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We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a
framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational
time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme well known
in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at
each time step makes it possible to construct the wave function accurately while using only a relatively small
number of electronic configurations. In numerical calculations of high-order harmonic generation spectra of a
one-dimensional model of atomic beryllium interacting with a strong laser pulse, the TD-RASSCF method is
reasonably accurate while largely reducing the computational complexity. The TD-RASSCF method has the
potential to treat large atoms and molecules beyond the capability of the MCTDHF method.
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I. INTRODUCTION

Development of reliable approximate theories for the
description of time-dependent (TD) many-electron dynamics
has been desirable for decades, and its importance is especially
emphasized nowadays by the need for support to experiments
on the real-time analysis and control of ultrafast electronic
and nuclear dynamics of atoms and molecules by intense laser
pulses [1–5]. In numerical simulations, however, the problems
are most often simplified by the single-active-electron (SAE)
approximation [6], which assumes that only one electron is
moving in an effective potential. In theoretical approaches, the
combination of the SAE and the strong-field approximations,
where the interaction with the atomic or molecular potential is
treated perturbatively, has been widely accepted as a standard
approach in this research area. The Lewenstein model [7],
which is built on these assumptions, makes it possible to easily
compute high-order harmonic generation (HHG) spectra of
atoms and molecules and also provides a clear physical picture
based on the semiclassical three-step model [8–10]. While
the studies within the framework of the SAE approximation
have succeeded in providing a qualitative understanding of
phenomena, multielectron effects are also recognized to play
a crucial role, e.g., in time delay studies of photoionization
[11,12], and moreover, multiple orbital contributions to HHG
spectra are widely observed for atoms and molecules [13–16].
To describe many-electron dynamics, several ab initio ap-
proaches beyond the SAE approximation have been developed.
Among others, the TD R-matrix method is one of the
most elaborate ways for describing single-electron ionization
processes and taking into account the electron correlation
[17–19]. One of the computationally and conceptually simpler
approaches is the TD configuration-interaction singles (TD-
CIS) method [20–24], in which the configuration interaction
(CI) expansion is truncated at singly excited configurations
relative to the Hartree-Fock ground state. Both these methods
can be considered to be special cases of a more generalized
concept, namely, the TD restricted-active-space (RAS) CI
(TD-RASCI) method [25].

Over the last decade, originating from the TD Hartree-Fock
theory [26–28], a more sophisticate framework called the

multiconfigurational TD Hartree-Fock (MCTDHF) theory has
been developed and quite recently shown its potential for
analyzing ultrafast laser-driven electron dynamics in atoms
and molecules [14–16,29–35] and, moreover, for elucidating
the role of electron-nuclear correlation in a molecule during
ionization [36–40]. (See also references on the multicon-
figurational TD Hartree (MCTDH) theory, e.g., the original
paper [41], a review [42], and a textbook [43]. In addition,
multiconfigurational theory has been explored for bosonic
systems [44]). In the MCTDHF theory with the spin-restricted
ansatz, the Ne-electron wave function is expressed by

|�(t)〉 =
∑

I∈VFCI

CI (t)|�I (t)〉, (1)

where |�I (t)〉 denotes a normalized Slater determinant for
Ne electrons built from a set of TD active spin orbitals
{φi(t)}2M

i=1, and the multi-index I = (i1, . . . ,iNe ) is a string of
orbital indices of which the Fock space is composed: VFCI =
{(i1, . . . ,iNe )|1 � i1 < · · · < iNe � 2M}. Using the Dirac-
Frenkel-McLachlan TD variational principle [45–48], the
equations of motion are derived, which optimize the orbitals
as well as the expansion coefficients in each time step. This
optimization procedure leads to the expectation that the system
can be accurately described with a relatively small number of
orbitals, 2M . However, because the Fock space VFCI in the
MCTDHF theory is spanned by all possible configurations for
a given set of spin orbitals, the computational cost due to the
expansion coefficients {CI }I∈VFCI is proportional to the number
of ways in which Ne electrons can be distributed in the 2M

spin orbitals,

dim(VFCI) =
(

M

Ne/2

)2

� O(MNe ), (2)

i.e., roughly speaking, exponentially scaling with respect to
the number of electrons, Ne. Hence for the investigation of
nonperturbative laser-driven electron dynamics, this unfavor-
able scaling with Ne impedes the MCTDHF method from
being extended to systems with more than a few electrons,
i.e., beyond systems like He [30], Be [31], H2 [32,33,36],
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and LiH [34,35,38]. In order to carry on the study for larger
systems, it is therefore inevitable to abandon the full CI
expansion of Eq. (1).

For the TD problem, it is natural to follow standard
approximations in quantum chemistry such as, for example,
the CIS and explore their TD counterparts, the TD-CIS method
[20–24]. It is thus natural as well to investigate the possibility
of a truncation of the expansion in the MCTDHF theory
at a specific excitation level. Within the framework of the
MCTDH theory, the truncation has already been explored [49].
Our study is hence aiming at a further generalization of the
MCTDHF theory by incorporating it with the RAS approach:
decomposing the single-particle Hilbert space into several
subspaces, among which electron transitions are allowed with
several restrictions. The framework is hereafter referred to
as the TD RAS self-consistent-field (TD-RASSCF) theory.
It is emphasized that key ingredients of the theory are
(i) use of TD orbitals and (ii) truncation of the CI expansion.
Despite its simple concept, the truncation of the expansion
partly destroys the principal bundle structure inherent in the
MCTDHF theory [48,50]. Accomplishing the truncation hence
requires a careful analysis of the structure of the theory. A
consistent formulation of the TD-RASSCF theory is the main
purpose of the present work.

This study is inspired by a recent work [51], where
another new method called the orbital adaptive TD coupled-
cluster (OATDCC) theory was formulated. In this method,
the CC expansion is truncated at doubly excited configu-
rations, but higher excitations are also partly included due
to the nonlinear property inherent in the CC ansatz (see,
e.g., Refs. [52,53] for a discussion of time-independent CC
theory). Furthermore, the CC expansion ensures the size
consistency and extensivity, which are of utmost importance
for correctly describing dissociation processes of molecules.
However, there are still some problems remaining: because
the left- and right-wave functions in the OATDCC theory are
parametrized in different ways, imaginary time relaxation is
not readily feasible as a means to calculate the ground-state
wave function needed for the following real-time analysis of
the dynamics. It is thus attractive to develop methods not
suffering from these complications while only slightly com-
promising the accuracy; the TD-RASSCF theory is one such
example.

