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Quantum simulation architecture for lattice bosons in arbitrary, tunable, external gauge fields
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I describe a lattice of asymmetrical qubit pairs in arbitrary dimension, with couplings arranged so that the
motion of single-qubit excited states mimics the behavior of charged lattice bosons hopping in a magnetic field.
I show, in particular, that one can choose the parameters of the many-body circuit to reach a regime where the
complex hopping phase between any two elements can be tuned to any value by simply adjusting the relative
phases of two applied oscillating voltage signals. I also propose specific realizations of our model using coupled
three junction flux qubits or transmon qubits, in which one can reach the strongly interacting bosonic quantum
Hall limit where one will find anyonic excitations. This model could also be studied in trapped ions, and the
superconducting circuits could be used for topological quantum computation.
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I. INTRODUCTION

Fractional quantum Hall effects [1–3] are among the most
profound collections of phenomena to emerge in interacting
quantum many-body systems. The elementary excitations in
these systems do not act like bosons or fermions; rather, they
are anyons, which in some cases can be used for a robust
form of quantum computing [4,5]. All physical examples of
fractional quantum Hall effects are in two-dimensional (2D)
electron gases. Here we propose a method for linking standard
qubit designs which will realize a bosonic fractional quantum
Hall effect. The rich theoretical literature on bosonic fractional
quantum Hall effects suggests that there will be a large number
of interesting states [6–13] that could be explored in our
system. These include “Pfaffians” and their generalizations.
Furthermore, one could anticipate that some important experi-
ments (such as directly braiding quasiparticles) may be simpler
in a qubit array than in a GaAs layer surrounded by AlGaAs.

There are several competing approaches to engineering
bosonic fractional quantum Hall effects. One proposal uses
Raman lasers to simulate the magnetic vector potential in
neutral cold atoms [14,15]. The technical challenges are,
however, quite daunting: New cooling methods need to be
designed to offset heating from the Raman lasers, and the
most natural probes are indirect. Another scheme is to use
lattices of tiny superconducting grains (charge qubits, [16–21])
connected through Josephson junctions. Suitably low tempera-
tures can be reached in a dilution refrigerator, and the system is
readily studied using transport measurements. Unfortunately,
random charge noise, which scales linearly with the interaction
strength, would prevent the quantum Hall regime from being
reached without significant local tuning of the potentials on
hundreds or thousands of lattice sites. Other proposals include
superconducting Jaynes-Cummings lattices [22] and “photon
lattices” of coupled optical waveguides [23–25], each of which
have their own advantages and shortcomings.

I here propose a promising approach. Consider a circuit
of qubits, with a geometry which naturally maps onto a
system of charged bosons hopping in a magnetic field. In
order to produce complex hopping matrix elements I study
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a lattice of coupled asymmetrical pairs of qubits, which I
label as A or B. I choose device parameters so that excitation
energy ωA of the A qubits is significantly smaller than the
excitation energy of the B qubits, and place a B qubit on
each link between neighboring A qubits. Further, I couple
them to each other through alternating hopping (σ+

A σ−
B + H.c.,

henceforth referred to as a “±” coupling) and potential
(σ z

Aσ z
B , a “zz” coupling) terms. Coupling qubits through higher

energy auxilliary qubits has been considered previously both
theoretically [26] and experimentally [27,28]. I also apply an
external oscillating electromagnetic field of frequency ω to
each qubit, with the relative phase of the signal applied to the
B qubits shifted relative to that of the A qubits by a locally
tunable ϕs . Since the B qubits are higher energy than the A

qubits, they can be integrated out, leading to complex tunneling
matrix elements (the amplitude of a process where the states
of neighboring qubit pairs are exchanged) between A qubits
with phases that can be tuned to any value by adjusting ϕs .

