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Electronic flux densities in vibrating H2
+ in terms of vibronic eigenstates
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A theoretical study of the electronic and nuclear flux densities of a vibrating H2
+ molecular ion is presented.

The time-dependent wave function is represented in the basis of vibronic eigenstates which are numerically
obtained from the complete nonrelativistic Hamiltonian without the clamped-nuclei approximation. A one-center
expansion in terms of B-splines and Legendre polynomials is employed to solve the corresponding eigenvalue
equation. The electronic and nuclear flux densities are then calculated from the total wave function through their
quantum-mechanical definition. Analysis of the flux densities close to the turning points shows that the nuclear
wave packet takes longer time (1.4 fs) to change its direction compared to the electronic one (1 fs).
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I. INTRODUCTION

Probability fluxes and flux densities are important in
chemistry because they give detailed information about how
reactants become products during a reaction. Probability
flux refers to the amount of probability crossing a surface
per unit time, whereas flux density is a vector quantity
describing the flux of probability at a specific point at a
given time. Calculation of electronic flux density (EFD; the
je quantum observable) in molecules in a nonstationary state
is not an easy task, simply because the customary practice of
describing the state in the Born-Oppenheimer approximation
(BOA) gives real electronic wave functions, for which EFD
vanishes [1], although the probability flux does not. However,
probability fluxes can be calculated from Gauss’s theorem
and the continuity equation making use of the electronic
density in the BOA provided by standard quantum-chemistry
calculations and nuclear quantum dynamics [2]. This approach
of obtaining fluxes instead of flux densities was applied to a
vibrating H2

+ molecule in its electronic ground state [2–4]
and successfully compared with accurate results obtained
from non-Born-Oppenheimer calculations [2,5,6] yielding
je �= 0. Probability flux calculations have been carried out for
several systems, yielding unexpected results. For example,
in the Cope rearrangement of semibullvalene, the nuclear
probability flux revealed that breaking and formation of
the carbon-carbon bond is synchronous, but the electronic
probability flux associated with pericyclic orbitals shows an
asynchronous behavior; that is, the electrons flow out of the
breaking bond along the whole reaction (∼27.3 fs), and just
at the end of the reaction they form the new bond [7,8].
Similar studies to that of semibullvalene have been carried
out in pericyclic rearrangement of cyclooctatetraene [9]. More
recently, electronic probability flux of vibrating ethane, ethene,
and ethyne molecules revealed, in general, that more electrons
participate in the concerted electron-nuclear vibrations in the
case of ethane compared to that of ethene and ethyne [10].
Also, the effect of electron correlation on the electronic flux
in vibrating H2 molecules for different levels of quantum
chemistry was addressed [11]. Thus, probability fluxes have
become a valuable tool not only for studying synchronicity
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between nuclear and electronic motion in chemical reactions
but also for calculating photoionization probabilities induced
by electromagnetic fields [12]. However, how to calculate
EFDs is still an open question, at least if one does not count
the solution of the Schrödinger equation without the clamped-
nuclei approximation (former step for the BOA), which is only
available for H2

+ [5,13–17] and H2 [18] (only ground state)
and, more recently, for H2 [19] and H2D+ [20,21] (several
states). At this point one should distinguish between electronic
transition flux density and adiabatic EFD. The former is due
to coherent superposition of two or more electronic states,
i.e., electronic wave packets, and can be calculated within
the BOA since the nuclear motion does not play a role
in it [22–24]. The latter is due to the correlated motion
between the nuclei and electrons and cannot be described in a
straightforward form when the BOA is invoked. Approaches
have been proposed to calculate EFDs induced by nuclear
motion within the BOA framework. For example, Takatsuka
and coworkers [25–27] have presented a semiclassical method
which uses the Ehrenfest theory to synchronize the quantum
electronic motion with a classical nuclear motion in order to
calculate EFDs. Patchkovskii has analyzed the physical origin
of the vanishing EFD when the BOA is invoked [28], finding
that EFDs arise from the first-order nonadiabatic coupling to
electronically excited states when a multistate Born-Huang
ansatz [29] is employed. However, such flux densities involve
excited electronic states and therefore refer to nonadiabatic
EFD without the possibility of separating the transition flux
density from the adiabatic one. Nevertheless, Diestler has
developed a coupled-channel (CC) theory [30,31] to calculate
the z component of the complete adiabatic EFD jez for a H2

+

molecule oriented along the z axis and vibrating in its 2�+
g

electronic ground state and, more recently, extended scaled
coupled-channel (SCC) theory [32] to calculate the missing
orthogonal component jeρ while improving jez by using
the continuity equation and taking advantage of cylindrical
symmetry.