The paper is organized as follows. The TD-RASSCF theory
is formulated in Sec. II. The working equations are derived
based on the TD variational principle combined with the
Lagrange multiplier method. Explicit forms of the equations
are given and compared to the corresponding ones in the
MCTDHF theory. A central aspect of the formulation is
given in Sec. III, where we concentrate on a discussion
of the parametric redundancy in the TD-SCF theory. As a
proof-of-principal application of the theory, one-dimensional
(1D) model atoms are investigated in Sec. IV: calculations of
the ground-state wave function, followed by computations of
the HHG spectra. The analysis of the convergence property
of the TD-RASSCF calculations also uncovers the TD many-
electron dynamics. Section V provides a summary and con-
cludes. A discussion of orbital rotations and the accompanying
simplifications in the case of a two-electron system is deferred
to the Appendix.

II. FORMULATION

Consider an Ne-electron system described by a generic TD
Hamiltonian including one- and two-body operators. In second
quantization, the Hamiltonian reads

H (t) =
∑
pq

hp
q (t)c†pcq + 1

2

∑
pqrs

vpr
qs (t)c†pc†r cscq, (3)

where cp (c†p) is the annihilation (creation) operator of an elec-
tron in the spin-orbital |φp(t)〉, satisfying the anticommutation
relation {cp,c

†
q} = δ

p
q . The prefactors of the operators in the

Hamiltonian read, in first quantization,

hp
q (t) =

∫
φ†

p(z,t)h(r,t)φq(z,t)dz (4)

and

vpr
qs (t) =

∫∫
φ†

p(z1,t)φ
†
r (z2,t)

× v(r1,r2)φq(z1,t)φs(z2,t)dz1dz2, (5)

where the spin orbitals are represented in the spin and
spatial coordinates z = (r,σ ). The two-body operator v(r1,r2)
denotes the Coulomb repulsion between two electrons, and
the one-body operator h(r,t) depends on time via dipole
interactions with external laser fields. In the TD-RASSCF
theory, the Ne-electron wave function is expressed by

|�(t)〉 =
∑

I∈VRAS

CI (t)|�I (t)〉, (6)

in which, differently from Eq. (1), the Fock space VRAS is now
composed of several selected configurations, and not the full
configuration space. In this study, the orbitals are classified
as in Fig. 1: the single-particle Hilbert space is divided into
two subspaces: the P space, contributing to the construction
of the wave function, i.e., the multi-index I in Eq. (6) contains
indices of P-space orbitals; and the supplementary virtual
orbital space, hereafter called the Q space. The indices p,
q, r , s, . . . denote orbitals belonging to either space, while
the P-space orbitals are labeled i, j , k, l, . . . , and the virtual
Q-space orbitals a, b, c, d, . . . . The RAS scheme is based
on dividing the P space into three subspaces, usually denoted
RAS1, RAS2, and RAS3. In the original and the most general
definition, the RAS1 and RAS3 spaces are characterized by the
minimal and maximal occupation numbers, respectively, and
the RAS2 space has no constraint [53–55]. The RAS scheme in
this paper is, however, supposing more specific cases as shown
in Fig. 1. Here the P space is composed of an inactive-core
space, P0, and two active spaces, P1 and P2, between which
electron transitions are allowed, with several restrictions (see
Sec. IV).

For describing the dynamics within this framework, we
need the set of equations obeyed by the expansion coefficients
and the orbitals. To this end, we follow a standard prescription
and use the Dirac-Frenkel-McLachlan TD variational principle
[45–48]. Henceforth the explicit time dependence of the
parameters and the operators is dropped for brevity, as long
as this ease of notation does not lead to confusion. First, we

062511-2



TIME-DEPENDENT RESTRICTED-ACTIVE-SPACE SELF- . . . PHYSICAL REVIEW A 87, 062511 (2013)

a, b, c, d, · · ·
p, q, r, s, · · ·

i, j, k, l, · · ·

P2-space

:
:

Orbital

P1-space

P0-space

excitation

Q-space

(P = P0 ⊕ P1 ⊕ P2)

(P ⊕Q)-space

(Virtual orbitals)

P-space

(Active orbitals 2)

(Active orbitals 1)

(Inactive-core orbitals)

FIG. 1. Illustration of the division of the single-particle Hilbert
space in the TD-RASSCF theory. The wave function is expanded
by using orbitals in P space, which is composed by an inactive-
core space, P0, and two active spaces, P1 and P2, where a partition
exists through which electrons can transit, with several restrictions.
In accordance with the convention in the MCTDHF theory, the rest
of the single-particle Hilbert space spanned by the virtual orbitals is
referred to as Q space. The orbitals in either P or Q space are labeled
p, q, r, s, . . . , while the P-space orbitals are labeled i, j, k, l, . . . ,
and the Q-space orbitals a, b, c, d, . . . .

define an action functional (atomic units are used throughout),

S
[{

CI },{φi},
{
εi
j

}]

=
∫ T

0

[
〈�|

(
i

∂

∂t
− H

)
|�〉 +

∑
ij

εi
j (t)

(〈φi |φj 〉 − δi
j

)]
dt.