As I will describe below, a particularly attractive realization
of this architecture would be to use three junction “flux qubits”
(FQs) [29–38]. The flux qubits are mesoscopic superconduct-
ing rings interrupted by three Josephson junctions, placed in a
magnetic field which is tuned so that nearly 1/2 of a magnetic
flux quantum penetrates the ring. The energies of the flux
qubits can be tuned by adjusting this magnetic field, or by
varying the areas of the Josephson junctions, so that the B

qubits are higher energy than the A qubits as outlined above.
We then capacitively couple all the flux qubits to an external,
oscillating voltage V0 sin ωt , and arrange the couplings so
that the phases of the voltage applied to the B qubits are
shifted relative to the A qubits. The subtle interplay of the
oscillating applied voltages with the mix of charge (capacitive)
and phase (Josephson) couplings introduces phase shifts which
make these hopping matrix elements complex, mimicking the
Peierls phases found for charged particles in magnetic fields.

All of the flux qubits in my design are operated in the
regime where the Josephson energy EJ is large compared
to the charging energy EC, so charge noise effects are
exponentially suppressed. The system is therefore almost
completely insensitive to stray low-frequency electric fields.
The many-body excitation gap, a key feature of anyon states,
can be measured through the single-qubit response to applied
oscillating voltages. The large nonlinearities of the flux qubit
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devices imply that the first excited states experience an
effectively infinite on-site repulsion. I note also that our
scheme is not intended to function as a dynamical circuit QED
architecture or Jaynes-Cummings model (in contrast to the
recent work of Koch et al. [22,39] and others); the device
parameters should be chosen so that the external voltages
can be treated as purely classical sources, with no dynamical
photons present in our system. Further, though I will not
discuss them in any detail here, my proposal could also be
studied in trapped ions, perhaps using the methods of Korenbilt
et al. [40] to engineer the anisotropic spin interactions, or
through the digital simulation method detailed in Lanyon
et al. [41]. Finally, recently I have become aware of a similar
method in cold atoms [42] for engineering artificial gauge
fields through time-dependent drive fields that are out of phase
from one lattice site to the next.

The remainder of this paper is organized as follows. In
Sec. II, I write down the basic coupled qubit Hamiltonian,
and outline the conditions under which arbitrary external
gauge fields can be simulated. In Sec. III, I describe three
junction flux qubits, and how they can be coupled to obtain
the arbitrary complex hopping phases derived in Sec. II.
Following this, I provide a brief discussion of how these
phases might be implemented in transmon qubits [43–46]
as well. I also describe a different regime of operation in
the superconducting qubits, where different excited states are
mixed by the drive field, which has some advantages over the
formulation described in the main body of the text. Having
derived the complex hopping phases, in Sec. IV I show how
the circuits of the two previous sections can be used as building
blocks for exotic boson fractional quantum Hall states. Finally,
in Sec. V, I show how a simple arrangement of four qubits
could experimentally demonstrate a nonzero effective gauge
field, and offer concluding remarks.

II. GENERAL FORMALISM

A. Berry’s phase of a rotating spin

Before outlining the physics of the larger qubit array,
I would first like to discuss a simple example to more
straightforwardly elucidate the origin of the complex hopping
phases. Specifically, I will consider a pair of spins and examine
the Berry’s phase effects generated during a process where an
excitation is transferred from one spin to its neighbor (whose
eigenstates lie on a different axis from the first spin) by rotating
both spins about z and then transferred back by rotating both
spins about y. Let us consider two initially uncoupled spin- 1

2
degrees of freedom, with the Hamiltonian and eigenstates

H = σx
A + cos θσ z

B + sin θ
(

cos ϕσx
B + sin ϕσ

y

B

)
,

|0A〉 = 1√
2

(1,−1), |1A〉 = 1√
2

(1,1),

(1)

|0B〉 = 1√
2 − 2 cos θ

(eiϕ(−1 + cos θ ), sin θ ),

|1B〉 = 1√
2 + 2 cos θ

(1 + cos θ,e−iϕ sin θ ).

