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Correlation in time-dependent density-functional-theory studies of antiproton-helium collisions
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Correlation effects are examined in the context of time-dependent density-functional-theory calculations
of antiproton-helium collisions. An approximation for the correlation potential as well as two models for the
correlation integral are explored. The first of these makes use of frozen correlation, while the second is appropriated
from the world of laser-induced ionization. Total cross sections for both single and double ionization in the
impact energy range 5–2000 keV are presented. While the results of the first model provide little improvement
over an independent electron model description the second model agrees quite well with experimental results
for both single and double ionization. Our results also lend credence to the belief that an appropriate
approximation of the correlation integral is more important in reproducing correlation effects than the correlation
potential.
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I. INTRODUCTION

Atomic collision systems, while interesting in their own
right, are often considered as a means of investigating general
features of quantum dynamical processes. An important exam-
ple is the antiproton-helium collision system. This system is
often chosen for its relative simplicity. As the helium atom con-
tains only two electrons and one nuclear center it is, perhaps,
the most basic multibody configuration one might consider.
The presence of a negatively charged impact ion removes the
necessity of considering charge-transfer processes. This means
that the analysis may focus on single and double ionization
(as well as the possibility of target excitation). In addition,
as long as impact energies remain above 1 keV a precise
quantum-mechanical description of both target and projectile
is of little importance [1,2]. This allows one to make use of the
semiclassical approximation where the projectile is described
in terms of a time-dependent Coulomb potential rather than
a quantum particle. The simplicity of this system makes it
an ideal candidate for the investigation of theoretical many-
body techniques, as one may include complicated electron
correlation effects without the time-dependent Schrödinger
equation (TDSE) becoming intractable.

The existence of experimental data [3–6] for the antiproton-
helium system helps to guide theoretical calculations. As
one might expect, the most successful calculations are those
that attempt to directly solve the TDSE. Borrowing the
nomenclature of the recent antiproton collision review article
[1] we will refer to such calculations as correlated two-electron
calculations. For our purposes the most interesting are those
which produce both single and double ionization [7–9].
Antiproton-helium calculations can also be performed using
effective single-particle descriptions. Included in this class
are those calculations which employ both one active electron
(e.g., [10,11]), which can only describe single ionization, and
independent electron model [12–15] techniques.

Time-dependent density-functional theory [16] (TDDFT)
is one such effective single-particle scheme which can be
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used to incorporate electron correlation. In TDDFT electron
correlation enters by two distinct processes: first, through the
exchange-correlation potential, which encodes the many-body
interactions of a system such that the exact one-particle
density may be determined by solving a set of single-particle
equations; second, in the context of TDDFT all observables
are expressible as functionals of the one-particle density.
Depending upon how these functionals are approximated
they include varying degrees of correlation. This ranges from
no correlation (independent electron model descriptions) to
varying degrees of approximate correlation [17–20].

Using the aforementioned antiproton-helium collision sys-
tem as a test bed we examine the effects of correlation on
single and double ionization within the context of TDDFT.
This investigation will precede through the application of two
models for the so-called correlation integral, that is, correlation
in the observable functionals, as well as one model for the
correlation potential. Both the first model for the correlation
integral and our approximate correlation potential will make
use of frozen correlation, an idea that was first introduced into
the world of atomic collisions by Martı́n and Salin [21,22]
and was later used by others to analyze double ionization [23].
The second model is adapted from the world of laser-induced
ionization and was originally considered by Wilken and Bauer
[18]. The difference between the results produced by these
models and those of an independent electron model will help
shed light on the role of both types of correlation in single and
double ionization processes.

Our discussion will begin in Sec. II A with a brief introduc-
tion to the foundations of TDDFT. This will be followed in Sec.
II B by a discussion of the observable problem in TDDFT. In
the subsequent sections we will describe the practical aspects
of our calculations. This will consist of the selection of an
appropriate ground-state approximation for the helium atom
(Sec. II C1), a description of a procedure for generating radial
functions compatible with a given ground state as well as an
approximation for the correlation potential (Sec. II C2), and a
description of our dynamical calculations (Sec. II D). In Sec. III
we present and discuss the results of our calculations. Finally
our conclusions are offered in Sec. IV. Atomic units are used
unless stated otherwise.
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II. THEORY

A. The Runge-Gross theorem

A system of N interacting particles is described
by an N -particle wave function �(t) that evolves via
the TDSE

i
d�(t)

dt
= Ĥ (t)�(t). (1)

The Hamiltonian Ĥ can be written

Ĥ (t) = T̂ + V̂ee + V̂ext(t), (2)

where T̂ is the kinetic energy, V̂ee is the interelectron potential,
and V̂ext(t) is an external single-particle potential.

