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Atomic properties of the 24 low-lying ns, npj , ndj , nfj , and ngj states in Th IV ion are calculated using
the high-precision relativistic all-order method where all single, double, and partial triple excitations of the
Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided
for a large number of electric-dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar
polarizabilities of the ground and six excited states (5fj , 6dj , 7pj , and 7s), and tensor polarizabilities of the 5fj ,
6dj , and 7p3/2 states of Th IV are evaluated. The uncertainties of the recommended values are estimated. These
calculations provide recommended values critically evaluated for their accuracy for a number of Th IV atomic
properties for use in theoretical modeling as well as planning and analysis of various experiments including
development of an ultraprecise nuclear clock and resonant excitation Stark ionization spectroscopy studies of
actinide ions.
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I. INTRODUCTION

The 229Th nuclear excitation energy of a few eV [1,2]
presents a remarkable opportunity to develop an ultraprecise
clock based on this very narrow nuclear transition [3–5]. This
transition was also proposed [6] for the laboratory search for
variation of the fine-structure constant and the dimensionless
strong interaction parameter mq/�QCD due to an estimated
5–6 orders of magnitude enhancement. The energy splittings
of the ground and excited states of the nuclei are generally
much larger and are not accessible with laser spectroscopy. In
2009, laser cooling of the 229Th3+ was reported by Campbell
et al. [4]. This was the first demonstration of laser cooling of
a multiply charged ion. Laser-cooled Wigner crystals 229Th3+
were produced in a linear Paul trap [4]. These experimental
advances opened an avenue for excitation of the nuclear
transition in a trapped, cold 229Th3+ ion that may lead to new
levels of metrological precision [4,5,7].

While the clock based on ultraviolet 229Th nuclear transition
can be designed with various Th ions, Th3+ is particularly
attractive due to its simple electronic structure of one valence
electron above the closed [Rn] = [Xe]4f 145d106s26p6 core.
The transition probability of the Th229 nucleus from its lowest-
energy isomeric states to the ground state due to the electronic
bridge process was evaluated in [8]. Implementation of the
electronic bridge process will require good understanding
of Th3+ atomic properties, including matrix elements of the
electric-dipole and hyperfine operators. A single-ion nuclear
clock based on the stretched states within the 5f5/2 electronic
ground states of both nuclear isomeric and ground manifolds
was recently proposed in [5].

The hyperfine A and B constants for the 5f5/2, 5f7/2,
6d3/2, and 6d5/2 states were recently measured allowing
one to determine nuclear electric-quadrupole moment Q =
3.11(16) eb [7]. Accurate measurement of the hyperfine
constants, combined with precision theoretical calculations,

may be used to produce more accurate determination of the
229Th nuclear magnetic moment, which is presently known
to be about 10% [9]. The relative isotope shifts with respect
to 232Th3+ were measured for three 5f –6d transitions [7].
The 717-nm electric quadrupole transition was observed in
[10]; the 6d3/2–7s transition frequency and the lifetime of the
metastable 7s level were measured to be 417 845 964(30) MHz
and 0.60(7) s, respectively.

In 2011, binding energies of high-L Rydberg states (L � 7)
of Th2+ with n = 27–29 were studied using the resonant
excitation Stark ionization spectroscopy (RESIS) method [11].
Analysis of the observed RESIS spectra led to determination
of five properties of the Th3+ ion: its electric quadrupole
moment, adiabatic scalar and tensor dipole polarizabilities,
and the dipole matrix elements connecting the ground 5f5/2

level to the low-lying 6d3/2 and 6d5/2 levels.
The optical spectroscopy has been reported for Th3+ [12],

determining the relative positions of the lowest 24 levels, but
most Th3+ properties of even low-lying levels are not known
experimentally.

Recently, oscillator strengths and transition rates were
reported by Safronova et al. [13,14], Migdalek et al. [15],
and Biémont et al. [16]. The pseudorelativistic Hartree-Fock
(HFR + CP) method including core-polarization effects was
used in Ref. [16] to evaluate oscillator strengths and transition
rates for the 76 transitions in the Th3+ ion [16]. Dirac-
Fock + core-polarization approximation, where core-valence
electron correlations were treated in a semiclassical core-
polarization picture, was used to evaluate properties of 20
E1 transitions in Th IV in Ref. [15]. Excitation energies,
reduced matrix elements, oscillator strengths, transition rates,
scalar and tensor ground-state polarizabilities, and lifetimes
for a large number of levels were calculated in [14] using
the third-order many-body perturbation theory (MBPT) and
single-double (SD) all-order methods.
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Accurate calculations of Th3+ atomic properties are diffi-
cult. While it is a Fr-like ion, its level structure is different
from both Fr and Ra+, which both have 7s ground state.
Th3+ ground state is 5f5/2 causing further difficulties in the
accurate calculation of its properties not present in either Fr
or Ra+. Moreover, Th3+ is sufficiently multicharged to make
Breit contributions significant. Most of the theoretical and
experimental high-precision studies involved ns, np, and nd

levels resulting in lack of benchmarks for nf state properties
in other systems that may be used to further improve ab initio
calculations. The study of the electronic bridge process [8]
noted rather poor agreement of theoretical and experimental
energies.

Therefore, we calculate properties of the Th3+ ion by sev-
eral different approaches to study the correlation contributions
to various properties to evaluate accuracy of our calculations
and to provide a pathway to further improvement in theoretical
understanding of this ion. Due to the above noted interesting
applications, Th3+ also represents an excellent benchmark for
further development of high-precision methodologies of very
heavy ions.