Let us assume that initially spin A is excited and spin B is in its
ground state. We first act with the operator σ z

Aσ z
B to transfer the

excitation from A to B, and assume energy is conserved in this
process so that the final state after acting with σ z

Aσ z
B is |0A1B〉;

since the B spin is quantized along a different direction from
A, the excitation must rotate to be transferred to the B spin. We
then act with σ

y

Aσ
y

B to transfer the excitation back; the resulting
matrix element M for the entire process is

M = 〈1A0B |σy

Aσ
y

B |0A1B〉〈0A1B |σ z
Aσ z

B |1A0B〉
= sin θ (cos ϕ + i sin ϕ cos θ ). (2)

For θ �= π/2 and ϕ �= 0,π , M is complex, and the resulting
phase can be understood as a consequence of the Berry phase
acquired by a rotating spin, though we note of course that
the Berry phase discussed here is only an analogy, since
we are considering the action of pairs of operators and not
continuous, adiabatic changes to the system’s wave function.
When a spin m is rotated along a closed path, the resulting
phase is equal to m times the area subtended by the path on
the unit sphere. In this case, we have two spins which rotate,
but both end in the same states in which they started, so we
obtain a gauge-invariant phase equal to the sum of the phases
picked up by both spins. The area subtended by A is just π , but
the area subtended by B depends on the projection of σy and
σz onto its quantization axis, and thus depends on ϕs , yielding
the result above. Note that if we’d acted with σ z

Aσ z
B or σ

y

Aσ
y

B

twice instead of using a combination of the two, the outcome
would necessarily be real, since M would be the product of
a matrix element and its Hermitian conjugate. In the Berry
phase picture, the phase is zero simply because the path of
each spin’s rotation would be a 1D line, and thus each area is
zero. Both inequivalent eigenstates and anisotropic operations
are necessary for the spin transfer matrix element to be
complex.

It is precisely this effect—the phase picked up by a spin
which rotates as it propagates in space—which I will use to
engineer artificial hopping phases in our lattice. Specifically,
imagine the case in which we had two (identical) A spins with
a B spin in between them, and after acting with σ z

A1σ
z
B to pass

an excitation from A1 to the B spin, we then act with σ
y

A2σ
y

B to
transfer the excitation to the second A qubit instead of sending
it back to the first. Since the A spins are identical, the matrix
element M should be the same as the one derived above, and
therefore by letting B spins mediate a hopping coupling, we
can introduce tunable phases in a lattice of A spins.

Engineering this structure in a real spin (or qubit) lattice
is by no means trivial. For real spins, one could introduce a
spatially varying magnetic field to generate the inequivalent
local eigenstates, but adding the anisotropic spin-spin inter-
actions (σ z

Aσ z
B or σ

y

Aσ
y

B instead of SA · SB) is very difficult.
Conversely, for a more general lattice of qubits, generating
passive anisotropic couplings is often straightforward, but
generating inequivalent local eigenstates is not. I here demon-
strate that coupling the qubits to a continuously oscillating
monochromatic external field can introduce the required
rotations, provided that the phases of the signals applied to
the B qubits are different from those applied to the A qubits.
By adjusting these phases at a local level, we can independently
tune the tunneling phase between any linked sites on the lattice,
and can thus simulate any desired external gauge field, at least
in principle.

062336-2



QUANTUM SIMULATION ARCHITECTURE FOR LATTICE . . . PHYSICAL REVIEW A 87, 062336 (2013)

B. Qubit coupling Hamiltonian

We will consider a lattice of qubits, arranged such that there
is a higher energy B qubit between each pair of linked A qubits.
We shall assume throughout that the following conditions hold:

(1) The nonlinearities of each physical system which we
use as a qubit are large enough that we can consider them
to be purely two-level systems, and ignore all eigenstates
besides |0〉 and |1〉. This requirement ultimately constrains
the magnitudes of the couplings between qubits, which
must be small compared to the physical devices’ absolute
nonlinearities. I describe an alternate regime, where states |2〉
and higher are considered and mixed by the drive fields, later
in this work.

(2) The qubits can be coupled to an external electromagnetic
field. We shall further require that the electromagnetic field
operator V̂ (which could represent the coupling to magnetic
fields as well) has no expectation value in either state, so
〈0|V̂ |0〉 = 〈1|V̂ |1〉 = 0. These fields will always be present
in the qubit array Hamiltonian, and we will treat them in the
standard rotating wave approximation.