Scarce results on EFDs driven by nuclear motion, which
are of increasing interest in developing techniques to access
such flux densities, and, recently, the experimental deduction
of nuclear flux densities from high-resolution pump-probe
measurements in vibrating D2

+ and Na2 molecules [33] (which
bodes well for future deduction of the EFDs) are the main
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motivation of this investigation. Here a numerical repre-
sentation of vibronic eigenstates without a clamped-nuclei
approximation for H2

+ molecule is presented. It is shown that
such eigenstates are useful for calculating not only nuclear
flux densities but also EFDs from their quantum-mechanical
definition. This approach differs from the pioneering work [2]
in that the EFDs can now be calculated in an arbitrary dense
grid, especially on the internuclear axis and close to it. Bond
formation and synchronicity between nuclear and electronic
motion are also investigated.

II. DESCRIPTION OF THE METHOD

A. System

The full nonrelativistic Hamiltonian for the internal motion
(Jacobi coordinates) of an oriented AB one-electron molecule
is considered:

H = − h̄2

2μn

d2

dR2
+ ZaZbe

2

4πε0R
− h̄2

2μe

∇2
r − Zae

2

4πε0ra

− Zbe
2

4πε0rb

,

(1)

with

μe = me(ma + mb)

ma + mb + me

, μn = mamb

ma + mb

, (2)

Ra = mb

ma + mb

R, Rb = ma

ma + mb

R, (3)

ra = |r − Ra|, rb = |r − Rb|, (4)

and all the symbols having their usual meanings. Taking
advantage of the cylindrical symmetry of the potential, the
exact eigenstates of Hamiltonian (1) admit the following
separation in spherical polar coordinates:

ψ�
n (r,R) = ψn(r,θ,R)

ei�φ

√
2π

, (5)

with L̂zψ
�
n (r,R) = �ψ�

n (r,R) and L̂z ≡ −ih̄∂/∂φ, the
z component of the electron angular momentum operator.
For states with 2�+ symmetry (� = 0), only two degrees
of freedom remain for the electronic motion along the radial
r and angular θ components (see Fig. 1), and therefore one
needs to focus only on ψn(r,θ,R). By use of the multipole

FIG. 1. (Color online) Polar coordinates (r,θ ) for the electron.
Molecule AB is oriented along the z axis.

expansion for the electron-nuclear attraction potential energy,

1

|r − Rq | =
∞∑

�=0

r�
q<

r�+1
q>

P�(cos θq), (6)

with rq< = min(r,Rq) and rq> = max(r,Rq), and the kinetic
energy operator in spherical polar coordinates, Hamiltonian
(1) is transformed into

H = − h̄2

2μn

d2

dR2
+ ZaZbe

2

4πε0R
− h̄2

2μe

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]

+ L̂2

2μer2
−

∑
q=a,b

Zqe
2

4πε0

∞∑
�=0

r�
q<

r�+1
q>

P�(cos θq), (7)

where L̂ is the orbital angular momentum operator of the
electron, given by

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
, (8)

P� are Legendre polynomials, cos θa = cos θ , and cos θb =
cos(π − θ ) = − cos θ (see Fig. 1).

B. Energy eigensolutions

Eigenfunctions of the full Hamiltonian (7) are expanded in
terms of the set of basis functions {ϕij�} according to

ψn(r,θ,R) =
Nn∑
i=1

Ne∑
j=1

�max∑
�=0

bn
ij�ϕij�(r,θ,R). (9)

The basis functions consist of products of B-spline functions
and Legendre polynomials describing the electronic motion
with respect to the center of mass of the system (one-center
expansion) and B-spline functions describing the relative
motion of the protons

ϕij�(r,θ,R) = Bk
i (R)

Bk
j (r)

r
χ�(θ ), (10)

