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In the present article we report a comprehensive calculation of total and differential cross sections for electron
impact on allene (C3H4) molecule. The total cross sections are computed for a wide electron energy range from
0.1 eV to 2 keV. We have employed R-matrix code through QUANTEMOL-N software for ab initio calculations
below 10 eV while intermediate- to high-energy calculations are performed using the spherical complex optical
potential formalism. The two methods are found to be consistent at around 3 eV, merging smoothly. The results
for both total and differential cross sections are in good agreement with previous results wherever available. We
have also observed the presence of a shape resonance at 2.9 eV due to degenerate (2B1, 2B2) states. The electronic
excitation cross section for e-C3H4 scattering is reported.
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I. INTRODUCTION

The study of electron-impact total cross sections for hy-
drocarbons plays an important role in varieties of applications
such as radiation biochemistry, low-temperature processing
plasmas, atmospheric and astrophysical phenomena, and
modeling electron assisted processes in fuel combustion [1–3].
Since the early 1930s, there has been interest in studying the
relationship between the structural properties of the target
and the shape and magnitude of the total cross sections
(TCS) [4–6]. Recently the study of electron-impact total
cross sections with C3H4 has geared up as it is the simplest
hydrocarbon with isomeric effect. C3H4 molecule has two
stable isomeric molecular structures, viz., allene and propyne.
Allene has one carbon atom with a double bond with each
of its two adjacent carbon centers. The reactivity of allene
with gaseous chlorine is more like that of alkynes than alkenes
and hence is much more reactive than other alkenes [7]. The
central carbon of allene forms two sigma bonds and two pi
bonds (Fig. 1) with hydrogen atom. The central carbon is sp

hybridized, and the two terminal carbons are sp2 hybridized,
with a linear geometry for the carbons of allene. Owing to
the simple structure and stability, C3H4 is a good candidate for
investigation for both theoreticians as well as experimentalists.
Besides, C3H4 is a feed gas in plasma enhanced chemical
vapor deposition for the growth of carbon nanotubes [8].
Hence, it is imperative to study the electron-impact scat-
tering on allene to understand various processes in these
environments.

There are many studies concentrating on the isomeric
effect of C3H4, its properties, and cross sections result-
ing from interaction with electrons. Nakano et al. [9]
measured the absolute differential cross section (DCS) for
C3H4 isomers (allene and propyne) from 1.5 to 100 eV.
Szmytkowski and Kwitnewski [10] and Makochekanwa et al.
[11] measured electron-impact TCS for C3H4 isomers at
low energies from 0.5 to 370 eV and from 0.8 to 600 eV,
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respectively. Lopes and Bettega [12] and Sanchez et al. [13]
calculated elastic and differential cross sections at low energies
using Schwinger multichannel method. From the literature
survey it is very clear that there are more experimental
investigations [9–11] as compared to theory [12,13]. It is also
noteworthy to see that there are no theoretical or experimental
results beyond 600 eV. Thus, the studies on e-C3H4 scattering
are fragmentary. Also, there is no comparison for electronic
excitation cross sections in the literature to the best of our
knowledge. Thus, in this article we present a comprehensive
study that includes eigenphase diagram, electronic excitation
cross sections, differential cross sections, and total and ioniza-
tion cross sections over an extensive range of impact energies
starting from very low energy of 0.1 to 2000 eV. Apart from the
differential and total cross sections, we have also calculated
total inelastic cross section comprised of total ionization
and sum total of electronic excitations cross sections. Total
ionization cross sections are then derived from Qinel using the
complex spherical potential-ionization contribution (CSP-ic)
method [14]. These Qion are compared with the values reported
by Kim and Irikura [15] using the binary-encounter-Bethe
(BEB) method along with present computed BEB data through
QUANTEMOL-N.