For a fixed potential V̂ee the Runge-Gross theorem [24],
which forms the basis of TDDFT, establishes a one-to-one
correspondence between the potential V̂ext(t) and the one-
particle density

n(r1,t) = N
∑

s

∫
d3r2 . . . d3rN |�(xi ,t)|2, (3)

where xi = (ri ,si) labels the position and spin of the ith
particle. We say that the external potential is a functional of
the one-particle density V̂ext(t) = V̂ext[n](t). It should be noted
that the mapping provided by the Runge-Gross theorem defines
the external potential only up to an arbitrary time-dependent
function. This time-dependent function translates into a time-
dependent phase factor in the wave function and as such will
not enter into quantities of physical interest [16].

In practice the correspondence is used to map a system
described by an interacting many-body TDSE onto a system
of noninteracting particles represented by the orbitals ϕi(r,t).
If we define the noninteracting system such that it reproduces
the exact interacting one-particle density

n(r,t) =
N∑

i=1

|ϕi(r,t)|2 , (4)

the Runge-Gross theorem guarantees the existence of a unique
multiplicative potential vKS[n] which determines the orbitals
ϕi via

i
∂

∂t
ϕi(r,t) =

(
− �

2
+ vKS[n](r,t)

)
ϕi(r,t), (5)

with i = 1, . . . ,N .
These equations are known as the time-dependent Kohn-

Sham (TDKS) equations and the potential, vKS[n](r,t), the
Kohn-Sham potential. This potential can be decomposed into

vKS = vext + vH + vxc, (6)

where vext is the external potential, vH is the Hartree screening
potential, and vxc is the exchange-correlation (xc) potential
which encodes the (nonclassical) interelectron interactions.
Both the xc potential and the Hartree potential will be uniquely
determined by the one-particle density, that is, they are both
functionals of n (vxc[n] and vH[n]). Formally vext is also a
functional of the density, however in the present situation
the form of vext is determined by the nuclear and projectile
potentials (see Sec. II D). It is often convenient to split vxc into

an exchange and a correlation part,

vxc[n] = vx[n] + vc[n]. (7)

While this mapping is, in theory, exact, the precise functional
relation between density and potential is not known. The xc
potential must be approximated.

B. Observables

It can be shown that the Runge-Gross theorem also
establishes a correspondence between the one-particle density
and the value of any observable. Exact functionals for the
determination of observables are known in only a handful of
cases [25]. Much like the xc potential, the unknown functionals
are usually approximated.

One case where the exact density functional is known is the
average number of electrons released to the continuum, the
so-called net ionization. For the case of the antiproton-helium
collision system this is given by

pnet(t) = 2 −
∫

T

n(r,t)d3r, (8)

where T is some volume containing the target as well as all
bound-state contributions to n [26]. The net ionization can be
used to define the average probability for ionizing an electron,

p = 1

2
pnet. (9)

With these definitions we can write the exact i-fold (i = 0,1,2)
ionization probabilities [17],

p0 = 1

2

∫∫
T

d3r1d
3r2 ρ(r1,r2,tf ), (10)

p1 =
∫
T

∫
R3\T

d3r1d
3r2 ρ(r1,r2,tf ), (11)

p2 = 1

2

∫∫
R3\T

d3r1d
3r2 ρ(r1,r2,tf ), (12)

where ρ = 2|ψ |2 is the exact two-particle density at some final
time tf chosen large enough to ensure that the results do not
vary for t � tf (see Sec. II D), as

p0 = (1 − p)2 + 1

2
Ic, (13a)

p1 = 2p(1 − p) − Ic, (13b)

p2 = p2 + 1

2
Ic. (13c)

The quantity Ic is referred to as the correlation integral [18]
and is defined to be

Ic =
∫∫
T

d3r1 d3r2

[
ρ(r1,r2,tf )

n(r1,tf )n(r2,tf )
− 1

2

]
n(r1,tf ) n(r2,tf ).

(14)

The simplest way to approximate a many-body system is by
ignoring the interparticle interactions. Such models are known
as independent electron models (IEMs). In analogy to this
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we may calculate the ionization probabilities using an IEM
description by ignoring Ic:

pIEM
0 = (1 − p)2, (15a)

pIEM
1 = 2p(1 − p), (15b)

pIEM
2 = p2. (15c)

Obviously these simple binomial relations are consistent
with the assumption of independent electrons.