(7)

Then we use that a stationary point

δS
[{CI },{φi},

{
εi
j

}] = 0 (8)

provides the best approximation of the dynamics for the
given ansatz. Here εi

j is the Lagrange multiplier that ensures
orthonormality of the P-space orbitals during the time interval
[0,T ]. The variation of the action functional is

δS
[{CI },{φi},

{
εi
j

}]

=
∫ T

0

[
〈δ�|

(
i

∂

∂t
− H

)
|�〉 + 〈�|

(
−i

←−
∂

∂t
− H

)
|δ�〉

+
∑
ij

εi
j (〈δφi |φj 〉 + 〈φi |δφj 〉)

+
∑
ij

δεi
j

(〈φi |φj 〉 − δi
j

)]
dt, (9)

where, performing integration by parts, a time-derivative
operator with a leftward arrow is introduced to denote its action
on the bra vector. The variation of the wave function, (6), is

written as

|δ�〉 =
∑

I∈VRAS

δCI |�I 〉 +
∑
pq

c†pcq |�〉〈φp|δφq〉. (10)

First, imposing δS/δεi
j = 0 leads to

〈φi |φj 〉 = δi
j , (11)

which ensures the orthonormality of the P-space orbitals at all
times. Stationary conditions with respect to small variations
of the other parameters,

δS/δC∗
I = δS/〈δφi | = 0, (12)

give us the equations of motion. Since the left- and right-wave
functions are Hermitian conjugates of each other, the stationary
conditions δS/δCI = δS/|δφi〉 = 0 result in a set of equations
which is the Hermitian conjugate of the set obtained from
Eq. (12).

A. Derivation of the amplitude equations

The stationary condition δS/δC∗
I = 0 in Eq. (12) results in

a formal expression of the amplitude equations,

〈�I |
(

i
∂

∂t
− H

)
|�〉 = 0. (13)

Here, the time derivative of the right-wave function is
decomposed into two parts:

∂

∂t
|�〉 =

∑
I∈VRAS

ĊI |�I 〉 + D|�〉, (14)

with

D =
∑
pq

ηp
q c†pcq, (15)

and η
p
q = 〈φp|φ̇q〉. This anti-Hermitian matrix η

p
q plays an

important role in the formulation of the orbital equations, as
we discuss in Sec. III. We insert Eq. (14) into Eq. (13) and
obtain

iĊI + 〈�I |(iD − H )|�〉 = 0. (16)

Furthermore, we substitute Eqs. (3) and (15) into Eq. (16) and
derive, after some algebra, the explicit form

iĊI =
∑
ij

sgn(τ )C
τ (I j

i )

(
hi

j − iηi
j

)

+ 1

2

∑
ijkl

sgn(τ )C
τ (I jl

ik )v
ik
jl , (17)

with C
I

j

i
= 〈�I |c†i cj |�〉, C

I
jl

ik
= 〈�I |c†i c†kclcj |�〉, and τ a

permutation map rearranging strings of orbital indices to
ascending order with the sign defined by sgn(τ ) = 1 (−1)
when τ is even (odd). The amplitude equations of Eq. (17)
are exactly the same as those of the MCTDHF theory. In the
MCTDHF theory, one can choose all of the ηi

j to be 0 and
thereby make the amplitude equations easier to solve (see,
e.g., Ref. [29]). As shown in Sec. III, in the TD-RASSCF
theory all the ηi

j cannot be set to 0 due to the truncation of the
CI expansion, and one thus needs a more careful simultaneous
optimization of the expansion coefficients and the orbitals.
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B. Derivation of the orbital equations

The other stationary condition δS/〈δφi | = 0 in Eq. (12)
using Eq. (14) yields the set of equations to be solved for the
orbitals,

∑
q

|φq〉
〈
�

q

i

∣∣
⎛
⎝i

∑
I∈VRAS

ĊI |�I 〉 + (iD − H )|�〉
⎞
⎠

+
∑

j

|φj 〉εi
j = 0, (18)

where the one-particle–one-hole state 〈�q

i | ≡ 〈�|c†i cq is
introduced. The orbital equations need to be solved in both
the P and the Q spaces as indicated by the use of the index q.
Defining projection operators onto the P and Q spaces by

P =
2M∑
i=1

|φi〉〈φi |, (19)

Q = 1 − P, (20)

respectively, the time derivative of each orbital is decomposed
into two parts, i.e., contributions from the P and Q spaces:

|φ̇i〉 = (P + Q)|φ̇i〉 =
2M∑
j=1

|φj 〉ηj

i + Q|φ̇i〉. (21)

It is clearly seen from Eq. (21) that the optimization of the
active orbitals makes the P space, and thereby the Q space,
TD. By allowing the orbitals to be TD a relatively small number
of active orbitals is sufficient for the accurate expansion of the
wave function. When the system is irradiated with a laser pulse,
as discussed in Sec. IV B, the P space ensures the inclusion
of the most important part of the continuum as well as bound
states for the description of ionization.

1. Q-space orbital equations

One can obtain a formal expression of the Q-space orbital
equations by multiplying Eq. (18) by a virtual orbital bra vector
〈φa| from the left and by using the orthogonality between the
active and the virtual orbitals,〈

�a
i

∣∣(iD − H )|�〉 = 0. (22)

Equation (22) is a generalization of Brillouin’s theorem [53] to
TD problems. Substituting Eqs. (3) and (15) into Eq. (22) and
perfoming some algebra with the help of Wick’s theorem [52],

c
†
i cac

†
pcq = c

†
i c

†
pcqca + δp

a c
†
i cq, (23)

c
†
i cac

†
pc†r cscq = c

†
i c

†
pc†r cscqca + δp

a c
†
i c

†
r cscq − δr

ac
†
i c

†
pcscq,

(24)

the Q-space orbital equations read∑
j

(
iηa

j − ha
j

)
ρ

j

i =
∑
jkl

vak
jl ρ

jl

ik , (25)

with the density matrices ρ
j

i and ρ
jl

ik defined by

ρ
j

i = 〈�|c†i cj |�〉 =
∑

I∈VRAS

sgn(τ )C∗
τ (I i

j )CI (26)

and

ρ
jl

ik = 〈�|c†i c†kclcj |�〉 =
∑

I∈VRAS

sgn(τ )C∗
τ (I ik

j l )CI . (27)

To circumvent explicit numerical treatments of the virtual
orbitals, we use the Q-space projection operator and express
Eq. (25) as

i
∑

j

Q|φ̇j 〉ρj

i =
∑

j

Qh(t)|φj 〉ρj

i +
∑
jkl

QWk
l |φj 〉ρjl

ik ,

(28)

where the mean-field operator is defined by

Wk
l (r) =

∫
φ
†
k(z′)v(r,r ′)φl(z

′)dz′. (29)

We now arrive at formally the same Q-space orbital equations
as in the MCTDHF theory (see, e.g., Eq. (12) in Ref. [30]).
The density matrices in Eqs. (26) and (27) are, however, now
calculated based on the RAS scheme.