The central idea behind the present study is to investigate
all the phenomena that occur in an electron-impact scattering
over a wide energy range from 0.1 to 2000 eV. At low electron-
impact energies (<10 eV) short-lived anions (resonances) may
be formed which may then subsequently decay to produce
neutral and anionic fragments. Hence, the prediction of low-
energy resonance formation, which is strongly linked with the
forces acting on the electrons during the scattering process and
therefore the structural properties of the target, can be of utmost
importance in understanding the local chemistry. However,
intermediate- to high-energy electron scattering cross sections
are required in other fields such as astrophysics, atmospheric
physics, and radiation physics, where high-energy radiations
such as x rays, cosmic rays, etc., are present and interact
with gases. These high-energy interactions can produce an
avalanche of secondary electrons which then provide the low-
energy electrons for further chemical reactions. Consequently,
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FIG. 1. Structure of allene.

there is a need for electron-impact scattering cross sections
over a wide energy range from meV to keV.

In the next section we will present a detailed theoretical
methodology adopted to evaluate various cross sections re-
ported here.

II. THEORETICAL METHODOLOGY

The present calculations are performed using two distinct
formalisms in two prime regimes of energy. The low-energy ab
initio calculation (<10 eV) is carried out using UK molecular
R-matrix code through QUANTEMOL-N [16] software package.
For the intermediate to high energy, the well-established spher-
ical complex optical potential (SCOP) [17–20] is used from
3 eV to 2 keV. Before going into the details of the theoretical
methodologies, it is necessary to discuss the target model used
for the low-energy calculation, since a correct representation
of target wave function ensures accurate and reliable results.

A. Target model

Allene (C3H4) has trigonal planar geometry, connected at
the ends by linear carbon atoms and in the middle with two dou-
ble bonds (C=C). We have used 6-31G∗ Gaussian basis set for
our target wave function representation. C3H4 has a D2d point
group symmetry; however, in our calculation we have used
the C2V point group, due to the limitation of QUANTEMOL-N

software. The Hartree-Fock electronic configuration of the
ground state is 1a1

2, 2a1
2, 3a1

2, 4a1
2, 5a1

2, 6a1
2, 7a1

2, 1b1
2,

1b2
2, 2b2

2, 2b1
2. Out of the total 22 electrons, we have frozen

six core electrons in 1a1, 2a1, and 3a1 molecular orbitals, while
the remaining 16 electrons are kept free in the active space of
11 molecular orbitals (4a1, 5a1, 6a1, 7a1, 8a1, 1b1, 2b1, 3b1,
1b2, 2b2, 3b2). A total of 33 target states are represented by

2377 configuration state functions for the ground state, and the
number of channels included in the calculation is 207.

Employing the present target model yields a ground state
energy of −115.89 hartrees, which is in very good agreement
with the value of −115.82 hartrees reported by Peyerimhoff
and Buenker [21]. The present computed dipole moment in
the equilibrium geometry comes out to be zero, agreeing with
Lopes and Bettega [12]. On the other hand, the experimentally
reported dipole moment is 0.2 a.u. by Nakano et al. [9].
The rotational constant obtained in the present calculation
is 4.8066 cm−1 which is in excellent agreement with the
CCCBDB database [22]. The calculated excitation energy
from ground state to 1A2 state is 6.60 eV which is in good
agreement with the values of Rauk et al. [23], Diamond and
Segal [24], Galasso and Fronzoni [25], and Jackson et al. [26]
as evident from Table I.

B. Low-energy formalism (0.1 eV to ∼10 eV)

The Kohn variational method [27,28], Schwinger varia-
tional method [29–31], and the R-matrix method [18] are
the three most popular methodologies used for low-energy
calculations, of which the R-matrix method is the most widely
used approach. The R-matrix method relies on the division
of configuration space into two spatial regions, namely, an
inner region and an outer region. The inner region is a sphere
of radius ‘a’ about the center of mass of the target called
the R-matrix radius. The inner region has a radius of around
10 a.u. while the outer region is infinite. The calculations
are done within a fixed-nuclei approximation which neglects
any dynamics involving the nuclear motion (rotational and
vibrational), whereas the bound electrons are considered in the
electronic ground state of the target at its optimized nuclear
geometry. This is an effect of the extent of electronic charge
density distribution around the center of mass of the target.
The choice of inner region is done so that it accommodates
the total wave function of the target molecule. In the inner
region, we cannot distinguish between the scattering electron
and the electrons of the target, which makes the problem
numerically complex but precise. The quantum chemistry
codes are employed to solve the bound state problem of the
inner region. The interaction potential consists of short-range

TABLE I. Target properties.