(3) We must be able to introduce two types of coupling
between the qubits, so that the qubit-qubit Hamiltonian takes
the form

Hint = D±(σ+
A σ−

B + σ−
A σ+

B ) + Dzσ z
Aσ z

B. (3)

We must have independent control over both D± and Dz for our
method to succeed. Note that any physical coupling between
the qubits will typically include terms which violate number
conservation. However, when we transform to the rotating
frame when the external oscillating voltage is applied, the
terms in Hint are unchanged but anomalous terms such as
σ−

A σ z
B or σ+

A σ+
B will become rapidly oscillating and can be

dropped from the low-energy Hamiltonian.
(4) We must be able to tune the relative phase ϕs of the

external electromagnetic field applied to B qubits relative to
the A qubits, as shown in Fig. 1. If ϕs �= 0,π then time-reversal
symmetry is broken, since we cannot chose a zero point for
the time t so that both VA (t) = VA (−t) and VB (t) = VB (−t).
Breaking time-reversal symmetry is a basic requirement for
obtaining nontrivial effective gauge fields.

These requirements could be fulfilled by a large number
of physical systems, including spin qubits, trapped ions, and
superconducting devices, which will be the focus of this
work. Let us now consider the Hamiltonian of a given qubit
pair, HAB . Before turning on the oscillating fields, our qubit

AA BB

V sinωtV sinωt V sin (ωt + ϕs)V sin (ωt + ϕs)

DzDz D±

FIG. 1. (Color online) Basic coupling structure for the A and B

qubits. Each site in our many-body lattice would correspond to a
single A qubit, which couples to its neighbors through one B qubit
per link, joined through alternating hopping (±) and potential (zz)
couplings as described in Sec. II. Though drawn in one dimension in
the figure, we ultimately intend to construct 2D lattices in this manner,
and generalizations to even higher dimensions are also possible.

Hamiltonian is

H 0
AB = ωA

2
σ z

A + ωB

2
σ z

B

+ {
D±(σ+

A σ−
B + σ−

A σ+
B ) or Dzσ z

Aσ z
B

}
. (4)

We now turn on the oscillating fields. When acting on A or B,
we have

V̂ = �A/Bσ
y

A/B, (5)

with �A/B = 〈1A/B |V̂ |0A/B〉, which we choose to be real. We
now examine

V̂ sin ωt = �A/B

2
(eiωtσ−

A/B + e−iωtσ+
A/B)

+ �A/B

2
(e−iωtσ−

A/B + eiωtσ+
A/B). (6)

We now transform to the rotating frame by applying the
unitary transformation |ψ〉 → exp −i ω

2

(
σ z

A + σ z
B

)
t |ψ〉. The

time dependence of terms on the first line of (6) is canceled
out, leaving us with �A/Bσ x

A/B/2 plus a set of terms which
are rapidly oscillating with frequency 2ω. We now make the
rotating wave approximation (RWA) to neglect these terms.
After transforming to the rotating frame and invoking the
RWA, HAB is

HAB = (ωA − ω)

2
σ z

A + (ωB − ω)

2
σ z

B

+ �A

2
σx

A + �B

2

(
cos ϕsσ

x
B + sin ϕsσ

y

B

)
+ {

D±(σ+
A σ−

B + σ−
A σ+

B ) or Dzσ z
Aσ z

B

}
. (7)

From now on we will assume ω is tuned to resonance with the
A qubits, so that ω = ωA and the single-site Hamiltonian for
the A qubits is just �Aσx

A/2.
To construct the full qubit lattice, we wire the qubits as in

Fig. 1, so that the connection between any pair of neighboring
A qubits consists of a zz coupling to a B qubit followed by a
± coupling to the other A qubit. For simplicity, we will ignore
cases where A qubits are coupled directly; such couplings
will produce either neighbor-neighbor potential interactions
or real-valued hopping matrix elements, depending on their
structure. We assume that the energy difference EB − EA =√

(ωB − ωA)2 + �2
B − �A ≡ δE is large compared to D± and

Dz, so that we can treat the A − B coupling perturbatively. We
now eliminate the B qubits using second-order perturbation
theory; noting that all A qubits are identical, the resulting
Hamiltonian, to order D2/δE, is given by

H =
∑
ij

(Jij a
†
i aj + H.c.) + �̃A

∑
i

a
†
i ai,

Jij = −Dz
ijD

±
ij

2δE
sin θ (cos ϕs(ij ) + i cos θ sin ϕs(ij )), (8)

cos θ = ωB − ωA√
(ωB − ωA)2 + �2

B

.