2. P-space orbital equations

We obtain a set of equations for the P-space orbitals when
we multiply Eq. (18) by an active orbital bra vector 〈φj | from
the left:〈

�
j

i

∣∣(iD − H )|�〉 + i
∑

I∈VRAS

〈
�

j

i

∣∣�I

〉
ĊI + εi

j = 0. (30)

Equation (30), however, still contains a Lagrange multiplier
εi
j . Similarly, from the stationary condition δS/|δφj 〉 = 0, or

by taking the Hermitian conjugate of Eq. (30) followed by
exchanging i and j , we arrive at equations containing the
same multiplier,

〈�|(iD − H )
∣∣�i

j

〉 − i
∑

I∈VRAS

Ċ∗
I

〈
�I

∣∣�i
j

〉 + εi
j = 0. (31)

Subtraction of Eq. (30) from Eq. (31) removes the multiplier
and gives the P-space orbital equations or the TD Brillouin’s
theorem for the active orbitals

〈�|(iD − H )
∣∣�i

j

〉 − 〈
�

j

i

∣∣(iD − H )|�〉 = iρ̇
j

i , (32)

where the time derivative of the density matrix is

ρ̇
j

i =
∑

I∈VRAS

(
Ċ∗

I 〈�I

∣∣�i
j

〉 + 〈
�

j

i

∣∣�I 〉ĊI

)
. (33)

In some cases, a set of η
j

i ’s may be obtained by solving
Eq. (32). In the MCTDHF theory, however, it is well
known that Eq. (32) does not need to be solved, or indeed
cannot be, and the η

j

i ’s are thus often chosen to be 0
[42,43]. Such freedom does not exist in the TD-RASSCF
theory because the Fock space VRAS does not consist of
all possible configurations. It is always possible, however,
to set ηi

j = 0 within each subspace PK (K = 0, 1, and 2),
i.e., when two orbitals φi(t) and φj (t) belong to the same
subspace (see Fig. 1). In the TD-RASSCF theory, generally
Eq. (32) needs to be solved for combinations (i ′,j ′′) to deter-
mine η

j ′′
i ′ (=−(ηi ′

j ′′)
∗
), where indices with single and double

primes hereafter mean that the orbitals labeled with them
belong to different subspaces. Substituting Eqs. (3) and (15)
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into Eq. (32) and computing commutators, the explicit expres-
sion of the P-space orbital equations reads∑
k′′l′

(
hk′′

l′ − iηk′′
l′

)
A

l′j ′′
k′′i ′ +

∑
klm

(
v

j ′′m
kl ρkl

i ′m − vkl
i ′mρ

j ′′m
kl

) = iρ̇
j ′′
i ′ ,

(34)

where

A
l′j ′′
k′′i ′ = 〈�|[c†i ′cj ′′ ,c

†
k′′cl′

]|�〉 = δ
j ′′
k′′ ρ

l′
i ′ − δl′

i ′ρ
j ′′
k′′ . (35)

To carry out time propagation of the wave packet, the set of
equations of motion, i.e., Eqs. (17), (28), and (34), needs to be
solved. Note that the numerical integration of the amplitude
and the P-space orbital equations requires elaborate implicit
integration schemes: for solving the amplitude equations, (17),
to compute the values of {ĊI }I∈VRAS , the values need to be
known beforehand to prepare the values of η

j ′′
i ′ , because η

j ′′
i ′ is

considered to be a function of {ĊI }I∈VRAS via ρ̇
j ′′
i ′ . One way

to easily circumvent the use of implicit integrations is by
taking into consideration only even occupation numbers in
the P2 space, which removes ρ̇

j ′′
i ′ , and thus the P-space orbital

equations result in∑
k′′l′

(
hk′′

l′ − iηk′′
l′

)
A

l′j ′′
k′′i ′ +

∑
klm

(
v

j ′′m
kl ρkl

i ′m − vkl
i ′mρ

j ′′m
kl

) = 0.

(36)

The amplitude and the P-space orbital equations are now
separable and can be easily solved by the usual explicit
integration algorithms. In this work, all the calculations
are based on Eq. (36), by which all the singly excited
configurations are abandoned. However, it should be noted
that even within this scheme, the wave packet partly includes
single-electron excitation processes due to the TD Brillouin’s
theorem [Eqs. (22) and (32)]. In other words, by solving
the Q- and P-space orbital equations for a given set of the
P-space orbitals {φi(t)}2M

i=1, we obtain a new set of orbitals
{φi(t + dt)}2M

i=1, which are variationally optimized to take into
account the single-electron processes between the P and the
Q spaces and among the P0, P1, and P2 spaces at any instant
of time t .

III. PARAMETRIC REDUNDANCY

A. P-space orbital equations revisited

In the preceding section, the derivation of the P-space or-
bital equations was briefly sketched, followed by a discussion
of how to solve them. We now revisit certain details of the
derivation. Consider the substitution of Eq. (33) into Eq. (32):
by using a formal expression of the amplitude equations,
(16), we arrive at another expression of the P-space orbital
equations,

〈�|(iD − H )(1 − �)
∣∣�i

j

〉 − 〈
�

j

i

∣∣(1 − �)(iD − H )|�〉 = 0,

(37)

with a projection operator defined by

� =
∑

I∈VRAS

|�I 〉〈�I |. (38)

In the MCTDHF theory, i.e., when VRAS is replaced by
VFCI, defined before Eq. (2), since the Fock space VFCI

includes all possible configurations, the left-hand side of
expression (38) is 0 because (1 − �)|�i

j 〉 = 〈�j

i |(1 − �) = 0
for any combination of i and j . Hence, the P-space orbitals
are completely undetermined, and one can therefore choose
arbitrary anti-Hermitian matrices for η

j

i (see, e.g., Refs. [42]
and [43]). This fact stems from the nonuniqueness of {CI }I∈VFCI

and {φi}2M
i=1. As is well known in the time-independent SCF

theory, a unitary transformation of the orbitals

|φi〉 =
∑

j

|φ′
j 〉Gji, (39)

together with the transformation of the expansion coefficients

CI =
∑
j1

· · ·
∑
jNe

G−1
i1j1

· · · G−1
iNe jNe

C ′
J , (40)

keeps the wave function invariant. This property at a certain
moment in time is called parametric redundancy in time-
independent quantum chemistry [53]. In the TD formulation,
however, it is of importance as well to consider the time
evolution of the unitary transformation,