Ground state energy (hartrees) Dipole moment (a.u.) First excitation energy E1 (eV) Rotational constant (B) (cm−1)

Target Present Theor. Present Theor. Expt. Present Theor. Present Theor. Expt.

C3H4 –115.89 –115.82a 0.0 0b 0.2c 6.60 6.49d 4.80 4.89e 4.81e

6.56f

6.86g

6.23h

aReference [21].
bReference [12].
cReference [9].
dReference [23].
eReference [22].
fReference [24].
gReference [25].
hReference [26].
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potentials which are dominant in the inner region. They
are static, exchange, and correlation-polarization potentials.
Moreover, the inner region problem is solved independent of
the energy of the scattering electron and hence done only
once. However, when the scattering electron is far away
from the target electron cloud (i.e., in the outer region),
there is no residual molecular charge density and hence the
exchange and correlation effects are assumed to be negligible.
Here only the long-range multipolar interaction between the
scattering electron and the target are included. A single center
approximation is assumed here which makes the problem
simple, allowing it to converge quickly. For the present e-C3H4

system the inner R-matrix radius is taken as 10ao while the
outer region calculations are carried out up to 100 ao and found
to give consistent results.

We construct the wave function for the inner region using
the close coupling (CC) approximation [32] which is used to
solve the time-independent Schrödinger equation and is given
by

ψN+1
k = A

∑
I

ψN
I (x1, . . . ,xN )

∑
j

ζj (xN+1)aIjk

+
∑
m

χm(x1, . . . ,xN+1)bmk, (1)

where A is the antisymmetrization operator, obtained by
imposing Pauli’s exclusion principle on the electrons. ψN

I

is the wave function of target, xN is the spatial and spin
coordinate of the nth target electron, ξj is a continuum orbital
spin-coupled with the scattering electron, and aIjk and bmk

are variational coefficients determined by the diagonalization
of the Hamiltonian matrix. The first summation runs over
the target plus continuum states used in the close-coupled
expansion. The second term is called the L2 term and the
summation runs over configurations χm, where all electrons
are placed in orbitals associated with the target. These χm are
multicenter quadratically integrable functions constructed as
the target wave functions, from the target occupied and virtual
molecular orbitals. They are used to represent short-range
correlations and polarization effects. The number of these con-
figurations varies considerably with the model employed. Thus
it can provide a good description of the electron correlations in
several excited states of the molecule. With the wave function
given by Eq. (1), a static exchange calculation has a single
Hartree-Fock target state in the first sum. The second sum
runs over the minimal number of configurations, usually three
or fewer, required to relax orthogonality constraints between
the continuum orbitals and those belonging to the target, given
that the continuum orbitals are forced to be orthogonal to
the target ones. Our fully close-coupled calculation uses the
lowest number of target states, represented by a configuration
interaction expansion in the first expansion and over a thousand
configurations in the second. For the present problem we
have used the eight lowest energetically excited target states.
These configurations allow for both orthogonality relaxation
and short-range polarization effects.