χ�(θ ) =
√

2� + 1

2
P�(cos θ ), (11)

L̂2χ� = � (� + 1) h̄2χ�, (12)

where Bk
i (x) represents a B-spline function of order k defined

within a box of length xmax [for simplicity, the index k is
dropped for the ϕ function in Eq. (10) since it is previously set],
Nn is the number of B splines describing the nuclear motion,
Ne is the number of B splines describing the electronic motion,
and �max is the maximum value of the angular momentum.
The one-center basis set method was used more than one
decade ago to study photoionization of H2

+ and H2 [34,35]
and more recently to study the effect of strong magnetic fields
on H2

+ [36]. B splines have been widely used in atomic and
molecular physics [37]. By replacing the ansatz ψn in the
time-independent Schrödinger equation the problem is then
transformed into solving the secular equation:

(Hλ′λ − Sλ′λEn) bn
λ = 0, (13)

with

Sλ′λ ≡ S(ij�)′(ij�) = Sn
i ′iS

e
j ′j δ�′�, (14)
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Sn
i ′i =

∫ Rmax

0
Bk

i ′(R)Bk
i (R)dR, (15)

Se
j ′j =

∫ rmax

0
Bk

j ′(r)Bk
j (r)dr, (16)

Hλ′λ ≡ H(ij�)′(ij�), (17)

H(ij�)′(ij�) = [
Se

j ′jOn
i ′i + Sn

i ′iOe
j ′j

]
δ�′�

−
∑

q=a,b

Zqe
2

4πε0

∫ Rmax

0
Bk

i ′(R)V q

j ′�′j�(R)Bk
i (R)dR,

(18)

On
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∫ Rmax

0
Bk

i ′(R)

[
ZaZbe

2

4πε0R
− h̄2

2μn

d2

dR2

]
Bk

i (R)dR,

(19)

Oe
j ′j =

∫ rmax

0
Bk

j ′ (r)

[
�(� + 1)h̄2

2μer2
− h̄2

2μe

d2

dr2

]
Bk

j (r)dr,

(20)

V
q

j ′�′j�(R) =
√

2�′ + 1

2

√
2� + 1

2

2�max∑
�′′=0

{[ ∫ π

0
P�′(cos θ )

×P�′′ (cos θq)P�(cos θ ) sin θdθ

]

×
[∫ Rq

0 Bk
j ′(r)r�′′

Bk
j (r)dr

R�′′+1
q

+R�′′
q

∫ rmax

Rq

Bk
j ′(r)Bk

j (r)

r�′′+1
dr

]}
, (21)

and Rmax and rmax being the lengths of the boxes for electronic
and nuclear motion, respectively. Because of the properties of
the B splines [Bk

i (x)Bk
j (x) = 0 for |i − j | � k] [38], Sλ′λ and

Hλ′λ are sparse matrices, thus facilitating the solution of the
eigenvalue problem using PETSC [39] and SLEPC [40] routines
that are optimized for parallel processing.

Note that functions ψn correspond to vibronic states of the
molecule without the clamped-nuclei Hamiltonian approxi-
mation. Thus correlation between the nuclear and electronic
motion is fully accounted for.

C. Coupled electron-nuclear dynamics

In order to study the dynamics of a vibrating H2
+ molecule

(in a nonstationary state), the initial time-dependent wave
function is taken to be

�(r,θ,R,t = 0) = ψ0(r,θ,R − R̄), (22)

where ψ0(r,θ,R − R̄) is the vibronic ground-state energy
eigenfunction displaced by R̄ in the same way as in [2,31].
The created wave packet can then be expanded in terms of the
vibronic eigenfunctions as

�(r,θ,R,t) =
∑

n

cnψn(r,θ,R)e−iEnt/h̄ (23)

with

cn = 〈ψn|�(t = 0)〉. (24)

The probability density distribution for the electron can be
calculated as

ρe(r,θ,t) =
∫ Rmax

0
�∗(r,θ,R,t)�(r,θ,R,t)dR

=
∑
mn

cmcn cos(ωmnt)

×
∫ Rmax

0
ψm(r,θ,R)ψn(r,θ,R)dR, (25)

with ωmn = (Em − En)/h̄ being the Bohr frequency, whereas
the EFD associated to the wave packet � at time t is given by

je(r,θ,t) = h̄

μe

Im

[∫ Rmax

0
�∗(r,θ,R,t)∇r�(r,θ,R,t)dR

]