η
j

i = 〈φj |φ̇i〉
=

∑
kl

G−1
lj Ġki〈φ′

l |φ′
k〉 +

∑
kl

G−1
lj Gki〈φ′

l |φ̇′
k〉

=
∑

k

G−1
kj Ġki +

∑
kl

G−1
lj Gkiη

′l
k, (41)

which is formally solved in matrix form,

G(t) = T exp

[∫ t

0
(η(t ′) − η′(t ′))dt ′ + �

]
, (42)

where � is a constant anti-Hermitian matrix and T denotes
time ordering. This equation means that between any two sets
of orbitals, there exists a unitary transformation at any moment
in time and therefore it ensures a unique description of the TD
dynamics by using an arbitrary set of orbitals. This kind of
geometrical structure is an advanced concept of the parametric
redundancy and is known as the principal bundle, in which the
gauge map defined by η(t) exists [48,50]. Exploiting the gauge
degree of freedom, usually the gauge is fixed such that η

j

i = 0
at all times to make the P-space orbital equations vanish and
simplify the system of differential equations. Another useful
gauge choice is employing η

j

i = −ih
j

i , by which the use of
a larger time step is sometimes allowed in time propagation
[29,42,43].

In the TD-RASSCF theory, expression (38) is still a
trivial identity for combinations (i,j ) belonging to the same
subspace in P , i.e., if φi(t) ∈ PK and φj (t) ∈ PK (K = 0,
1, and 2). The TD orbital rotations within each subspace are
hence undetermined. However, this is not the case for the
combinations (i ′,j ′′), i.e., if φi ′(t) ∈ PK and φj ′′ (t) 	∈ PK . This
is because the unitary transformations, (39) and (40), can now
be carried out only within each subspace, and Eq. (42) is
still true in each subspace. Therefore, fixing the gauge such
that η

j

i = 0 is satisfied, what remains is to determine the off-

diagonal block elements η
j ′′
i ′ ( = −(ηi ′

j ′′)
∗
) by solving Eq. (34).

062511-5



HARUHIDE MIYAGI AND LARS BOJER MADSEN PHYSICAL REVIEW A 87, 062511 (2013)

Here it is important to note that ρ
j ′′
i ′ = ρ̇

j ′′
i ′ = 0 when either i ′

or j ′′ denotes the index of a P0-space orbital. Furthermore, by
taking into consideration only even occupation numbers in the
P2 space, ρj ′′

i ′ and ρ̇
j ′′
i ′ vanish, and theP-space orbital equations

thereby result in Eq. (36). The amplitude and the P-space
orbital equations are now separable. Another prescription to
set ρ

j ′′
i ′ = ρ̇

j ′′
i ′ = 0 is forbidding electron transitions between

the P1 and the P2 spaces. This complete-active-space scheme
[53,56] gives us formally the same P-space orbital equations
[57].

B. Related works

It is informative to briefly discuss two related works. The
first one is the MCTDH method with selected configurations
(S-MCTDH) [49]. To simplify the problem, the S-MCTDH
method ignores the treatment of the P-space orbital equations,
which are thus assumed to be always satisfied, i.e., supposed
to be identities, not equations. Although the S-MCTDH
method works efficiently for computing absorption spectra of
a pyrazine molecule, the method exhibits numerical instability
as well for some configuration selections conceivably due to
the discarding of the P-space orbital equations. The other
related method is based on the MCTDHF theory with a
truncation of the expansion [58]. To reduce the numerical
cost, the method employs the time-independent expansion
coefficients, i.e., fixed values throughout the time propagation.
These two works abandon either the amplitude or the P-space
orbital equations as an additional approximation, which lowers
the accuracy of the description of the dynamics. Both the
amplitude and theP-space orbital equations are exactly treated
in the present TD-RASSCF theory, in which the P-space
orbital equations are simple to solve and the computational
cost is largely reduced by the RAS scheme. Before closing
this section, we emphasize that the gauge degree of freedom
due to the principal bundle structure is a key concept behind
the treatment of the P-space orbital equations. One can find a
discussion of this issue in terms of the OATDCC theory in the
supplementary material of Ref. [51].

IV. NUMERICAL APPLICATION

A. Ground-state wave function

We investigate Ne-electron atoms to demonstrate the com-
putational efficiency and analyze the convergence property of
the TD-RASSCF theory by proof-of-principle calculations.
The atoms are modeled by 1D systems with a soft-core
Coulomb potential: The one-body operator in Eq. (4) is

h(x) = −1

2

d2

dx2
+ V (x), (43)

with

V (x) = − Z√
x2 + 1

, (44)

where Z = Ne = 2 for describing a helium atom [59–61]
and Z = Ne = 4 for a beryllium atom [62,63]. The two-body

P2-space

:
:

Two-orbital

P1-space
excitation

Q-space

(P = P1 ⊕ P2)
P-space

M = M1 + M2:

M2:

M1:

# of spatial orbitals in P

# of spatial orbitals in P2

# of spatial orbitals in P1

FIG. 2. Illustration of the single-particle Hilbert space used
in the calculations for the 1D beryllium atom. In this case, the
P space is simply decomposed into two active spaces: only two-
orbital transitions between the P1 and the P2 spaces are now
permitted. The numbers of spatial orbitals in the P1 and P2 spaces are
expressed by M1(�1) and M2(�0), respectively, and the total number
by M (=M1 + M2). In this illustrative example of (M,M1) = (8,3),
the electrons are in the lowest energy configuration in the P1 space.
Note the special case M1 = M , where the P2 space disappears and
the present RAS scheme thereby becomes the MCTDHF theory. In
the application to the 1D helium atom, the same partitioning in P
space was used.

operator in Eq. (5) is

v(x1,x2) = 1√
(x1 − x2)2 + 1

. (45)

In this section, the RAS scheme is simplified by eliminating the
inactive-core space P0 as shown in Fig. 2: only two-electron
transitions are allowed between the P1 and the P2 spaces, in
which the numbers of spatial orbitals are M1(�1) and M2(�0),
respectively, and the total number is M (=M1 + M2). In this
scheme, the TD-RASSCF theory is equivalent to the MCTDHF
theory when M1 = M .