In the present work, we evaluated all properties using both
SD and single-double partial triple (SDpT) all-order methods
as well as carried out additional scaling to evaluate dominant
missing correlation corrections and evaluate uncertainties of
our calculations. The SD and SDpT methods and their appli-
cation were discussed in a review [17] and references therein.
Energies and lifetimes are calculated for the ns (n = 7–10),
np (n = 7–8), nd (n = 6–8), nf (n = 5–7), and ng (n = 5–6)
states. Reduced matrix elements, oscillator strengths, and
transition rates are calculated for allowed electric-dipole tran-
sitions between these states. Scalar polarizabilities of the seven
first 5fj , 6dj , 7pj , and 7s states, and tensor polarizabilities of
the 5fj , 6dj , and 7p3/2 states of Th3+ are evaluated. Particular
care was taken to accurately treat contributions from highly
excited states. The present calculation of the transition rates,
lifetimes, and polarizabilities required accurate representation
of rather highly excited states, such as 7lj , leading to the use
of the large R = 100 a.u. cavity for the generation of the
finite B-spline basis set [18] and higher number of splines
N = 70 to produce high-accuracy single-particle orbitals. The
methods for evaluating the uncertainties of theoretical values
calculated in the framework of the all-order approach are
discussed. The calculation of uncertainties involved estimation
of missing high-order effects and ab initio calculations in
different approximations to establish the size of the higher-
order corrections and to approximate missing contributions.

II. ENERGY LEVELS AND TRANSITION PROPERTIES

A. Energy levels

The calculation of energies in Th3+ was discussed in detail
by Safronova et al. [14] where the third-order relativistic
many-body perturbation theory (RMBPT) and all-order SD
energies were presented. The third-order RMBPT approxi-
mation includes the second-order and third-order part of the
correlation energies. The all-order SD approximation includes
the second-order and the single-double part of the higher-
order correlation energies. However, it is missing the part of

the third-order contribution E
(3)
extra. The additional third-order

contribution to the energies was added in [14] using a separate
calculation. The inclusion of the partial triple-excitations terms
via the SDpT method described in [17] and implemented in the
present work automatically includes the missing third-order
energy. The data in [14] show extremely large contributions
of the correlation corrections into the energy values. In fact,
the lowest-order Dirac-Fock calculation gives a 6d3/2 ground
state instead of the 5f5/2 state. We find that triple excitations
beyond the third-order term E

(3)
extra are very large—3%–5% of

the total correlation correction. For example, the difference of
the correlation correction to the ionization potential calculated
in the SD approximation + E

(3)
extra term and the SDpT value

is 1200 cm−1. Based on the size of all other corrections and
experimental values, we estimate that the omitted triple and
higher effects for the 5f and 6d state are on the order of already
included triple excitations, which is a reasonable expectation
of the accuracy in this case. The relative contribution of the
correlations is substantially higher (by at least a factor of 2)
for the 5f states than for all other states exacerbating the
problem for the transition energies. Therefore, full inclusion
of the triple excitations, and most likely an estimate of the
higher excitations, would be required for accurate description
of the energy-level differences with the ground state owing to
significant imbalance of the correlation contribution between
the ground state and all other states except 5f7/2. Our values for
the fine-structure 5f5/2–5f7/2 interval, 4165 cm−1, is in good
agreement with experiment, 4325 cm−1. We included the Breit
interaction on the same footing as the Coulomb interaction in
the basis set, which incorporates high-order Breit effects. The
Breit interaction was included to second order in [14], which
significantly overestimates its correction. We also note that
inclusion of the higher partial waves with l > 6 is very impor-
tant for accurate description of the 5f states. The contribution
of l > 6 is on the order of 1000 cm−1 for the 5f states and
250–300 cm−1 for the 6d states. We use experimental energy
intervals in the calculation of all transitions properties and
polarizabilities below, where available.

B. Electric-dipole matrix elements

In Table I, we list our recommended values for E1
n′p–ns, nd–n′p, nd–n′f , and ng–n′f transitions. We note
that we have calculated about 80 E1 matrix elements to
consider all dipole transitions between ns, np, n′d, n′′f ,
and n′′g states with n = 7–10, n′ = 6–8, and n′′ = 5–7.
We refer to these values as the “best set” of the matrix
elements. We list only the matrix elements that give significant
contributions to the atomic properties calculated in the other
sections. To evaluate the uncertainties of these values, we
carried out several calculations in different approximations. To
demonstrate the size of the second-, third-, and higher-order
correlation corrections, we list the lowest-order Dirac-Fock
(DF) ZDF, second-order Z(DF+2), and third-order Z(DF+2+3)

values in the first three numerical columns of Table I. The
absolute values in atomic units (a0e) are given in all cases.
The third-order MBPT calculations are carried out following
the method described in Ref. [19]. The Z(DF+2) values are
obtained as the sum of the second-order correlation correction
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TABLE I. Recommended values of the reduced electric-dipole matrix elements in Th IV in atomic units. The first-order, second-order,
third-order MBPT, and all-order SD and SDpT values are listed; the label “sc” indicates the scaled values. Absolute values are given. Final
recommended values and their uncertainties are given in the Zfinal column. The last column gives relative uncertainties of the final values in %.

Transition ZDF Z(DF+2) Z(DF+2+3) ZSD Z(SD)
sc ZSDpT Z

SDpT
sc Zfinal Unc. (%)