= h̄

μe

∑
mn

cmcn sin(ωmnt)

×
{[∫ Rmax

0
ψm(r,θ,R)

∂

∂r
ψn(r,θ,R)dR

]
er

+
[∫ Rmax

0
ψm(r,θ,R)

∂

r∂θ
ψn(r,θ,R)dR

]
eθ

}
≡ jer (r,θ,t)er + jeθ (r,θ,t)eθ , (26)

where Im stands for the imaginary part. The vector field
je = jerer + jeθ eθ can be transformed to Cartesian coordinates
according to(

jex

jez

)
=

(
sin θ cos θ

cos θ − sin θ

)(
jer

jeθ

)
. (27)

Similarly, for the nuclear motion, the probability density
distribution and the flux density read, respectively,

ρn(R,t) =
∑
mn

cmcn cos(ωmnt)

[ ∫ rmax

0

∫ π

0
r2 sin θ

ψm(r,θ,R)ψn(r,θ,R)drdθ

]
, (28)

jn(R,t) = h̄

μn

∑
mn

cmcn sin(ωmnt)

[ ∫ rmax

0

∫ π

0
r2 sin θ

ψm(r,θ,R)
d

dR
ψn(r,θ,R)drdθ

]
. (29)

It should be remarked that ρe, ρn, and jn can be obtained
from wave functions within the BOA framework, but not je.
Moreover Eqs. (26) and (29) deserve some comments. First,
the diagonal terms m = n vanish; i.e., there is a vanishing
quantum-mechanical flux density when a pure vibronic state is
prepared (cn = δmn) even if the clamped-nuclei approximation
is not invoked, and this observation is valid as well for
many-body systems in the absence of external fields [1].
Second, when only two states are taken into account in the
summation, the resulting flux corresponds to the “transition
current density” defined by Nafie [22]. Thus the flux densities
calculated here can be considered the multistate transition
flux density among vibronic eigenstates. Finally, it should be
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pointed out that by construction � satisfies the continuity
equation (∇ · j + ∂tρ = 0), which serves in the analysis of the
SCC theory [32].

III. RESULTS

All results reported here correspond to a basis set of
Ne = 35 and Nn = 60 B-spline functions of order k = 8
with a linear knot sequence and with a box length of
rmax = Rmax = 10a0 for the electronic and nuclear motion,
respectively. For the angular part of the electron, Legendre
polynomials up to �max = 16 have been included. Despite
the slow convergence problem of the one-center method with
�max for large internuclear distance, calculations of molecular
orbitals of H2

+ with �max = 8 yield good results in the range
R = 0–5a0 [41]. A proton-electron mass ratio of mp/me =
1836.15267245 has been used [42]. Calculated energies of
the 2�+

g states are shown in Table I and are compared with
converged results from Ref. [15]. In general, energies reported
here are not very accurate. However, the goal of the present
work is to calculate flux densities and not accurate energy
levels with metrological applications (the ratio mp/me of the
proton mass to the electron mass can be deduced from a high-
precision measurement of a transition between two different
H2

+ rovibrational levels). In order to set the dynamics of a
vibrating H2

+ molecule, the bond is initially stretched by the
distance R̄ from its equilibrium length; i.e., the ground-state
wave function is shifted by R̄ = 2a0 in the same way as
in [2,31], thus creating a vibronic wave packet at t = 0. Then
the time-dependent wave function is represented by Eq. (23).
The summation is restricted to those states with energies below
the first dissociation threshold (−0.499727840Eh) in order to

TABLE I. Energies En in Hartrees of the bound states obtained
with the basis set: Ne = 35, �max = 16, and Nn = 60 (this work).
Coefficients cn corresponding to the vibronic wave packet [Eq. (23)]
are also shown. * Bound states not converged, i.e., their energies lie
above the dissociation threshold (−0.499727840 Eh).

n En (this work) En (Ref. [15]) cn (this work)