As noted above, correlation enters TDDFT calculations
both through observables (i.e., the ionization probabilities
discussed in this section) and through the correlation potential.
These two mechanisms may be treated independently. This
means that one can apply Eq. (II B) to densities calculated
using a scheme that includes any amount of correlation.

In the context of TDDFT we have no explicit knowledge of
the two-particle density. Thus, if we wish to include correlation
in the ionization probabilities we must approximate Ic. Models
of this type have been used previously to describe ionization
in laser interactions [17]. It was later shown that these models
contain a pathology which forces them to essentially reproduce
IEM results [27] (i.e., to use our notation Ic ≈ 0). More
recently Wilken and Bauer (WB) proposed a model for one-
dimensional laser interactions that avoided these issues [18].
A vastly simplified version of this model has been applied to
antiproton-helium collisions [19]. In this work we extend those
previous accounts and evaluate Ic in the WB model without
dimensional or other restrictions.

In the WB model the densities at time tf in the first factor
of Eq. (14) are approximated by the adiabatic densities

nA(tf )

=
{[

1 − N (tf )
]
n0 + N (tf )n1, 0 � N (tf ) � 1,[

2 − N (tf )
]
n1 + [

N (tf ) − 1
]
n2, 1 � N (tf ) � 2,

(16)

and

ρA(tf )

=
{[

1 − N (tf )
]
ρ0 + N (tf )ρ1, 0 � N (tf ) � 1,[

2 − N (tf )
]
ρ1 + [

N (tf ) − 1
]
ρ2, 1 � N (tf ) � 2,

(17)

where

N (tf ) =
∫

T

d3r n(r,tf ) (18)

is the number of bound electrons at time tf [which can be
expressed in terms of p as N = 2(1 − p)] and ni and ρi

are the i-electron one- and two-particle ground-state densities
respectively. In this model the densities appearing in the first
factor of the correlation integral are approximated by means of
a linear interpolation between the ionized and unionized atom.
Due to the fact that n0 = ρ0 = ρ1 = 0 the correlation integral
will be reduced to Ic = −2(1 − p)2 for 0 � N (tf ) � 1. This
translates to p0 = 0 resulting in a split between single and
double ionization [for N (tf ) = 1 we have p1 = 1 and p2 = 0
while for N (tf ) = 0 p1 = 0 and p2 = 1].

In addition to the IEM and WB models we will also
introduce a third model for the determination of ionization

probabilities in the context of TDDFT. The idea behind this
model is to freeze the first factor of Eq. (14) in the ground
state,

Ic =
∫∫
T

[
ρgs(r1,r2)

ngs(r1)ngs(r2)
− 1

2

]
n(r1,tf ) n(r2,tf ) d3r1 d3r2.

(19)
We will refer to this model as the frozen correlation model
(FCM). An approximation of this kind may be justifiable
for impact energies E � 200 keV where dynamic correlation
effects are, arguably, less important [28]. The actual forms of
the various densities appearing in Eq. (19) will be the focus of
the next section.

C. Practical considerations

1. Ground-state approximations

Both WB and FCM require knowledge of the ground-
state two-particle density ρgs of helium. To help facilitate
calculations it is convenient to consider wave functions of
the form

ψgs(r1,r2) =
∑

i

CiTi(r1,r2), (20a)

Ti(r1,r2) = R
gs

n1 i l1 i
(r1)Rgs

n2 i l2 i
(r2)Ym1 i

l1 i
(�1)Ym2 i

l2 i
(�2), (20b)

with Ci ∈ R and � = (θ,φ) ∈ S2. The exchange-only opti-
mized potential method (OPM) [29] can be used to generate a
simple uncorrelated helium ground state [30],

ψgs(r1,r2) = R
gs
10(r1)Rgs

10(r2)Y 0
0 (�1)Y 0

0 (�2). (21)

For the sake of consistency such an approximation should only
be used when considering the IEM for the calculation of single
and double ionization probabilities.

Slightly more complex approximations having the form of
(II C1) can be found in the work of Silverman et al. [31]. In
this paper two correlated helium ground-state approximations
consisting of 1s1s ′ and 1s1s ′ + 2p2 (full) configurations are
presented. The 1s1s ′ term refers to a Hylleraas-Eckart [32,33]
type configuration which is a symmetrized sum of radially
different 1s type orbitals. These wave functions are often used
as simple models for electron correlation in the helium ground
state in atomic collision calculations, e.g., [34] (see also the
discussion in [35]).