7p1/2 6d3/2 2.5465 2.1960 2.0566 2.1220 2.1284 2.1312 2.1253 2.122(30) 1.4
7p1/2 7d3/2 3.8261 3.5613 3.4020 3.4490 3.4642 3.4635 3.4638 3.449(26) 0.8
7p1/2 7s1/2 2.8994 2.4738 2.3476 2.4197 2.4368 2.4323 2.4364 2.420(34) 1.4
7p1/2 8s1/2 1.5874 1.6297 1.5549 1.5492 1.5404 1.5542 1.5390 1.549(19) 1.3
7p1/2 9s1/2 0.4722 0.4910 0.4734 0.4657 0.4630 0.4667 0.4641 0.463(5) 1.1
7p3/2 6d3/2 0.9963 0.8823 0.8260 0.8488 0.8516 0.8533 0.8501 0.849(10) 1.2
7p3/2 6d5/2 3.1975 2.8762 2.6900 2.7550 2.7627 2.7665 2.7583 2.755(31) 1.1
7p3/2 7d3/2 2.0308 1.8920 1.8252 1.8445 1.8522 1.8503 1.8523 1.845(13) 0.7
7p3/2 7d5/2 5.9481 5.5572 5.3603 5.4192 5.4409 5.4377 5.4415 5.419(37) 0.7
7p3/2 7s1/2 3.9933 3.4515 3.2731 3.3677 3.3925 3.3866 3.3919 3.368(44) 1.3
7p3/2 8s1/2 3.0768 3.0702 2.9863 2.9756 2.9635 2.9804 2.9623 2.963(24) 0.8
7p3/2 9s1/2 0.7567 0.7439 0.7157 0.7123 0.7197 0.7141 0.7216 0.712(10) 1.5
8p1/2 7d3/2 5.4788 5.3607 5.1639 5.1791 5.1866 5.1907 5.1838 5.179(11) 0.2
8p1/2 8s1/2 5.0325 4.8413 4.6814 4.7280 4.7590 4.7405 4.7579 4.728(21) 0.5
8p3/2 7d3/2 2.1716 2.1485 2.0566 2.0630 2.0641 2.0690 2.0628 2.064(05) 0.2
8p3/2 7d5/2 6.8642 6.7805 6.5104 6.5180 6.5247 6.5343 6.5209 6.525(10) 0.2
8p3/2 8s1/2 6.7737 6.5493 6.3192 6.3881 6.4284 6.4068 6.4270 6.388(57) 0.9
8p3/2 9s1/2 5.4177 5.4364 5.3083 5.2854 5.2662 5.2961 5.2631 5.266(30) 0.6
5f5/2 6d3/2 2.4281 1.6597 1.3609 1.5296 1.5330 1.5423 1.5231 1.530(63) 4.1
5f5/2 6d5/2 0.6391 0.4586 0.3685 0.4116 0.4125 0.4154 0.4100 0.412(16) 3.9
5f5/2 5g7/2 1.1236 0.8404 0.6123 0.6895 0.6544 0.7034 0.6555 0.690(30) 4.4
5f5/2 7d3/2 0.0654 0.3417 0.2077 0.2588 0.2475 0.2710 0.2449 0.259(26) 9.9
5f5/2 7d5/2 0.0048 0.0671 0.0362 0.0521 0.0492 0.0554 0.0486 0.052(8) 15
5f7/2 6d5/2 2.9557 2.1257 1.7270 1.9191 1.9223 1.9371 1.9122 1.919(73) 3.8
5f7/2 5g7/2 0.2298 0.1760 0.1292 0.1478 0.1407 0.1506 0.1408 0.148(6) 3.9
5f7/2 5g9/2 1.3635 1.0667 0.7894 0.8855 0.8487 0.9022 0.8484 0.885(33) 3.8
5f7/2 7d5/2 0.0703 0.3889 0.2259 0.2961 0.2815 0.3114 0.2785 0.296(35) 12
6f5/2 6d3/2 2.6761 2.3276 2.3423 2.3443 2.3181 2.3372 2.3220 2.344(23) 1.0
6f5/2 6d5/2 0.7669 0.6780 0.6837 0.6800 0.6727 0.6774 0.6736 0.680(6) 0.9
6f7/2 6d5/2 3.3539 2.9806 3.0233 3.0008 2.9678 2.9886 2.9709 3.001(25) 0.8
7f5/2 8d3/2 13.4659 13.2664 12.6363 12.5835 12.7110 12.6315 12.6803 12.71(13) 1.0
7f5/2 8d5/2 3.5961 3.5454 3.3681 3.3554 3.3900 3.3553 3.3662 3.390(35) 1.0
7f5/2 7d5/2 1.0359 1.0451 1.1332 1.1178 1.0853 1.1014 1.0845 1.085(16) 1.5
7f5/2 6d3/2 1.2888 0.9357 0.8390 0.8131 0.8224 0.8260 0.8297 0.813(33) 4.1
7f5/2 6d5/2 0.3586 0.2713 0.2376 0.2286 0.2321 0.2323 0.2340 0.229(09) 4.0
7f5/2 5g7/2 8.5105 8.5592 8.6347 8.3981 8.4526 8.4008 8.4515 8.453(52) 0.6
7f7/2 5g9/2 9.5778 9.6340 9.7290 9.4935 9.4490 9.4944 9.4466 9.449(45) 0.5
7f7/2 5g7/2 1.6217 1.6312 1.6446 1.5971 1.5952 1.5988 1.5950 1.595(4) 0.2
7f7/2 6d5/2 1.5854 1.2543 1.1202 1.0734 1.0900 1.0872 1.0966 1.073(36) 3.3

Z(2) and the DF matrix elements ZDF. The third-order matrix
elements Z(DF+2+3) include the DF values, the second-order
Z(2) results, and the third-order Z(3) correlation correction. Z(3)

includes random-phase-approximation (RPA) terms iterated
to all orders, Brueckner orbital corrections, the structural
radiation, and normalization terms (see [19] for definition
of these terms). The next four columns give the results of
four different all-order calculations. Ab initio electric-dipole
matrix elements evaluated in the all-order SD (single-double)
and SDpT approximations (single-double all-order method
including partial triple excitations [20]) are given in columns
labeled ZSD and ZSDpT of Table I. The SD and SDpT matrix
elements ZSD include Z(3) completely, along with important
fourth- and higher-order corrections. The difference between
the ZSD and ZSDpT values is about 0.2%–2%, i.e., the effect

of the triple excitations on the values of matrix elements is
significantly smaller than for the energies.

The last column of Table I gives relative uncertainties of
the final values Zfinal in %. We use two different methods for
the estimation of the uncertainties based on the type of the
dominant correlation corrections for a specific transition. If
the correlation terms containing valence single-excitation co-
efficients are dominant, the omitted correlation corrections can
be estimated by a scaling procedure described, for example, in
Ref. [21]. In this case, we use a well-defined and rather accurate
procedure for the evaluation of the uncertainty of the matrix
elements described in detail in [21–23]. It is based on four
different all-order calculations that included two ab initio all-
order calculations with (SDpT) and without (SD) the inclusion
of the partial triple excitations and two calculations that
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included a semiempirical estimate of high-order correlation
corrections starting from both ab initio runs, SDsc and SDpTsc.
The differences of these four values were used to estimate
uncertainty in the final result for each transition and the SD
scaled values are taken as final for these cases. We note that
the scaling may be less reliable in Th3+ than in other systems
due to large uncertainty in the experiment ionization potential
231 065(200) cm−1 [24] as scaling relies on the experimental
values of the removal energies. However, ab initio SDpT
results are generally already close to the final scaled values.