0 −0.596 751 915 816 −0.597 139 063 079 0.000 140
1 −0.586 793 129 762 −0.587 155 679 096 0.001 437
2 −0.577 473 370 487 −0.577 751 904 415 −0.008 927
3 −0.568 634 422 997 −0.568 908 498 731 0.039 921
4 −0.560 375 035 881 −0.560 609 220 850 −0.128 628
5 −0.552 563 334 751 −0.552 840 749 897 0.305 858
6 −0.545 265 214 380 −0.545 592 650 994 0.531 927
7 −0.538 475 685 415 −0.538 857 386 968 −0.626 807
8 −0.532 114 235 481 −0.532 630 379 356 −0.442 295
9 −0.526 252 860 512 −0.526 910 124 016 0.101 574
10 −0.520 836 155 017 −0.521 698 369 014 0.073 725
11 −0.515 857 453 582 −0.517 000 365 279 −0.016 440
12 −0.511 353 243 839 −0.512 825 203 146 0.025 307
13 −0.507 243 531 683 −0.509 186 248 369 −0.008 684
14 −0.503 566 834 118 −0.506 101 680 969 −0.002 267
15 −0.500 257 363 323 −0.503 595 084 999 0.005 225
16 * −0.501 695 773 387 *
17 * −0.500 437 040 460 *
18 * −0.499 837 432 030 *
19 * −0.499 731 230 649 *

1 2 3 4 5
R (units of a 0)

-0.005
-0.004
-0.003
-0.002
-0.001

0
0.001
0.002

j n (u
ni

ts
 o

f E
h/h_  )

3.00 fs
6.45 fs
11.05 fs
27.00 fs

1 2 3 4 51 2 3 4 5
R (units of a 0)

0

1

2

3

ρ n (u
ni

ts
 o

f 1
/a

0) 3.00 fs
6.45 fs
11.05 fs
27.00 fs

(a)

(b)

1sσg

R0 = 2.36 a0

FIG. 2. (Color online) Nuclear densities at characteristic times
3.00, 6.45, 11.05, and 27.00 fs. (a) Nuclear probability densities
superposed on a plot of the ground-state Born-Oppenheimer potential
energy curve; (b) nuclear flux densities.

avoid dissociation and electronic excitation in the context of
the BOA. The coefficients cn of the wave packet are also listed
in Table I. Notice that the energies of the states from n = 4 to
n = 9 (the ones contributing mainly to the wave packet) are in
good agreement to three digits.

Figure 2 display plots of the nuclear probability density
[Fig. 2(a)] and nuclear flux density [Fig. 2(b)]. Results at
3.00, 6.45, and 11.05 fs are in good agreement with those
based on the BOA reported in [31]. Results for 27.00 fs are
also shown. From 3.00 to 6.45 fs the nuclear wave packet
is dispersed, covering the region from the inner to the outer
turning point, and the nuclear flux density is negative for all
values of R, corresponding to bond compression. At 11.05 fs
the nuclear probability density displays the characteristic
pattern of quantum interference caused by partial waves
traveling in opposite directions. This is corroborated by the
nuclear flux density, which changes sign at R0 = 2.36a0 at
11.05 fs, corresponding to a transition from bond shortening
to bond lengthening. Thus a node in the nuclear flux density
(hereby named the wave front) can be identified around

-4 -3 -2 -1 0 1 2 3 4
z (units of a0)

0

0.1

0.2

ρ e (u
ni

ts
 o

f 1
/a

03 )

3.00 fs
6.45 fs
11.05 fs
27.00 fs

FIG. 3. (Color online) Electronic probability densities along the
internuclear axis (x = 0,y = 0) for the characteristic times 3.00, 6.45,
11.05, and 27.00 fs.
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FIG. 4. (Color online) Electronic flux densities: (a) At t = 6.45 fs
for the present results [red (gray) arrows] and results from [2] (black
arrows). (b) At t = 11.05 fs for the present results [red (gray) arrows];
the two solid horizontal lines indicate the electronic wave front located
at z = ±1.24a0, and the two dashed horizontal lines indicate the
nuclear wave front located at z = ±1.18a0 [R0/2; see Fig. 2 (b)].
Electronic probability densities are shown as a contour plot.

z = ±R0/2 = ±1.18a0 [see Fig. 2(b)]. At 27.00 fs the nuclear
flux density reveals complete bond compression again (flux
density negative for all R values).