If we require more accurate correlation the multiconfigu-
ration Hartree-Fock method (MCHF) [36] is well suited to
generating wave functions of the desired form. An approx-
imation including all configurations of the form ns-ms with
m,n ∈ {1,2,3,4} (i.e., radial correlation only) will capture 41%
of the correlation energy while a wave function that contains
all allowed configurations from 1s2 to 4d2 will capture 97% of
the correlation energy [37]. A list of the ground-state energies
of these approximations can be found in Table I.

2. Excited orbitals and effective potentials

The helium ground state is a spin singlet. Due to this fact
the two Kohn-Sham orbitals will be identical. We can then
write

ϕ1 = ϕ2 = ϕ. (22)
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TABLE I. Energies of ground-state approximations for helium
given in Hartree. OPM values from [29], values for the Silverman
wave functions presented in [31], All MCHF values calculated using
[38].

Wave function Energy (a.u.)

OPM −2.8617
Silverman 1s1s ′ −2.8756614
MCHF 1s-4s −2.878990082
Silverman full −2.8952278
MCHF 1s-4d −2.902523084

We can expand nT , the bound part of the one-particle density,
in terms of the eigenfunctions of the initial Hamiltonian

nT (r,t) = 2|ϕT (r,t)|2, (23)

ϕT (r,t) =
∑
n,l,m

anlm(t) Rnl(r) Ym
l (�), (24)

where the amplitudes anlm(t) are determined by solving the
TDKS equation (Sec. II D). We wish to make use of radial
functions (Rnl) which are compatible with our choice of
ground-state approximation (Rgs

nl ). In order to generate such
functions we must first determine the effective potential which
will reproduce a given ground-state approximation.

If we are given an approximation for the ground-state two-
particle density (e.g., one discussed in the previous section)
we may determine the ground-state one-particle density

ngs(r) =
∫

d3r ′ρgs(r,r′) (25)

(ρgs = 2|ψgs|2). We can define a real ground-state Kohn-Sham
orbital by

ngs(r) = 2 ϕgs(r)2. (26)

This orbital will satisfy a stationary equation

− �

2
ϕgs(r) + veff(r) ϕgs(r) = ε0 ϕgs(r) (27)

with eigenvalue ε0 for some potential veff . This equation can
be solved for the potential

veff(r) = �ϕgs(r)

2 ϕgs(r)
+ ε0. (28)

The eigenvalue can be fixed using the boundary condition
lim

r→∞ veff(r) = 0 which implies that

ε0 = − lim
r→∞

�ϕgs(r)

2 ϕgs(r)
. (29)

By performing this operation on the ground-state approxi-
mations discussed in Sec. II C1 we can determine the ground-
state Kohn-Sham potentials associated with these densities.
These effective potentials may be used to approximate vxc (see
Sec. II D).

Plotted in Fig. 1 are the differences of the effective
potentials of the various ground-state approximations of
Sec. II C1 from the exact ground-state Kohn-Sham potential
[39]. The results of the MCHF 1s-4d approximation are in

]

]
FIG. 1. (Color online) Comparison of the effective potentials of

the various ground-state approximations for He.

good agreement with the exact potential. The 1s-4s wave
function, that includes only radial correlation, also offers fine
agreement outside of the bump centered around 1 a.u. where
it overestimates the correlation potential. The OPM potential
also differs in this region as it contains no correlation. Due to
the fact that the MCHF routine [38] only produces data up to a
radial distance of approximately 20 a.u. the Coulomb tail must
be grafted onto the results of Eq. (28). This results in the slight
irregularity evident in both MCHF potentials in this region.

The effective potentials obtained from the Silverman wave
functions, on the other hand, capture neither the proper high
or low r limit while at the same time wildly exaggerating the
exact potential. In short, it would seem that the Silverman
wave functions do a rather poor job of realistically modeling
the local behavior of the helium ground state. When used in the
WB and FCM versions of the correlation integral the densities
obtained from the Silverman wave functions produce single
and double ionization results which deviate significantly from
those obtained from the other ground-state approximations
(and experiment). Therefore, they will not be discussed in
Sec. III. These facts may draw into question the use of these
approximations for helium in quantum dynamical situations.

D. Dynamics

The final piece required to perform a full calculation is
the time-dependent one-particle density n(r,t). This function
will be determined by solving the TDKS equations (5) for the
case of an antiproton-helium collision in the framework of the
semiclassical approximation.