Unfortunately, a different type of the correlation terms is
dominant for a large fraction of the transitions of interest
for this work (including all of the transitions containing the
5f states). In these cases, the above strategy for evaluating
uncertainties is expected to underestimate the uncertainties.
We have developed a different approach for these cases using
the study of uncertainties in a similar reference ion, Rb-like
Y, where the above (scaling) procedure is expected to work
well [23]. We have compared the estimated uncertainties for
60 nd–n′f transitions [23] with the size of the correlation
corrections for the same transitions. We find that, on average,
the estimate uncertainty was about 7% of the correlation
correction, which was calculated as the difference of the
all-order and the lowest-order results. Therefore, we use 7%
of the correlation correction to estimate the uncertainties as
the second method for evaluating the uncertainties and list
these uncertainties for transitions where the first method is not
expected to produce reliable results. We note that the second
method is less precise than the first one and provides a rough
estimate of the accuracy. The ab initio SD data are listed as
final for these transitions. An accurate benchmark reference
measurement is needed to improve the accuracy estimates.

We find three cases in Table I where neither of the two
methods is expected to provide accurate estimates of the
uncertainties. For all three 5f –7d transitions, the lowest-order
values are less than 0.1 a.u. and almost entire values come from
the correlation correction. In these cases, we took 50% of the
entire higher-order correction (calculated as the difference of
the all-order and the third-order values) as the uncertainty. The
50% was chosen based on the comparison of the higher-order
effects for other transitions with the corresponding estimates
of their uncertainties carried out by the other methods.

We find that the uncertainties are 0.2%–2% for most of
the transitions. Larger uncertainties occur for some of the
transitions with large correlation contributions such as 5f –ng.
Our final results and their uncertainties are used to calculate
the recommended values of the transition rates, oscillator
strengths, lifetimes, and the polarizabilities, as well as to
evaluate the uncertainties of these results.

C. Transition rates and oscillator strengths

We combine experimental energies [12] and our final values
of the best set matrix elements to calculate transition rates A

and oscillator strengths f . The transition rates are calculated
using

Aab = 2.026 13 × 1018

λ3

S

2ja + 1
s−1, (1)

where the wavelength λ is in Å and the line strength S = d2 is
in atomic units.

Transition rates A (s−1) for the 60 ns–np, np–nd,
nd–nf , and nf –ng transitions are given in Table II. Vacuum
wavelengths obtained from experimental energies [12] are
also listed for reference. The relative uncertainties of the
transition rates listed in the column labeled “Unc.”are twice the
corresponding matrix element uncertainties since the transition
rates are proportional to the squares of the matrix elements.
The smallest uncertainties are for the 5g–7f transitions, while
the largest ones are for the 6d–8p and 5f –8d transitions
owing to large corresponding uncertainties in the E1 transition
matrix elements. We already discussed the importance of the
size of the correlation effects for the dipole matrix element
uncertainties. For example, the DF value for the 5f5/2–7d3/2

transition (see Table I) is smaller than the all-order SD value by
a factor of 4. The SDpT value obtained with including partial
triple excitations is larger than the SD value by 4.7% for this
transition. The scaling procedure decreases both SD and SDpT
values by 4.3% and 9.6%, respectively. The contributions
affected by scaling are related to the correlation potential and,
therefore, the values of the correlation energies for the specific
state. The scaling coefficients are obtained as a ratio of the
“experimental” correlation energy (obtained as the difference
of the experimental values and the lowest-order results) and the
theoretical SD or SDpT correlation energies. Lower accuracy
of the theoretical correlation energy leads to a larger scaling
effect owing to a larger omitted correlation contribution to the
matrix elements of the certain class, in particular for weaker
transition with small DF values.

We present weighted oscillator strengths gf calculated
using our recommended values of reduced electric-dipole
matrix elements gf final and their uncertainties in Table III.
The relative uncertainties are listed in column “Unc.” in %.
In columns “DF,” we list gf values calculated in the DF
approximation. In column “Expt.,” we list λ recommended
by compilation in Ref. [12]. In column “HFR + CP,” we list
gf values calculated by the HFR + CP method [16]. In the
left column of Table III, we list the 32 transitions when the
“HFR + CP” values are in better agrement with our “Final”
result. Disagreement between the gf HFR+CP and gf final values
is about 2%–20%. The 15 transitions given in the right column
of Table III are transitions when the “HFR + CP” values
are in better agreement with our gf values obtained in the
DF approximation than with our “Final” result. The last 16
transitions given in the right column of Table III present
transitions when the “HFR + CP” values disagree with the
DF values as well as with the “Final” values by a factor of
2–10 for most of the transitions. It should be noted that among
these 16 transitions there are at least 10 transitions with very
small gf values (10−2). The uncertainties for such transitions
are significantly larger than the ones for the other transitions
shown in Table III.

D. Lifetimes

We list the lifetimes of the (7–9)s, (7–8)p, (6–8)d,
(5–7)f , and (5–6)g states in Table IV. These values are
obtained using the transition rates listed in Table II. The
uncertainties in the lifetime values given in parentheses are
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TABLE II. Wavelengths λ (Å) and transition rates Ar (s−1) for transitions in Th IV calculated using our recommended values of reduced
electric-dipole matrix elements Afinal

r and their uncertainties. The relative uncertainties are listed in column “Unc.” in %. In columns λ, we list
experimental data [12]. Numbers in brackets represent powers of 10.

Transition λ Ar Unc. Transition λ Ar Unc. Transition λ Ar Unc.