The complete molecular orbital representation in terms of
occupied and virtual target molecular orbitals are constructed
using the Hartree-Fock self-consistent field method using
Gaussian-type orbitals and the continuum orbitals of Faure

et al. [33] and included up to g (l = 4). In the case
of dipole-forbidden excitations (�J �= 1) (where J is the
rotational constant without spin coupling) the convergence
of the partial waves is rapid. However, in the case of dipole-
allowed excitations (�J = ±1) the partial wave expansion
converges slowly due to the long-range nature of the dipole
interaction. The R matrix provides a link between the inner
region and the outer region. For this purpose the inner region
is propagated to the outer region potential until its solutions
match with the asymptotic functions given by the Gailitis
expansion [34]. The coupled single center equations describing
the scattering in the outer region are integrated to identify
the K-matrix elements. The K matrix is a symmetric matrix
whose dimensions are the number of open channels. All the
observables can be deduced from the K matrix and is used to
obtain T matrices using the definition

T = 2iK

1 − iK
. (2)

The T matrices are in turn used to obtain the physically
observable quantities such as cross sections. The K matrix
is diagonalized to obtain the eigenphase sum, which is further
used to obtain the position and the width of the resonances
by fitting the curve with Breit-Wigner form [35]. Further, the
calculation of differential cross section involves the processing
of K matrices through the method given by Sanna and
Gianturco [36].

C. High-energy formalism (3 eV to 2 keV)

The electron-molecule scattering interactions can lead to
different processes which can be broadly classified into elastic
and inelastic processes. The total cross section is the sum of
both, given as

QT (Ei) = Qel(Ei) + Qinel(Ei). (3)

In SCOP formalism the Schrödinger equation is solved
numerically to obtain complex phase shifts for each partial
wave using the Numerov method. These phase shifts contain
the signature of the scattering between the projectile and the
target. At low impact energies only a few partial waves are
significant, but as the electron energy increases, more and
more partial waves are required for convergence. The phase
shifts obtained are then used to calculate the appropriate cross
sections [37] through

Qel (Ei) = π

k2

∞∑
l=0

(2l + 1)|ηl exp(2iReδl) − 1|2, (4)

and

Qinel (Ei) = π

k2

∞∑
l=0

(2l + 1)
(
1 − η2

l

)
. (5)

Here k is the wave vector. The “inelasticity” or “absorption”
factor for each partial wave ‘l’ is given by

ηl = exp(−2Imδl). (6)

From Qinel, the total ionization cross section, Qion, can be
estimated using the CSP-ic method [14]. A detailed description
of the CSP-ic method is given in Ref. [14] and references
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therein. Here we have assumed a single center approach for
the target, where the charge density of each atom is expanded
from the center of mass of the system. The parametrized
Roothaan-Hartree-Fock wave functions given by Cox and
Bonham [38] are employed to find the charge density of atoms.
The expansion will depend on the geometry of the target and
mass of atoms in the molecule. The total charge density is
then renormalized to account for the total number of electrons
in the system. The final potential is assumed to be spherical
and complex which depends upon the radial distance ‘r’ and
incident energy Ei ; hence the name spherical complex optical
potential method. The final optical potential is given by

Vopt(r,Ei) = VR(r) + iVI (r,Ei). (7)

Here the first term represents the real potential of the electron-
target system and second term gives the absorption potential.
The real potential of the present electron-target interaction is
obtained by employing different model potentials, given as

VR(r,Ei) = Vst (r) + Vex(r,Ei) + Vp(r,Ei). (8)

For the static potential (Vst ) we have used the Cox and Bonham
parameters [38], the exchange potential (Vex) is obtained from
the parameter-free Hara’s [39] free electron gas exchange
model, and for the polarization potential (Vp), the correlation
potential of Zhang et al. [40] is used. The imaginary part of
Eq. (7) takes care of the loss of the flux into various inelastic
channels and is given by the model potential of Staszewska
et al. [41] as

Vabs(r,Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
F Ei

)
θ
(
p2 − k2

F − 2�
)

× (A1 + A2 + A3), (9)

where the local kinetic energy of the electron is given by

Tloc = Ei − (Vst + Vex + Vp). (10)

Here, p2 = 2Ei and kF = [3π2ρ(r)]1/3 is the Fermi wave
vector. The functions A1, A2, and A3 depend on the Heaviside
unit step function θ (x), ionization threshold (I ), energy
parameter (�), and Ei . � is the factor that limits the effect

of inelastic processes. In the original model of Staszewska
et al. [41] the parameter � is fixed at the ionization potential.
This assumption is not true as electronic excitations starts
below the ionization threshold as their threshold usually falls
below ionization potential. Hence, this has been modified by
us by assuming � as a gradually varying function of energy
near the ionization potential of the target. The approximation
is meaningful as � fixed at I would not allow low-energy
excitations and high-energy inner shell ionizations.