Table I lists the ground-state energy of the 1D beryllium
atom for different combinations of (M,M1). The results
calculated by the MCTDHF method (M1 = M) exactly agree
with those given in Ref. [62]. All the results are obtained
from imaginary time relaxation in a box [−25,25] discretized
by the discrete-variable-representation (DVR) [64] quadrature
points, NDVR = 256, associated with Fourier basis functions.
The integer in parentheses below each energy value gives
the number of configurations. Figure 3 depicts some selected
results for the spin-averaged two-electron density,

ρ2(x1,x2) ≡ 1

4

∑
ijkl

ρ
jl

ik

∫
dσ1

∫
dσ2

× ‖φ†
i (z1)φ†

k(z2)‖‖φj (z1)φl(z2)‖, (46)

where ‖ · · · ‖ means the normalized Slater determinant [for
two-electron systems, ρ2(x1,x2) is equivalent to the absolute
square of the spatial wave function].
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TABLE I. Ground-state energy (in atomic units) of a 1D beryllium atom (Z = Ne = 4) for different combinations of (M,M1) (see caption
of Fig. 2). The integer in parentheses below each energy value is the number of configurations used in the calculation. The nonmonotonic
improvement of the energy for fixed M and increasing M1 is discussed in the text.

M

M1 2 3 4 6 8 10 12

1 −6.771296 −6.775354 −6.776631 −6.776764 −6.776780 −6.776782
(5) (18) (125) (490) (1377) (3146)

2 −6.739450 −6.771296 −6.779805 −6.784224 −6.784501 −6.784529 −6.784533
(1) (5) (19) (77) (175) (313) (491)

3 −6.771296 −6.775314 −6.779301 −6.779648 −6.779683 −6.779687
(9) (18) (108) (294) (576) (954)

4 −6.780026 −6.781293 −6.781591 −6.781627 −6.781633
(36) (112) (364) (792) (1396)

6 −6.784736 −6.784814 −6.784838 −6.784843
(225) (399) (981) (1971)

8 −6.785041 −6.785049 −6.785050
(784) (1096) (2144)

10 −6.785072 −6.785074
(2025) (2515)

12 −6.785077
(4356)

In Table I and Fig. 3, for a fixed M1, the larger M , i.e.,
the more active orbitals, variationally the more accurate a
result is obtained. On the other hand, for a fixed M , the
use of a larger M1 does not necessarily give more accurate
results, because the exclusion of single-orbital excitations
from P1 to P2 space makes the theory nonvariational with
respect to the position of the partition. To clarify the physics
behind this convergence behavior, consider how the RAS
scheme is working: the four electrons are first distributed
in all possible manners in the P1 space, from which all
possible two-orbital transitions to the P2 space take place,
as shown in Fig. 4, where typical configurations realized for
(M,M1) = (8,1), (8,2), and (8,6) are illustrated. Note that,
relative to the lowest energy configuration, the singly excited
configurations are realized only for (M,M1) = (8,1). The
wave function of (M,M1) = (8,2), however, includes doubly
excited configurations hereafter called quasi-singly-excited
configurations, in which one of the two excited electrons
remains in a low-energy orbital near the nucleus but the
other occupies a high-energy orbital far away from the
nucleus. These singly and quasi-singly-excited configurations
are excluded from the method of (M,M1) = (8,6), which has
the advantage of taking into account collective four-electron
correlated configurations near the nucleus. In short, the larger
is M1, i.e., the more upward the partition shifts, the more
configurations in the P1 space, but the fewer configurations in
the P2 space, the wave function includes.

Look at the M1 = 2 row in Table I, where the number
of configurations is largely reduced, thereby making the
computation time shorter. In this row a slow convergence with
respect to M can be seen: starting from the Hartree-Fock (HF)
energy, the energy value decreases and eventually becomes
−6.784 533 at M1 = 12, which still differs from the value
−6.785 077 obtained from the (M,M1) = (12,12) calculation.
The slow convergence property is more pronounced in the
calculations using M1 = 1. This is due to the lack of the

collective four-electron correlated configurations for describ-
ing the complex electron correlation near the nucleus. On the
other hand, for a fixed M(�6), an energy value calculated
with M1 = 6 is always more accurate than corresponding ones
with M1 = 1 and 2. However, arguing against the superiority
of the use of M1 = 6 to M1 = 1 and 2 for calculating the
ground-state energy, Fig. 3 indicates the opposite view; the use
of M1 = 1 and 2 is seemingly superior to the use of M1 = 6
for a more accurate description of the two-electron density
on a logarithmic scale. In a region far from the nucleus, and
especially around x1 � x2, the density is remarkably well de-
scribed in the calculations with M1 = 1 and 2. This observation
so far interestingly indicates that taking into consideration the
collective four-electron correlated configurations is crucial for
obtaining an accurate ground-state energy, while the singly
or quasi-singly-excited configurations are important for the
details of the electron density in the region far from the nucleus,
which is where the tunneling ionization by strong lasers takes
place, as discussed in the next subsection.