Lower Upper (Å) (s−1) (%) Lower Upper (Å) (s−1) (%) Lower Upper (Å) (s−1) (%)

5f5/2 8d5/2 615.28 3.08[6] 12 7p3/2 9s1/2 1140.61 3.46[8] 3.0 8p3/2 8d3/2 4528.35 5.21[7] 0.5
5f5/2 8d3/2 617.46 9.47[7] 14 6d3/2 7p3/2 1565.86 9.51[7] 2.4 8p3/2 9s1/2 4794.51 2.55[8] 1.1
5f5/2 5g7/2 627.39 4.88[8] 8.8 7p1/2 7d3/2 1682.21 1.27[9] 1.5 8s1/2 8p3/2 4938.44 1.72[8] 1.8
5f7/2 8d5/2 632.10 8.49[7] 14 7p1/2 8s1/2 1684.00 5.09[8] 2.5 7d3/2 8p3/2 4953.85 1.78[7] 0.5
6d3/2 7f5/2 643.66 8.37[8] 8.2 6d5/2 7p3/2 1707.37 7.72[8] 2.2 7d5/2 8p3/2 5421.88 1.35[8] 0.3
5f7/2 5g7/2 644.89 2.06[7] 7.8 6d3/2 7p1/2 1959.02 6.07[8] 2.8 7f5/2 6g7/2 5841.02 2.22[8] 5.3
5f7/2 5g9/2 644.97 5.92[8] 7.6 7s1/2 7p3/2 2003.00 7.15[8] 2.6 7f7/2 6g7/2 6018.30 7.90[6] 3.0
6d5/2 7f7/2 664.13 9.96[8] 6.7 7p3/2 7d5/2 2067.35 1.12[9] 1.4 7f7/2 6g9/2 6018.66 2.21[8] 2.6
6d5/2 7f5/2 666.36 5.96[7] 8.0 8p1/2 10s1/2 2086.62 6.81[7] 2.7 8s1/2 8p1/2 6713.71 7.48[7] 0.9
6d3/2 8p3/2 765.24 2.29[7] 7.4 7p3/2 7d3/2 2144.60 1.75[8] 1.4 7d3/2 8p1/2 6742.22 8.87[7] 0.4
6d5/2 8p3/2 797.55 1.84[8] 7.3 7p3/2 8s1/2 2147.50 8.98[8] 1.6 5f5/2 6d5/2 6903.05 1.74[5] 7.7
6d3/2 8p1/2 797.94 7.24[7] 16 7d3/2 7f5/2 2228.66 4.22[8] 3.4 5f7/2 6d5/2 9841.58 1.30[6] 7.6
7p1/2 10s1/2 818.32 1.14[8] 0.7 7d5/2 7f7/2 2291.90 4.51[8] 7.2 5f5/2 6d3/2 10 877.60 9.21[5] 8.2
6d3/2 6f5/2 846.91 3.06[9] 2.0 7d5/2 7f5/2 2318.70 3.19[7] 3.0 7d3/2 6f5/2 13 184.61 7.34[6] 3.0
6d5/2 6f7/2 882.39 3.32[9] 1.6 8p3/2 10s1/2 2349.07 1.08[8] 1.4 7d5/2 6f7/2 15 653.86 4.76[6] 3.0
6d5/2 6f5/2 886.66 2.24[8] 1.8 7s1/2 7p1/2 2694.81 3.03[8] 2.8 7d5/2 6f5/2 17 117.13 2.38[5] 3.1
7s1/2 8p1/2 897.78 7.71[7] 11 6f5/2 5g7/2 3113.25 6.75[8] 3.0 5g9/2 7f7/2 17 580.87 4.16[6] 1.0
7p3/2 10s1/2 914.20 1.71[8] 1.6 6f7/2 5g7/2 3167.09 2.42[7] 2.9 5g7/2 7f7/2 17 639.80 1.17[5] 0.5
7p1/2 8d3/2 983.14 2.93[8] 4.1 6f7/2 5g9/2 3169.00 6.76[8] 2.9 5g7/2 7f5/2 19 362.21 3.32[6] 1.2
7p1/2 9s1/2 995.13 2.20[8] 2.3 8p1/2 8d3/2 3644.65 3.43[8] 9.4 8d3/2 7f5/2 38 451.19 9.60[5] 2.0
7p3/2 8d5/2 1117.67 1.81[8] 5.0 8p1/2 9s1/2 3815.10 1.42[8] 2.5 8d5/2 7f7/2 39 506.95 9.65[5] 3.1
7p3/2 8d3/2 1124.88 2.27[7] 6.0 8p3/2 8d5/2 4413.67 3.18[8] 0.5 8d5/2 7f5/2 49 336.43 3.23[4] 2.1

obtained from the uncertainties in the matrix elements. The
column “Unc.” gives relative uncertainties of the final values
in %. We also list the lifetime values calculated in DF
approximation in Table IV to show the size of the correlation
correction for each case. The energies recommended by
Blase and Wyart [12] are given in column “Energy.” Our
values are compared with the SD calculation of Ref. [14].
The difference with the present results is due to more
complete inclusion of the correlation correction in the present
work.

In 2012, the lifetime of the metastable 7s level has been
measured to be 0.60(7) s, which is in excellent agreement with
our earlier prediction of 0.59 s [14]. The 7s–6d3/2 and 7s–6d5/2

E2 transitions give the only significant contributions to the 7s

lifetime. In this work, we have carried out additional SDpT and
scaled calculations of these values and obtained 7.110(47) a.u.
and 9.211(59) a.u. for the 7s–6d3/2 and 7s–6d5/2 E2 reduced
matrix elements, respectively. Our final value of the 7s lifetime
is 0.570(8) s.