After obtaining the full complex optical potential for a given
electron-molecule system, the Schrödinger equation is solved
using the method of partial waves.

III. RESULTS AND DISCUSSION

In the present work, a detailed study of the electron
scattering with allene (C3H4) molecule is performed. We have
made use of two distinct formalisms for the calculation of
total cross section for allene in the energy range from 0.1 eV
to 2 keV. The low-energy calculations from 0.1 to 10 eV
is carried out using UK molecular R-matrix code through
QUANTEMOL-N. For intermediate to high energy (3 eV to
2 keV) SCOP formalism is employed. In the present study we
have also calculated the elastic differential cross section and
electronic excitation cross section from 1 to 15 eV and total
ionization cross section from ionization threshold to 2 keV. The
R-matrix calculations for the present target are done; hence it
is of great significance to locate the resonance structure, if any,
by studying the eigenphase diagram. The results so obtained
are consistent and show a smooth transition at the overlap of
the two formalisms for the TCS data. Hence, it is possible for
us to predict the cross section for such a wide energy range.
The results obtained are tabulated in Table II and are presented
in graphical form in Figs. 2–6.

Figure 2 shows the eigenphase diagram for various doublet
scattering states (2A1, 2A2, 2B1, and 2B2) of the C3H4 system. In
the low-energy regime, the study of the eigenphase sum finds
significance as it reflects the position of resonance structure
which is an important feature in this energy range and can
lead to anion formation. The position and width of resonance

TABLE II. Total cross sections (TCS) for e-C3H4 scattering in Å2.

Energy (eV) TCS Energy (eV) TCS Energy (eV) TCS Energy (eV) TCS

0.1 18.33 4 37.23 20 36.48 160 15.95
0.2 19.80 5 33.84 26 35.20 180 14.79
0.3 20.17 6 32.90 30 34.20 200 13.84
0.5 20.04 7 33.37 36 32.68 250 11.97
0.7 19.73 8 34.02 40 31.69 300 10.57
1.0 19.44 9 34.68 46 30.28 400 8.64
1.3 19.34 10 35.27 50 29.36 500 7.33
1.5 19.36 11 35.67 60 27.28 600 6.39
1.8 19.65 12 36.08 70 25.43 700 5.66
2.0 20.22 13 36.37 80 23.79 800 5.09
2.4 24.48 14 36.60 90 22.32 900 4.63
2.8 41.73 15 36.73 100 21.07 1000 4.25
3.0 49.30 16 36.82 120 18.99 1500 3.02
3.5 38.75 18 36.77 140 17.32 2000 2.34
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FIG. 2. (Color online) C3H4 eigenphase sums for a 33-state CC
calculation.

states are listed in Table III with available comparison. 2B1 and
2B2 are the degenerate doublet states and are shown as a single
curve in the eigenphase diagram. The 2B1 and 2B2 states show a
prominent structure around 3 eV which confirms the presence
of shape resonance in this energy range and is also reflected
as a sharp peak in the TCS curve. As the ionization potential
of allene is 9.69 eV, the R-matrix calculation is done up to
10 eV and SCOP is employed from 3 eV where elastic cross
sections are computed by SCOP and excitation cross sections
are obtained from R-matrix calculations. It is quite clear that
below the ionization threshold of the target the TCS is the sum
of total elastic cross section plus excitation cross sections. We
have obtained a broad peak which is in good agreement with
the experiments of Szmytkowski and Kwitnewski [10] and
Makochekanwa et al. [11] from 10 to 20 eV in terms of the
nature and shape of the cross section. The proper inclusion of
electron correlations for the target and scattering wave function
are very important in order to get the correct positioning of the
resonances and the low-energy behavior of the cross section.