Finally, we consider an application to the 1D helium
atom (Z = Ne = 2). Under the same numerical condition,
a direct solution of the Schrödinger equation provides the
exact ground-state energy −2.238 257. On the other hand,
rapid convergence of the ground-state energy is observed
in the MCTDHF calculation with increasing M; starting
from the HF energy −2.224 210, almost-converged energy
is already obtained at M = 7 (see also Ref. [59], which
lists the ground-state energy of the same 1D helium atom
for several values of M). Here it should be noted that, for
two-electron systems, the wave function in the present TD-
RASSCF scheme is invariant with respect to the position of the
partition (see the Appendix). This is also the case for general
Ne-electron atoms when M = Ne/2 + 1, because there are
two holes which play the same role as the two electrons in
two-electron systems. In the case of the 1D beryllium atom
with M = 3, the TD-RASSCF calculations using M1 = 1, 2,
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FIG. 3. (Color online) Logarithmic contour plot of the spin-averaged two-electron density ρ(x1,x2) [Eq. (46)] of a 1D beryllium atom in
the ground state for different combinations of (M,M1) as indicated in each panel. The leftmost result of (M,M1) = (2,2) corresponds to the HF
result. For comparison, all panels include the same dashed (red) lines representing the density calculated with (M,M1) = (12,12). Contours
differ by a factor of 10, indicating 0.1 for the line of the innermost island.

and 3 hence provide equal ground-state energies, as reported in
Table I.

B. High-order harmonic generation

To investigate the performance of the TD-RASSCF theory
in a truly TD setting, we consider the dynamics of a 1D
beryllium model atom (Z = Ne = 4) interacting with a few-
cycle near-infrared laser field. The effect of the laser is
described by adding the dipole interaction in the length gauge
to the one-body Hamiltonian, (43), as

h(x,t) = −1

2

d2

dx2
+ V (x) + xF (t) − iW (x), (47)

with the laser field expressed by

F (t) = F0 cos2

(
πt

T

)
cos ωt, (−T/2 � t � T/2). (48)

Here F0 is the electric field strength, and ω the angular
frequency. All the calculations in this section were carried out
using a larger box [−300,300(≡L)] discretized by NDVR =
2048 points. The real-time propagation was implemented by
the fourth-order Runge-Kutta method with time step �t =
0.005. To cure the electron reflections at the edges of the box,
Eq. (47) includes the complex absorbing potential (CAP) func-
tion defined by W (x) = 1 − cos{π (|x| − xcap)/[2(L − xcap)]},
with xcap = 250 for |x| > xcap and 0 otherwise [65]. To keep
the calculations stable, a further numerical technique is needed.
In the Q-space orbital equations, (28), the density matrix is
regularized by the following substitution to prevent it from
being singular:

ρreg ≡ ρ + ε exp
( − ρ/ε

)
, (49)
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P-space

P2

P1

(8, 2) (8, 6)(M, M1) =

P2

P1

Quasi-singly-excited
configuration

(8, 1)

P2

P1

Singly-excited
configuration

Collective four-electron
correlated configuration

FIG. 4. Concept of the excited configurations in the TD-RASSCF
theory for a 1D beryllium atom (see also Fig. 3). These are typical
excited configurations for (M,M1) = (8,1), (8,2), and (8,6) from left
to right, respectively. Relative to the lowest energy configuration,
the singly excited configurations are realized only for (M,M1) =
(8,1). The calculation of (M,M1) = (8,2) includes the doubly excited
configurations called quasi-singly-excited configurations, where, in
theP2 space, one of the two excited electrons remains in a low-energy
orbital near the nucleus but the other occupies a high-energy orbital
far away from the nucleus. These configurations are excluded from
the method of (M,M1) = (8,6), which, however, includes collective
four-electron correlated configurations near the nucleus.

with a small constant ε = 10−10 [42]. The same regularization
method was used for the tensor A

l′j ′′
k′′i ′ in the P-space orbital

equations, (36). The validity of the numerical data shown
below was checked by carrying out the same calculations
using larger boxes, denser DVR quadrature points, smaller
time steps, and different values of the CAP parameter, xcap.

As an important observable, the HHG spectra are calculated
from the dipole moment in the acceleration form,

S(�) =
∣∣∣∣
∫ T/2

−T/2
〈�(t)|

Ne∑
κ=1

(
− d

dxκ

V (xκ )

)
|�(t)〉ei�tdt

∣∣∣∣
2

,

(50)

which is supposed to be more favorable than in the length form,
especially when a CAP function is used [15,16]. There are also
other superiorities for the use of the acceleration form to the
length form as discussed in Ref. [21]. Note that, in Eq. (50),
the laser electric field is excluded since it does not contribute
to the HHG spectrum.

Figure 5 displays the HHG spectra of the 1D beryllium
atom induced by a laser pulse specified by F0 = 0.0755
(2.0 × 1014 W cm−2), ω = 0.0570 (800 nm), and T = 331
(three cycles). For comparison, all panels include the same
dashed (red) line representing the MCTDHF result calculated
with (M,M1) = (12,12), which includes most electron cor-
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FIG. 5. (Color online) HHG spectra of the 1D beryllium atom calculated for different combinations of (M,M1) (see caption of Fig. 2). The
result of (M,M1) = (2,2) shown by the solid black line in (a) corresponds to the TDHF result. For comparison, all panels include the same
dashed (red) line corresponding to the result of (M,M1) = (12,12). The laser pulse is specified by the parameters: F0 = 0.0755 (2.0 × 1014

Wcm−2), ω = 0.0570 (800 nm), and T = 331 (3 cycles). The first and second cutoff energies are estimated to be 29.8ω and 58.7ω, respectively,
as shown by vertical dotted lines (see text).
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relation. In all cases a double-plateau structure appears due
to the many-electron effect and the use of the short pulse.
The dotted vertical lines in Fig. 5 indicate the positions of
the first and second cutoffs estimated based on the three-step
model by solving the classical equations of motion for a free
electron in the laser field as follows: Within the second laser
cycle, a liberated electron returns back to the parent ion with
the maximum kinetic energy 3.15Up, which accounts for the
first cutoff as 3.15Up + I (1)

p = 29.8ω. Here the first ionization
potential is estimated from the highest occupied orbital energy
−0.312 798 2(≡−I (1)

p ) in the HF approximation, and Up =
F 2

0 /(4ω2) = 0.439 is the ponderomotive potential. Slightly
after this moment of time, another electron already ejected in
the first laser cycle returns to the parent ion. Treating the two
electrons coherently by neglecting the electron repulsion [66],
the nonsequential double recombination emits a photon having
the maximum energy 5.04Up + I (1)

p + I (2)
p = 58.7ω, which

could roughly explain the second cutoff. Here the sum of
the first and second ionization potentials is estimated to be
I (1)

p + I (2)
p = E2+

g − Eg = 1.129 997, where Eg and E2+
g are

the ground-state energies of the 1D beryllium atom and its
dication Be2+, respectively, obtained by the HF calculations.