III. SCALAR AND TENSOR EXCITED-STATE
POLARIZABILITIES

The valence scalar α0(v) and tensor α2(v) polarizabilities
of an excited state v of Th IV are given by

α0(v) = 2

3(2jv + 1)

∑
nlj

|〈v||rC1||nlj 〉|2
Enlj − Ev

, (2)

α2(v) = (−1)jv

√
40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑
nlj

(−1)j
{

jv 1 j

1 jv 2

} |〈v||rC1||nlj 〉|2
Enlj − Ev

, (3)

where C1(r̂) is a normalized spherical harmonic and the sum
over nlj runs over all states with allowed electric-dipole
transitions to a state v [25]. The reduced matrix elements in
the dominant contributions to the above sum are evaluated
using our final values of the dipole matrix elements and
available experimental energies [12]. The uncertainties in the
polarizability contributions are obtained from the uncertainties
in the matrix elements. We use theoretical SD energies and SD
wave functions to evaluate terms with n < 26 in Eqs. (2) and
(3). The remaining contributions to α0 and α2 from orbitals
with 27 � n � 70 are evaluated in the RPA approximation
since the contributions from these terms are smaller than
0.01% in all cases. These terms are grouped together as
“Tail.” Their uncertainty is estimated as the difference of the
corresponding DF and RPA values. We note that the ng states
with n > 18, nf states with n > 19, nd states with n > 20,
and np, ns states with n > 21 have positive energies and
provide a discrete representation of the continuum in our
basis.

We list the contributions to the scalar polarizabilities of the
5fj , 6dj , 7pj , and 7s states and tensor polarizabilities of the
5fj , 6dj , and 7p3/2 states in Table V. The dominant contri-
butions are listed separately. The remaining contributions are
grouped together. For example, “nd3/2” contribution includes
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TABLE IV. Lifetimes τ in Fr-like Th IV in ns. Uncertainties are
given in parentheses. The last column gives relative uncertainties of
the final values in %. Experimental energies [12] are given in cm−1.
The values of lifetimes evaluated in DF approximation are given to
illustrate the correlation contribution. Lifetime of the metastable 7s

level is given in text.

Level Energy τ (DF) τ (final) Unc. (%) Ref. [14]

6d3/2 9193.245 431 1086(89) 8.2 1090
6d5/2 14 486.34 285 678(46) 6.8 676
7p1/2 60 239.1 0.764 1.099(23) 2.1 1.099
7p3/2 73 055.9 0.459 0.632(10) 1.6 0.632
8s1/2 119 621.6 0.665 0.711(10) 1.4 0.707
7d3/2 119 684.6 0.563 0.665(10) 1.5 0.667
7d5/2 121 427.1 0.739 0.855(14) 1.6 0.854
6f5/2 127 269.2 0.234 0.304(6) 1.8 0.300
6f7/2 127 815.3 0.241 0.301(5) 1.6 0.297
8p1/2 134 516.5 1.925 3.19(14) 4.5 3.194
8p3/2 139 870.9 1.077 1.87(5) 2.6 1.871
5g9/2 159 371 0.449 0.79(3) 3.9 0.780
5g7/2 159 390 0.455 0.83(3) 3.9 0.815
9s1/2 160 728.1 0.960 1.038(13) 1.3 1.031
8d3/2 161 954 0.980 1.19(6) 4.9 1.176
8d5/2 162 527.8 1.385 1.62(5) 3.1 1.600
7f5/2 164 554.7 0.376 0.738(38) 5.2 0.684
7f7/2 165 059.0 0.384 0.689(35) 5.1 0.639
6g9/2 181 674 0.641 1.85(21) 11 1.567
6g7/2 181 675 0.649 2.21(31) 14 1.768

all of the nd3/2 terms with n � 26, excluding only the terms
that were already listed separately.

We evaluate the contribution from the ionic core αcore in the
RPA and find αcore = 7.75(7) a.u. We estimate uncertainty in
this term to be on the order of 1% based on the comparison
of the RPA values for heavier noble gases (Kr and Xe) with
experiment and comparison of the ionic core RPA values for
heavy ions (such as Ba2+) with coupled-cluster results (see
Table 4 of Ref. [26]). Our result is in excellent agreement
with the recent RESIS measurement of Th4+ polarizability
of 7.702(6) a.u. [27]. A counterterm αvc compensating for
excitation from the core to the valence shell which violates the
Pauli principle is also evaluated in the RPA and is given in rows
labeled “vc” in Table V. A difference of the DF and RPA values
is taken to be its uncertainty. The core polarizability gives a
very large contribution to all scalar polarizabilities, ranging
from nearly 100% for the 7p1/2, where valence terms cancel
out each other, to 20% for the 7s state. Its contribution to the
ground-state 5f5/2 polarizability is 53%. For comparison, the
core polarizability contributes only 6% to the total 7s ground-
state polarizability of Fr.

The evaluations of the α0 and α2 polarizabilities differ
only in the angular part. Both scalar and tensor ground-state
valence polarizabilities are dominated by a single transition,
5f5/2–6d3/2. It contributes 89% of the scalar valence polariz-
ability. Its contribution (−6.21 a.u.) to the tensor polarizability
is larger than the total value, since the 5f5/2–6d5/2 contributes
0.33 a.u. with the opposite sign. The continuous part of spectra
is responsible for 1% of α0 and α2 for the 5f5/2 state. We
discuss comparison of the ground-state polarizability values
with RESIS experiments [11] in Sec. V.

The dominant contribution, 98.5%, to the α2(5f7/2) value
comes from the nd5/2 states, particularly from the 6d5/2 state.
The contributions to the α2(5f7/2) value from the ng7/2 and
ng9/2 states are 0.2% and 1.7%, respectively, and have a
different sign. The dominant contributions to the α2(6d3/2)
value are from the 7p1/2 and 5f5/2 states and they partly
cancel each other. All other states contribute to the α2(6d3/2)
value only 15%. The dominant contributions to the α2(6d5/2)
value are from the 7p3/2 and 5f7/2 states and they nearly
exactly cancel each other (to 0.1%). As a result, the α2(6d5/2)
polarizability value mainly comes from the 5f5/2 and 6f7/2

states. The contributions to the α2(7p3/2) value are distributed
between the 7s1/2, 8s, 7d3/2, 6d5/2, and 7d5/2 states. There are
very large cancellations among these five terms.

The uncertainties in the values of the 5f and 6d polarizabil-
ities are overwhelmingly dominated by the uncertainties in the
5f –6d transitions. Accurate measurement of the 6d lifetimes
would allow one to significantly reduce all of the uncertainties.