Figure 3 displays the electronic probability density along
the internuclear axis for times 3.00, 6.45, 11.05, and 27.00 fs.
Notice that the electronic wave packet does not show the
interference pattern during the reflection as the nuclear wave
packet does. This is because the electronic wave packet is
more delocalized than the nuclear wave packet, and hence the
electronic interference pattern is washed out by the nuclear
motion. At 27.00 fs there is a significant enhancement of
the electronic probability density along the internuclear axis.
This bond formation is due to the dispersion of the nuclear
wave packet (see the nuclear probability density at 27.00 fs
in Fig. 2); thus the dispersion of the nuclear wave function is
accompanied by a σ -bond formation.

Figure 4 displays the EFD (vector plot) in the xz plane
at two different times, 6.45 and 11.05 fs. The electronic

-4 -3 -2 -1 0 1 2 3 4
z (units of a0)

-0.00004

-0.00002

0.00000

0.00002

0.00004

j ez
 (u

ni
ts

 o
f E

h/h_  a
02 )

x = 0
x = 0.22 a 0
x = 0.52 a 0
x = 0.83 a 0

t = 11.05 fs

z = 1.24 a0

FIG. 5. (Color online) The z component of the electronic flux
density jez as a function of z for x = 0, x = 0.22a0, x = 0.52a0, and
x = 0.83a0 at t = 11.05 fs. The arrows represent the direction of the
flux, and the vertical dashed lines represent the wave front.

probability densities are also shown as a contour plot. In
general, je consists of a dominant jez component (along the
z axis where the nuclear motion takes place) and a weaker
jex component. At 6.45 fs the EFD is in good agreement
with that of [2] except for small deviations when x → 0.
Nevertheless, the flux density calculated here shows the correct
behavior (jex → 0 when x → 0). At 11.05 fs a nodal line in
the EFD can be seen (solid lines), which is associated with
the wave front that reflects the nuclear motion (dashed lines).
This can be best appreciated from Fig. 5, which displays the
z component of the EFD as a function of z for several values
of x at t = 11.05 fs. Notice that the position of the electronic
wave front is essentially independent of the x coordinate (i.e.,
it resembles a plane-wave front). Also notice that the wave
front for the electronic wave packet at 11.05 fs is located
(at z = ±1.24a0) beyond the wave front of the nuclear wave
packet (at z = ±1.18a0); see Fig. 4(b). This displacement and
the fact that the electron wave packet changes direction before
the nuclear wave packet reinforce the results reported in [2–4]
obtained from the probability fluxes. The electron does not
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(b)

FIG. 6. (Color online) Flux densities at different times: (a) nuclear
flux density as a function of R; (b) z component of the electronic flux
density jez as a function of z for x = 0.
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necessarily respond instantly to the nuclear motion, as one
may predict from the BOA.

Figure 6 shows the nuclear flux density and EFD along
the internuclear axis for different times as the electronic and
nuclear wave packets change direction completely. Observe
that the reflection of the electronic wave packet takes basically
less than 1 fs (from approximately t = 10.60 to t = 11.36 fs),
while the total reflection of the nuclear wave packet takes at
least more than 1.4 fs (from approximately t = 10.60 to t =
12.00 fs). This characteristic delay in the attosecond time scale
is in good agreement with the delay between the electronic and
nuclear fluxes (with opposite directions) reported in [2]. This
is again a consequence of the faster dispersion of the nuclear
wave packet compared to the electronic one.

IV. SUMMARY

A method to calculate electronic and nuclear flux densities
from their quantum-mechanical definition in an oriented
vibrating H2

+ molecule is presented. The results agree well
with previous accurate results [2]. The time-dependent wave
function was expanded in the basis of vibronic energy eigen-
states obtained without the clamped-nuclei approximation,
thus accounting for the correlated electron-nuclei dynamics.
The expansion was restricted to vibronic eigenstates whose
energies lie below the first dissociation threshold. Therefore

the resulting EFDs can be ascribed entirely to adiabatic
electronic flux densities in the context of the framework of the
BOA (i.e., an EFD induced exclusively by the nuclear motion
in the 1s σg potential energy curve). Analysis of flux densities
reveals asynchronicity between electronic and nuclear motion
close to the turning points happening in the attosecond time
scale, an effect already discovered elsewhere [2]. It is hoped
that the method developed here serves as a useful tool for
judging the quality of different approximate approaches to
computing the EFD since it not only provides the EFD in an
arbitrary grid but also accounts for the continuity equation at
any point. Calculations of EFDs for vibration and dissociation
in asymmetric systems such as HD+, HT+, and DT+ are being
pursued.
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