FIG. 3. (Color online) Excitation cross section for a 33-state CC
calculation from the ground state.

FIG. 4. (Color online) Qion for e-C3H4 scattering in Å2. Solid
line: present CSP-ic; dashed line: present BEB (Q-mol); dotted line:
Kim and Irikura [15].

The cross sections for electronic excitation from ground
state to the excited states 3A1, 3A2, 1A2, and 1A1 are given in
Fig. 3. The electronic excitations to 3A1 and 1A1 show a sharp
rise near their thresholds due to the dominance of these energy
levels in the present calculation. The notable structure in 3A1

around 10 eV is reflected as a hump around 10 eV in TCS.
The Qion derived using CSP-ic method for allene by

electron impact is plotted in Fig. 4. Here we have compared
our results with the theoretical BEB data obtained through
QUANTEMOL-N and BEB data reported by Kim and Irikura [15].
Except at lower energies the present theory compares well

FIG. 5. (Color online) Total cross section (TCS) for e-C3H4

scattering system in Å2. Solid line: present Q-mol; dashed line:
present SCOP; dotted line: Sanchez et al. (SE) [13]; dash-dot-dot line:
Sanchez et al. (SEP) [13]; dash-dot-dash line: Lopes and Bettega [12];
short dot line: Makochekanwa et al. (ECS) [11]; stars: Szmytkowski
and Kwitnewski [10]; circles: Makochekanwa et al. [11]; inverted
triangle: Makochekanwa et al. (ECS expt.) [11].
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with BEB theory. However, the BEB cross section obtained
in our calculation is slightly lower than other values reported
here.

In Fig. 5 we have compared the present calculated TCS
data for e-C3H4 over a wide range of energy from 0.1 eV to
2 keV with the available experimental and theoretical data.

The present result shows a good matching at the overlap of
the two formalisms and hence helps us to predict the cross
section for such a wide energy range. In general a qualitative
agreement is found between our calculated TCS in terms of
position of the peak, maximum value of the cross section
and the shape of the TCS curve with the available theoretical

FIG. 6. (Color online) (Continued.)
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FIG. 6. (Color online) Differential cross section for e-C3H4 scattering system in Å2 from 1 to 15 eV. Solid line: present Q-mol; dashed line:
Sanchez et al. (SE) [13]; dotted line: Sanchez et al. (SEP) [13]; Dash-dot-dot line: Lopes and Bettega [12]; stars: Nakano et al. [9].

data [12,13]. Also a good comparison is found in terms of
shape and nature of the curve with the experimental data
of Szmytkowski and Kwitnewski [10]. The cross section of
this molecule presents a shape resonance belonging to the
twofold-degenerate E symmetry of the D2d group, which splits
into the 2B1 and 2B2 symmetries of the C2V group. The present
resonance peak matches very well with the static exchange
plus polarization (SEP) result of Sanchez et al. [13] who
have done the calculation using the Schwinger multichannel
method. The peak value reported by the static exchange (SE)
calculation of Sanchez et al. [13] and that of Lopes and Bettega
[12] is shifted towards the higher-energy region since they
have not included polarization in their calculation. The shape
resonance reported by Szmytkowski and Kwitnewski [10] is
at 2.3 eV with a peak value of 39.9 Å2 which is quite close
to the present peak located at 2.9 eV with a peak value of
45.98 Å2. It is worth noting that the present calculations
do not include the vibrational channel. The inclusion of the
vibrational channel will reduce the peak of the cross section
curve at low energy and will also increase the width of the
curve, hence the small disagreement with experiments [10,11].
The elastic cross section of Makochekanwa et al. [11] also
shows a shape resonance at 2.5 eV with the magnitude of

cross section a little lower than all other results plotted in the
graph, including the present one as they represent elastic cross
sections.