IV. QUADRUPOLE MOMENT

The electric-quadrupole moment �(γ J ) of an atom in
electronic state |γ J 〉 is defined as the diagonal matrix element
of the q = 0 component of the electric-quadrupole operator Q

in a spherical basis,

�(γ J ) = 〈�(γ JMJ )|Q0|�(γ JMJ )〉, (4)

with the magnetic quantum number MJ taken to be equal to
its maximum value, MJ = J [28]. The quadrupole moment is
expressed via the reduced matrix element of the quadrupole
operator as

�(γ J ) = (2J )!√
(2J − 2)!(2J + 3)!

〈�(γ J )‖Q‖�(γ J )〉. (5)

Therefore, the calculation of the quadrupole moment of the
ground state of Th IV reduces to the calculation of the diagonal
matrix element of the electric-quadrupole operator.

The summary of the calculations is given in Table VI, where
we list the results of the lowest-order DF, third-order many-
body perturbation theory MBPT3, and all-order SD, SDpT, and
SDsc calculations. The MBPT3(6) and MBPT3(10) columns
give the third-order values calculated with lmax = 6 and
lmax = 10, respectively. The difference of these values gives an
estimate of the higher-partial wave contributions, and is added
to the all-order values which were obtained with lmax = 6. It
contributes 1% lowering the quadrupole moment value. We
cannot use the difference of the ab initio and scaled all-order
results to accurately estimate the uncertainty of the final value,
since the correction terms affected by the scaling account for
only 1/3 of the total correlation. Instead, we use the calculation
of the quadrupole moments in nd states of Ca+, Sr+, and Ba+
[29], where the uncertainties could be accurately estimated.
The Ca+ theoretical ground-state quadrupole moment [29] is
in excellent agreement with a precision experiment [30]. We
find that the uncertainties of theoretical values reported in [29]
were about 3% of the correlation correction for Ca+ and 2.3%
for Ba+, while the correlation corrections contributed 25% and
17% for these ions. In the present Th IV case, the correlation
contributed 35% to the ground-state quadrupole moment, so
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TABLE V. Contributions to the scalar (α0) and tensor (α2) polarizabilities of Th IV ion in a3
0 . Uncertainties are given in parentheses.

5f5/2 5f7/2 6d3/2

Contr. α0 α2 Contr. α0 α2 Contr. α0 α2

6d3/2 6.21(51) −6.21(51) 6d5/2 6.63(50) −6.63(50) 7p1/2 3.23(9) −3.23(9)
7d3/2 0.014(3) −0.014(3) 7d5/2 0.014(3) −0.014(3) 8p1/2 0.011(2) −0.011(2)
8d3/2 0.007(7) −0.007(7) 8d5/2 0.007(7) −0.007(7) 9p1/2 0.000 0.000
nd3/2 0.03(3) −0.03(3) nd5/2 0.03(3) −0.03(3) np1/2 0.02(2) −0.02(2)
6d5/2 0.29(2) 0.33(3) 5g7/2 0.003(1) 0.003(1) 7p3/2 0.413(10) 0.330(8)
7d5/2 0.001(1) 0.001(1) 6g7/2 0.001(1) 0.001(1) 8p3/2 0.006(1) 0.005(1)
nd5/2 0.002(2) 0.001(1) ng7/2 0.006(6) 0.007(7) np3/2 0.008(8) 0.006(6)
5g7/2 0.07(1) −0.026(2) 5g9/2 0.09(1) −0.043(3) 5f5/2 −9.31(76) 1.86(5)
6g7/2 0.02(2) −0.005(1) 6g9/2 0.03(1) −0.012(2) 6f5/2 1.70(3) −0.341(7)
7g7/2 0.02(1) −0.007(1) 7g9/2 0.03(1) −0.012(1) 7f5/2 0.156(13) −0.031(3)
ng7/2 0.13(13) −0.05(5) ng9/2 0.10(10) −0.05(5) nf5/2 0.22(11) −0.19(8)
Tail 0.15(20) −0.05(7) Tail 0.17(20) −0.07(9) Tail 0.02(5) −0.005(11)
Core 7.75(7) Core 7.75(7) Core 7.75(7)
vc −0.02(1) vc −0.02(1) vc −0.43(7)
Total 14.67(60) −6.07(53) Total 14.84(59) −6.95(52) Total 4.53(81) −1.62(21)

6d5/2 7p3/2 7p1/2 7s1/2

Contr. α0 α2 Contr. α0 α2 Contr. α0 Contr. α0

7p3/2 3.16(7) −3.16(7) 7s1/2 −8.31(22) 8.31(22) 7s1/2 −11.54(32) 7p1/2 11.54(32)
8p3/2 0.036(3) −0.036(3) 8s1/2 6.90(11) −6.90(11) 8s1/2 2.96(7) 8p1/2 0.036(4)
9p3/2 0.003 −0.003 9s1/2 0.212(6) −0.212(6) 9s1/2 0.16 np1/2 0.08(8)
np3/2 0.05(5) −0.05(5) ns1/2 0.10(1) −0.10(1) ns1/2 0.09(2) 7p3/2 16.62(43)
5f5/2 −0.29(2) −0.33(3) 6d3/2 −0.413(10) −0.330(8) 6d3/2 −6.45(18) 8p3/2 0.003(2)
6f5/2 0.100(2) 0.114(2) 7d3/2 2.67(4) 2.14(3) 7d3/2 14.64(22) np3/2 0.05(5)
nf5/2 0.05(3) −0.06(3) nd3/2 0.03(2) 0.03(2) 8d3/2 0.40(7)
5f7/2 −8.84(67) 3.16(24) 6d5/2 −4.74(11) 0.95(2) nd3/2 0.12(6)
6f7/2 1.94(3) −0.69(1) 7d5/2 22.21(30) −4.44(6)
7f7/2 0.19(1) −0.067(4) 8d5/2 0.31(2) −0.06(1)
nf7/2 0.21(11) −0.08(4) nd5/2 0.07(7) −0.01(1)
Tail 0.02(4) −0.01(1) Tail 0.01(2) −0.008(6) Tail 0.01(3) Tail 0.003(1)
Core 7.75(7) Core 7.75(7) Core 7.75(7) Core 7.75(7)
vc −0.72(4) vc 0.001 vc −0.004(1) vc −0.50(10)
Total 3.67(70) −1.09(27) Total 26.88(42) −0.64(26) Total 8.13(41) Total 35.58(55)

we estimate that it is accurate to about 4%, yielding the final
value of 0.624(14) a.u.