We start the discussion of the spectra in Fig. 5 by investigat-
ing the structure of the first plateau (0 < �/ω < 30). Although
the overall shape of the HHG spectra is similar in all calcu-
lations, the TDHF result, i.e., the result of (M,M1) = (2,2)
in Fig. 5(a), shows a significant disagreement with the result
of (M,M1) = (12,12). This failure is because the creation of
the first plateau is mainly due to the single ionization and
recombination processes, which are not included explicitly in
the TDHF wave function. The increase in M removes this
shortcoming, and the variational improvement of the accuracy
is thus apparent in Figs. 5(b) and 5(c), in which all the results
are in reasonable agreement. Here the agreement, especially
among the (M,M1) = (6,1), (6,2), (12,1), (12,2), and (12,12)
results, importantly indicates that the singly and quasi-singly-
excited configurations play a leading role in reproducing the
first plateau. Around 15 < �/ω < 30, however, all the results
show small disagreements, which require further analysis
beyond the scope of the present work.

Next look at the second plateau (30 < �/ω < 60). The
TDHF result in Fig. 5(a) differs substantially from the result
of (M,M1) = (12,12). As discussed so far, the nonsequential
double recombination roughly estimates the creation of the
second plateau. Although the TDHF wave function takes
into account the double continua, the two liberated electrons
are always in the same spatial orbital, which results in the
poor accuracy of the TDHF method. On the other hand, in
Figs. 5(b) and 5(c), the second plateau is roughly reproduced
by all methods, including the (M,M1) = (6,2) and (12,2)
methods, despite the large reduction in the number of con-
figurations in this approach. It seems to be a formidable task
to exactly reproduce the fine structure. The rich structure of
the second plateau, especially around the second cutoff, is
due to the interference among several quantum trajectories of
the two electrons coming back to the parent ion [66]. It is
thus still questionable whether the convergence is completely
achieved even in the calculation with (M,M1) = (12,12).
Note that, in Ref. [14], HHG spectra were calculated for
a four-electron molecule using a similar laser pulse by the

MCTDHF method. In this related work, however, all the results
including the TDHF one show reasonable agreement in both
the first and the second plateaus. The convergence behavior
of the MCTDHF calculations will thus sensitively depend on
the system, as well as the parameters of the driving laser.
However, as shown in Fig. 5(c), a good agreement between
the MCTDHF and the TD-RASSCF results is observed in
the first plateau despite the fact that largely different sets of
electronic configurations are used in the two methods. This
is an indicator of the convergence of each calculation for
describing the single-electron continuum states. Furthermore,
it is safe to say that the reasonable agreement in the second
plateau indicates some account of the double continuum.

V. CONCLUSIONS AND OUTLOOKS

In this paper, a theoretical framework for describing
TD many-electron dynamics, denoted TD-RASSCF theory,
has been proposed and formulated on the basis of the TD
variational principle. The key concepts of the theory are the use
of TD orbitals and the truncation of the CI expansion by incor-
porating the RAS scheme. Abandoning the full CI expansion
gives rise to important changes in the formulation compared
to the MCTDHF theory. The TD-RASSCF theory thereby
requires us to solve the P-space orbital equations. To make
the amplitude and the P-space orbital equations separable, we
only allow transitions of even numbers of orbitals between the
P1 and the P2 spaces. In a proof-of-principle application to
the 1D beryllium atom, the TD-RASSCF method exhibited a
reasonable convergence behavior by accumulating the number
of active orbitals in both calculations of the ground-state wave
function and the HHG spectra induced by an intense laser
pulse. By shifting the position of the partition between the two
active spaces and changing the number of active orbitals in
each subspace, one can flexibly take into account the electron
correlation needed to describe the phenomena of interest. This
flexibility and the accompanying gain in computational efforts
allow us to promote the TD-RASSCF theory as a promising
method for application in larger atoms and molecules, beyond
the reach of methods based on full CI expansions.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. Sebastian Bauch (Aarhus
University), Dr. Simen Kvaal (University of Oslo), and
Dr. Takeshi Sato (the University of Tokyo) for many useful
discussions. This work was supported by the Danish Research
Council (Grant No. 10-085430) and ERC-StG (Project No.
277767-TDMET).

APPENDIX: WAVE FUNCTION OF TWO-ELECTRON
SYSTEMS

Consider a two-electron system in the MCTDHF method
with M(�2) active spatial orbitals. Expressing the index of
the active orbitals |φi〉 by i = 1↑,1↓, . . . ,M↑,M↓, the wave
function reads

|�〉 = |�〉 + CM−1(|φ1↑φM−1↓〉 − |φ1↓φM−1↑〉)
+ CM (|φ1↑φM↓〉 − |φ1↓φM↑〉), (A1)
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where |�〉 means the rest of the Slater determinants.
Defining two new orbitals by |φ′

M−1↑(↓)〉 ≡ cos θ |φM−1↑(↓)〉 −
sin θ |φM↑(↓)〉 and |φ′

M↑(↓)〉 ≡ sin θ |φM−1↑(↓)〉 + cos θ |φM↑(↓)〉
such that the condition CM−1 sin θ + CM cos θ = 0 is fulfilled,
for instance, the wave function is rewritten as

|�〉 = |�〉 + C ′
M−1(|φ1↑φ′

M−1↓〉 − |φ1↓φ′
M−1↑〉), (A2)

where C ′
M−1 ≡ CM−1 cos θ − CM sin θ . Proceeding with the

orbital manipulations, one can eliminate any or even all of

the singly excited configurations relative to the lowest energy
configuration. In the TD-RASSCF scheme, all the singly
excited configurations from P1 to P2 are likewise removable.
Thus the wave function in the TD-RASSCF theory is invariant
with respect to the position of the partition between P1 and
P2. Finally, note that, exploiting this flexible structure of the
two-electron wave function, one can ultimately arrive at the
expression of the wave function in terms of geminals [67]
instead of orbitals.
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