatic system
provides an additional gray molasses scheme involving both
hyperfine states which complements the gray molasses cooling
scheme on the principal transition. On the other hand, when the
friction coefficient is negative in the vicinity of the two-photon
resonance, it turns into a heating mechanism that overcomes
the standard gray molasses operating on the F = 2 → F ′ = 2
transition.

The perturbative approach successfully revealed the mech-
anisms giving rise to the experimentally observed additional
cooling. However, it also possesses some shortcomings. First,
the divergence of α at δ = 0 is not physical; the assumption
that 	1 is the smallest scale in the problem breaks down when
δ → 0. Alternatively, it can be seen as the failure of our model
based on nondegenerate perturbative theory in the region
where |1〉 and |2〉 become degenerate when dressed with ω1 and
ω2, respectively. Second, we have only addressed the φ = 0
case. Since the experiment was done in three dimensions with
three pairs of counterpropagating beams, the relative phase
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FIG. 6. (Color online) Comparison of results using the perturba-
tive calculation (dashed), and the continued fractions (solid) for the
φ = 0 case, with the same parameters as in Fig. 4 and 	2 = 2.1�.

between the two frequencies varies spatially, and we must test
if the picture derived at φ = 0 holds when averaging over all
phases. In order to address these limitations and confirm the
predictions of the perturbative approach, we now present a
continued-fractions solution to the OBEs which does not rely
on 	1 being a small parameter.

C. Continued fractions approach

The limitations listed above can be addressed by using a
more general approach, namely, an expansion of the density
matrix in Fourier harmonics:

ρij =
n=+∞∑
n=−∞

ρ
(n)
ij einkz. (23)

Injecting this expansion in (9)–(13) yields recursive rela-
tions between different Fourier components of ρ. Kozachiov
et al. [17,30] express the solutions of these relations for a
generalized � system in terms of continued fractions. Here
we use their results to numerically solve the Bloch equations.
We then compute the force F(v) to arbitrary order of 	1 and
extract α by means of a linear fit to the small-v region. We
then compute F(v) and the photon scattering rate �′ averaged
over the phase between the two standing waves.

Figure 6 compares α(δ) obtained through the continued-
fractions approach with the results of the perturbative expan-
sion for the φ = 0 case. The continued-fractions approach has
removed the divergence at δ = 0 and α crosses zero linearly.
The overall friction coefficient is reduced but the two methods
show qualitative agreement in the range of δ considered. At
the Raman condition the interaction with light is canceled due
to the presence of |NC〉; thus, the diffusion coefficient Dp in
momentum space also cancels. To lowest order, the diffusion
and friction coefficients scale as

Dp � δ2, (24)

α � δ; (25)

according to (3) the temperature scales as

T � δ. (26)

Through this qualitative scaling argument, we show that
even though the light action on the atoms is suppressed

FIG. 7. (Color online) 〈F〉φ in units of 1/h̄k� as a function of v

for different values of δ around δ = 0. The horizontal scale is in units
of the thermal velocity at T = 200 μK, vth = √

kBT/m.

when approaching the Raman condition, we expect that the
temperature will drop when approaching from the δ < 0 side,
completing the physical picture derived in the previous section.

Next, we analyze how a randomized phase between the
repumping and principal standing waves, φ, modifies F(v). In
order to take this into account, we calculate the phase-averaged
force:

〈F(v)〉φ = 1

2π

∫ 2π

0
F(v,φ) dφ. (27)

In Fig. 7, the phase-averaged force is plotted for various
detunings near the Raman condition. It can be seen that a
cooling force is present for small detunings, qualitatively
in agreement with our perturbative model and with the
experimental data. The force, however, changes sign to heating
for small blue detuning, close to δ = 0.6 �, also in qualitative
agreement with the experimental data. We note that the
cooling slope very close to zero velocity in the δ = 0.8 �

plot corresponds to a velocity on the order of or below the
single-photon recoil velocity, i.e., is nonphysical.

Finally, for the φ �= 0 case, |NC〉 varies in space and
the motion of the atoms can couple atoms out of |NC〉
even at the Raman condition. In Fig. 8 we verify that the
rate of photon scattering retains a minimum near the δ = 0
region after averaging over φ by plotting 〈�′〉φ = �〈ρ33〉φ
calculated with the continued fractions approach. Overall, the
friction coefficient α and photon scattering rate �′ confirm
the existence of a cooling force associated with a decrease in
photon scattering in the vicinity of the Raman condition for
the 1D bichromatic standing-wave model. Thus, the continued
fractions calculation has confirmed the physical mechanisms
revealed by the perturbative expansion and that the lowest

063411-6
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FIG. 8. (Color online) Continued fractions solution of the photon
scattering rate �′ = � ρ33 averaged over all relative phases of the
repumper and principal standing waves as a function of the two-
photon detuning δ. Velocity-dependent effects are taken into account
here by computing an average of 〈�′〉φ(v) weighed by a Maxwell-
Boltzmann velocity distribution at 200 μK.

temperatures should be expected close to δ = 0, as seen in the
experiment.

IV. CONCLUSION

In this study, using bichromatic laser light near 670 nm,
we have demonstrated sub-Doppler cooling of 7Li atoms
down to 60 μK with near unity capture efficiency from a
magneto-optical trap. Solving the OBEs for a simplified �

level structure, we have analyzed the detuning dependence

of the cooling force and photon scattering rate. Our analysis
shows that the lowest temperatures are expected for a detuning
of the repumping light near the Raman condition, in agreement
with our measurements. There the � configuration adds a
new set of long-lived dark states that strongly enhance the
cooling efficiency. For 7Li, this addition results in a threefold
reduction of the steady-state temperature in comparison with
an incoherently repumped gray molasses scheme. This atomic
cloud at 60 μK is an ideal starting point for direct loading into a
dipole trap, where one of the broad Feshbach resonances in the
lowest-energy states of 7Li or 6Li could be used to efficiently
cool the atoms to quantum degeneracy [15,34]. Alternatively,
when the atoms are loaded into a quadrupole magnetic trap,
we measure a phase space density of �10−5. This �-enhanced
sub-Doppler cooling in a D1 gray molasses is general and
should occur in all alkali metals. Notably, we have observed its
signature in a number of the alkali-metal isotopes not amenable
to polarization gradient cooling: 7Li (this work), 40K [25], and
6Li [35].
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