V. COMPARISON WITH RESIS VALUES

Binding energies of high-L Rydberg states (L � 7) of Th2+
with n = 27–29 were studied using the resonant excitation
Stark ionization spectroscopy (RESIS) method in [11]. Analy-
sis of the observed RESIS spectra led to determination of five
properties of the Th3+ ion: its electric-quadrupole moment
� in the ground state, adiabatic scalar and tensor ground-
state dipole polarizabilities, and the dipole matrix elements
connecting the ground 5f5/2 level to the low-lying 6d3/2 and

TABLE VI. Quadrupole moment � of Th IV in the ground 5f5/2

state in a.u. See text for designations.

DF MBPT3(6) MBPT3(10) SD SDpT SDsc

0.916 0.555 0.550 0.620 0.628 0.624(14)

6d5/2 levels. The frequencies of the 14 well-resolved single
lines were fit to determine the best values of the following
parameters [11]: 〈5f5/2||D||6dj 〉 matrix elements, �, and
scalar and tensor polarizabilities αmod

0,2 with the contribution
of the 5f5/2–6d terms subtracted out. The results of the fit
were used to determine full adiabatic polarizabilities α0 and
α2. The core polarizability αcore, i.e., the polarizability of
Th4+, was determined in Ref. [27]. We list comparison of
our results with RESIS data for all of these quantities in
Table VII. We have already discussed the calculations of these
properties and their uncertainties in the previous section, so
we discuss only comparison of the results here. The present
values and the RESIS fit results for the quadrupole moment �

and 〈5f5/2||D||6d3/2〉 agree to 2σ and 1.5σ , respectively. The
central values for the 〈5f5/2||D||6d5/2〉 are nearly identical.
This leads to a difference in ratio R of the 5f5/2–6d3/2 and
5f5/2–6d5/2 matrix elements. The theoretical prediction for
this ratio is by far more accurate (0.6%) than the theory values
of the matrix elements (4%), since the correlation corrections
are very similar for the transitions involving states of the same
fine-structure multiplet. We took the difference of the ratios
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TABLE VII. Comparison of the electric-dipole 5f5/2–6dj matrix
elements D, ground-state quadrupole moment �, scalar α0 and
tensor α2 ground-state Th3+ polarizabilities, and Th4+ ground-state
polarizability with the RESIS experimental results [11,27]. R is the
ratio of the 5f5/2–6d3/2 and 5f5/2–6d5/2 matrix elements. αmod is the
polarizability with the contribution of the 5f5/2–6d terms subtracted
out. αmod1

0 has core polarizability αcore subtracted out as well. All
values are in atomic units.

Property Present Refs. [11,27]

� 0.624(14) 0.54(4)
|〈5f5/2||D||6d3/2〉| 1.530(63) 1.435(10)
|〈5f5/2||D||6d5/2〉| 0.412(16) 0.414(24)
R 3.716(23) 3.47(20)
α0 14.67(60) 15.42(17)
αmod

0 8.18(34) 9.67(15)
αcore [Th4+] 7.75(7) 7.702(6)
αmod1

0 0.43(33) 1.97(15)
α2 −6.07(53) −3.6(1.3)
αmod

2 −0.19(13) 1.5(1.3)

calculated using third-order MBPT and all-order methods as
the uncertainty, which is rather conservative. Using our value
of the ratio and RESIS 5f5/2–6d3/2 matrix element yields
0.386(4) a.u. for the 5f5/2–6d5/2 matrix element, which is
shifted by 1σ from the RESIS fit value of 0.414(24) a.u.

The αmod
0 value is dominated by the core polarizability;

therefore, we separated it out for comparison purposes:

αmod
0 = αcore + αmod1

0 .

The theoretical value for the core polarizability is in excellent
agreement with the experimental value [27]. The remainder
αmod1

0 disagrees significantly with the RESIS fit. A large
fraction (65%) of this remainder contribution and essentially
all of its uncertainty comes from the ng7/2 terms with n > 7.

Even if we add DF value for (n > 7)g7/2 terms, 0.70 a.u. (which
is an upper bound for this property, since DF systematically and
significantly overestimates the polarizability contributions), to
the remaining contributions, we get αmod1

0 = 0.86 a.u. There-
fore, it is difficult to come up with a scenario in which αmod1

0
is as high as 1.97 a.u. The total theoretical α0 and α2 values
are in agreement with RESIS values to about 2σ . It would be
very interesting to see if RESIS line data can be reproduced by
using only one free parameter, 〈5f5/2||D||6d3/2〉, and allowing
� = 0.624(14) a.u., R = 3.716(23) a.u., αcore = 7.702(6) a.u.,
αmod1

0 = 0.43(33) a.u., and αmod
2 = −0.19(12) a.u. to vary

within the 1–2σ uncertainties.

VI. CONCLUSION

In summary, we carried out a systematic study of Fr-like
Th IV atomic properties for the 7s, 8s, 9s, 10s, 7p, 8p, 6d,
7d, 5f , 6f , 7f , 5g, and 6g states using a high-precision
relativistic all-order approach. Reduced matrix elements,
oscillator strengths, transition rates, and lifetimes for the
24 first low-lying levels, ground-state quadrupole moment,
scalar polarizabilities of the seven first states, and tensor
polarizabilities of the 5f , 6d, and 7p3/2 states are calculated.
We evaluate the uncertainties of our calculations for all of
the values listed in this work. Detailed comparison of the
present values with RESIS experimental results [11,27] is
carried out. These calculations provide recommended values
critically evaluated for their accuracy for the development of
ultraprecise nuclear clock, RESIS experiments with actinide
ions, and other studies.
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