In Figs. 6(a)–6(j) we have plotted the differential cross
section for elastic scattering of allene at respective energies 1,
1.5, 2, 3, 4, 5, 7, 10, 12, and 15 eV at scattering angles 0◦–
180◦. The calculated DCS are compared with the crossed-beam
experimental results of Nakano et al. [9] and the theoretical
Schwinger multichannel results of Sanchez et al. [13] and
Lopes and Bettega [12]. After 5 eV the present DCS shows a
good agreement with the experimental results of Nakano et al.
[9] for all other energies. Except for 1.5 and 2 eV, the present
DCS also shows decent agreement with the static exchange
plus polarization (SEP) calculation of Sanchez et al. [13] for
all other energies computed by them. The static exchange (SE)
calculation of Sanchez et al. [13] and Lopes and Bettega [12]
shows discrepancies at low incident energies that may be due
to the exclusion of polarization effects. The DCS curve at
3 eV shows a hump at a scattering angle of around 120◦ which
confirms the shape resonance at 2.9 eV in the TCS curve.
The DCS at 10–15 eV also shows a humplike structure at a
scattering angle around 90◦ which can be seen as the broad
peak at those energies in the TCS curve.
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TABLE III. Comparison of resonance position and width obtained in the present calculation with previous studies.

Present Others

Symmetry Resonance position (eV) Resonance width (eV) Resonance position (eV)

1�+(2A1) 11.39; 12.37 3.75; 0.09 (9.5–10)a

11.0b

2
 (2B1, 2B2) 2.90 0.86 2.3; 0.8a

2.5b

2�− (2A2) 14.02 0.64 –

aReference [10].
bReference [11].

IV. CONCLUSIONS

In the present work a detailed study of the e-C3H4 system
is done in terms of eigenphase diagram, total and differential
cross sections, excitation cross section, and total ionization
cross section. The total cross section is reported over a wide
range of impact energies from 0.1 eV to 2 keV using two
distinct formalisms. We have employed the UK molecular
R-matrix code using QUANTEMOL-N at low impact energies
and SCOP formalism at intermediate and high energies. The
presence of shape resonance at 2.9 eV due to degenerate (2B1,
2B2) states of the C2V symmetry is reflected as a strong peak
of 49.3 Å at around 3 eV. Moreover, the eigenphase diagram
and the differential cross section at 3 eV also show a humplike
structure which further confirms the resonance at that energy.
There are only two calculations done for this molecule at low-
energy regime using the Schwinger multichannel method. The
present calculation at low energies matches very well with
Sanchez et al. [13] including the positioning of their peak
as well as the magnitude of the total cross section. At the
transition point the cross section matches fairly well and helps
us in predicting the cross section for such a wide energy range.

At high energies our TCS shows very good agreement with the
experimental results of Szmytkowski and Kwitnewski [10]. We
have also reported the electron excitation cross section. The
total ionization cross section reported here compares well with
the existing data of the BEB model [15].

The total cross section data presented here find a variety of
applications from aeronomy to plasma modeling, atmospheric
sciences, etc. Accordingly, such a methodology may be built
into the design of an online database to provide “data users”
with the opportunity to request their own set of cross sections
for use in their own research. Such a prospect will be explored
by the emerging Virtual Atomic and Molecular Data Centre
(VAMDC) [42].

ACKNOWLEDGMENTS

M.V. and B.A. are thankful to Department of Science
and Technology, New Delhi, for financial support through
Project Grants No. SR/S2/LOP-26/2008 and No. SR/FTP/PS-
27/2009, respectively, under which part of this work was
carried out.

[1] N. Kaifu, in Molecular Processes in Space, edited by
T. Watanabe, I. Shimamura, M. Shimizu, and Y. Itikawa
(Plenum, New York, 1990), pp. 205–231.

[2] W. L. Morgan, Adv. At. Mol. Opt. Phys. 43, 79 (2000).
[3] K. Tanaka and M. Inokuti, Adv. At. Mol. Opt. Phys. 43, 1 (2000).
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