Specializing to this case the external potential becomes

vext(r,t) = −2

r
+ 1

|r − R(t)| , (30)

where R(t) = (b,0,vt) is the classical straight-line trajectory
of the projectile with impact parameter (distance of closest
approach) b and velocity v. If we ignore relativistic effects
this results in an impact energy E = 1/2mp̄v2. It should be
noted that in the context of the calculation time is parametrized
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such that the antiproton is initially located at (b,0, − 45). In
the final state of the calculation the antiproton is at (b,0,45).

In the case of a two-electron spin-singlet system we can
write the exchange potential exactly as

vx = −1

2
vH. (31)

The exchange and Hartree potentials can now be combined
into one object,

vHx = 1

2

∫
d3r ′ n(r′,t)

|r − r′| . (32)

For ease we will split the Kohn-Sham potential into a
time-dependent part v(t) and a time-independent part v0.
The potential v0 will be the effective ground-state potential
generated using the method of Sec. II C2. In the case of
the OPM ground state this includes the nuclear potential as
well as the exact ground-state exchange and Hartree screening
potentials. For the MCHF ground states v0 will also include the
(nearly exact) ground-state correlation potential. In either case
the time-dependent potential v(t) will contain the projectile
potential as well as the time-dependent Hartree-exchange
potential, i.e., we neglect time-dependent correlation. The
TDKS equations can now be written as

i
∂

∂t
ϕ(r,t) =

(
−�

2
+ v0 + v(t)

)
ϕ(r,t). (33)

This equation was solved using the basis generator method
(BGM) [40] by expanding the time-dependent orbitals in terms
of the basis functions

ϕK
nlm(r) = WT (r,εT )K ϕ0

nlm(r), (34)

where

WT (r,εT ) = 1 − e−εT r

r
, (35)

εT = 1 is a regularizer and {ϕ0
nlm} are a set of eigenstates

of the initial (in this case Kohn-Sham ground-state helium)
Hamiltonian,

ϕ0
nlm = Rnl(r) Ym

l (�). (36)

For the actual calculations we have used the same basis sets and
parameters as in Ref. [15] (radial functions replaced with those
determined in Sec. II C2), i.e., when employing an exchange-
only OPM ground state the calculation is identical to the one
performed in [15].

III. RESULTS AND DISCUSSION

The calculations described in the previous section where
carried out using both the OPM and the MCHF 1s-4d helium
ground-state approximations. The ionization probabilities
were determined using either Eq. (15) in the case of the IEM
or Eq. (13) with the appropriate model for Ic in the case of the
WB and FCM. From these probabilities the total cross sections
for single and double ionization were calculated using

σi =
∫

pi(b) d2b = 2π

∫
b pi(b) db (37)

FIG. 2. (Color online) Calculated total cross section for single
ionization of helium by antiproton impact compared to Henkel et al.
[19] and experiment: � [5], � [4], • [3]. The results of MCHF IEM
and MCHF FCM are on top of each other except in the region around
the maximum.

(i = 1,2). The results of these calculations are presented in
Figs. 2 and 3 where they are compared with the simplified WB
model (sWB) of Henkel et al. [19]. In the following discussion
we will refer to our calculations using a combination of two
acronyms. The first acronym will denote the ground-state
approximation used (OPM or MCHF for the MCHF 1s-4d

configuration). The second acronym will refer to the model
used for the correlation integral (IEM, FCM, or WB).

For the case of single ionization (Fig. 2) all of the models
are in good agreement with the experimental data for impact
energies larger than 50 keV. In addition, they all essentially
coincide for very large impact energies. As impact energies
decrease, the differences between the models become more

FIG. 3. (Color online) Calculated total cross section for double
ionization of helium by antiproton impact compared to Henkel et al.
[19] and experiment: � [6], � [4].
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FIG. 4. (Color online) Comparison of the WB single ionization
data to previous calculations: Foster et al. [8], Bronk et al. [7], Guan
and Bartschat [9], Pindzola et al. [41], and Abdurakhmanov et al. [42]
as well as experiment: � [5], � [4], • [3].

apparent. Near the maximum of the experimental data around
100 keV the WB model tends towards the higher range of the
data while the IEM and FCM models tend towards the lower.
The latter models do a better job of matching the drop in the
data that takes place around 40 keV. The implementation of
the full WB model provides only a slight reduction in the total
cross section of the sWB.

The differences between these models become more appar-
ent when considering double ionization. In this case the WB
is a clear improvement over the sWB. The OPM IEM, MCHF
IEM, and MCHF FCM models overstate double ionization at
all but the highest impact energies.

The figures demonstrate little difference between the OPM
IEM, MCHF IEM, and MCHF FCM results. In Fig. 3 we
can see that the MCHF IEM slightly reduces the results of
the OPM IEM. The MCHF FCM offers a further reduction.
The only difference between the OPM IEM and MCHF IEM
models is the inclusion of an approximate vc, albeit one that
in the latter case neglects time-dependent correlation.

When these results are compared to those of the WB model
it lends credence to the belief that a good model for Ic is more
important than vc for obtaining accurate results [19]. While our
vc approximation ignores dynamic correlation an examination
of the WB double ionization results suggests that a fully time-
dependent correlation potential can serve only to fine tune
results. In this instance dynamic correlation might increase
double ionization at high impact energies while decreasing it
at low.

Figures 4 and 5 present comparisons of the MCHF WB
calculation with several previous calculations. Of the calcu-
lations chosen all produce both single and double ionization
results except for Pindzola et al. [41] and Abdurakhmanov
et al. [42], both of which use a close-coupling method. While
Pindzola et al. reported results for both one- and two-active
electrons only the latter will be considered. Abdurakhmanov
et al. also produced two sets of data. Both data sets describe

FIG. 5. (Color online) Comparison of the WB double ionization
data to previous calculations: Foster et al. [8], Bronk et al. [7], and
Guan and Bartschat [9] as well as experiment: � [6], � [4].

the target using a configuration interaction wave function [43].
The first set comes from the so-called frozen core (FC) model
where the inner (unionized) electron is forced to occupy the 1s

state of He+. In the second set, the multiconfiguration (MC)
description, both electrons are allowed to occupy a number of
single-particle states.

Despite the fact that neither Pindzola et al. nor Ab-
durakhmanov et al. produce double ionization results they
are included as they represent the most recent theoretical
antiproton-helium collision calculations and are the only ones
not discussed in the review article [1]. All of the theoretical
data shown in Figs. 4 and 5 come from correlated two-election
calculations.

It can be seen (Fig. 4) that below 50 keV the results
of Foster et al., Pindzola et al., Abdurakhmanov MC, and
the WB model are rather similar. Above this point the data
produced by Foster et al. and by Guan and Bartschat begin
to underestimate the experimental data. While the multicore
results of Abdurakhmanov et al. do not have the same issues
at high impact energies the results slightly overestimate the
data at the lowest impact energies. The frozen-core model of
Abdurakhmanov et al. does a better job of reproducing exper-
iment around 20 keV at the expense of underestimating the
data below 10 keV. While Guan and Bartschat underestimate
experiment at higher impact energies they are in agreement
with the WB below 30 keV. Overall it can be seen that the WB
model produces excellent single ionization results.

Turning to the results of the double ionization calculations
(Fig. 5) it can be seen that all of the correlated two-electron
calculations produce excellent agreement with experiment.
The results of the WB model stack up quite well especially
when one considers the fact that most effective single-particle
calculations overstate double ionization [1]. In fact the WB
model offers some of the best combined single and double
ionization results produced to date.
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IV. CONCLUSIONS

Throughout this work we have applied several models
to the antiproton-helium collision system in the context
of time-dependent density-functional theory in an attempt
to incorporate correlation effects. These effects have been
included through both an approximation for the correlation
potential as well as two models for the correlation integral.
We have presented single and double ionization results over
a range of impact energies. The first approximate Ic model,
the Wilken and Bauer model, generates good agreement with
experiment. The second of these models, the frozen correlation
model, produces results that differ only slightly from an
independent electron model, i.e., it does not seem to be a
useful approximation of Ic.

As a result of the method used to generate our approxi-
mate correlation potential it was found that the ground-state
approximations of Silverman et al. [31] do not properly model
the local structure of the helium ground state even though the
total energies (global property) seem to suggest the contrary.
This fact should caution one against future use of these wave

functions as models of the correlated helium ground state in
collision calculations. It may also cause one to question past
results for single and double ionization that have made use of
these approximations.

A comparison of the results of the frozen correlation and
Wilken and Bauer models to those of an independent election
model supports the belief that the correlation integral is more
important than the correlation potential for obtaining properly
correlated results [19]. The question still remains whether
this conclusion also applies to collision systems involving
positively charged projectile ions, for which electron capture
competes with ionization, and to true many-electron systems,
that is, those containing more than two electrons. These
questions will be addressed in future work.
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