Here a
†
i (ai) creates (annihilates) an excitation in the A qubit

at site i, and �̃A is equal to �A plus O (J ) shifts which depend
on the coordination number of the lattice and magnitudes of
the couplings. Since the qubits are spin- 1

2 , we have an effective
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hard-core constraint, so a
†
i |1i〉 = 0. If we now identify

arg Jij ≡ q

∫ rj

ri

A · dr, (9)

we see that the complex phases of J are identical to the Peierls
phases of a charged particle moving on a lattice in an external
gauge field A. Further, if we choose parameters so that the B

qubits are far off-resonance, θ will be small and

Jij → −Dz
ijD

±
ij

2δE
θeiϕs(ij ) + O(θ3). (10)

In this regime, we can freely adjust the phase of J without
significantly altering its magnitude, and can thus simulate any
time-dependent external gauge-field configuration we desire,
simply by adjusting the B qubit phase shifts ϕs(ij ) at each link.

Before continuing, it is worth keeping in mind that the
rotating wave approximation is simply the zeroth-order term
in a power series in �A/B/ω, and is therefore not an exact
description of the system’s dynamics. Corrections to the
RWA have been treated in many ways, but for our purposes
the treatment of Thimmel et al. [47] is the most useful,
since it details the effect of terms beyond the RWA on
the time-independent rotating frame effective Hamiltonian.
Generalizing their result, we obtain an effective correction
term at first order in �A/B/ω,

δH = 3�2
A

8ω
σz

A − �A(ωA − ω)

4ω
σx

A + 3�2
B

8ω
σz

B

− �B(ωB − ω)

4ω

(
cos ϕsσ

x
B + sin ϕsσ

y

B

)
. (11)

These small shifts can be eliminated by further tuning of the
device parameters and applied frequencies, and should not
change the basic physics of the system or its artificial gauge
field. In particular, in the flux qubits I will describe below, ω

is 15–30 times larger than the Rabi frequencies �A/B , so these
corrections are strongly suppressed.

In addition to these corrections, in a physical qubit system
the applied voltage V̂ will include matrix elements that mix
the qubit’s basis states with higher excited modes [48]. These
transitions can be treated in perturbation theory by integrating
out the higher modes, and produce σ z terms which scale as
�2/(ω − ωij ), where ωij is the energy difference between the
coupled states. These corrections can become significant if the
Rabi frequencies � approach the absolute nonlinearities of
the qubit spectra, but for flux qubits these nonlinearities are
large and mixing with higher excited states can be ignored.
Alternatively, the higher excited states can be used to our
advantage by driving the system near a different resonance to
leave the ground state unchanged; I will describe this approach
in Sec. III C.

The ability to engineer artificial gauge fields of any desired
configuration has tremendous potential to unlock new physics,
and I will discuss the most natural application, simulating a
uniform magnetic field to realize strongly interacting bosons
in the quantum Hall regime, later in the work. Before doing
so, however, I will first describe a possible implementation
of this architecture in superconducting flux qubits. While
flux qubits are certainly not the only—or even necessarily
the best—qubits to use for this purpose, our proposal will

demonstrate that a fairly robust implementation of my archi-
tecture can be realized using device parameters from previous
experiments. Thus, small lattices should be within reach of
current technology.

III. QUBIT IMPLEMENTATIONS

A. Flux qubits

The three-junction flux qubit consists of a superconducting
ring interrupted by three Josephson junctions as shown in
Fig. 2, with one junction whose area is rescaled by α relative
to the other two. A constant, tunable magnetic flux bias of
f �= 1/2 flux quanta is applied through the loop. We choose the
bottom third of the ring to be ground (which will be a physical
ground in our case) with phase φ = 0, then the two remaining
degrees of freedom of the flux qubit are the phases φ1 and
φ2 of the other two superconducting regions. The derivation
of the flux qubit Hamiltonian is descrbed in detail in Orlando
et al. [30]; in terms of the phases φ1 and φ2, the flux qubit
Hamiltonian HFQ is

HFQ = (1 + α + η)
(
Q2

1 + Q2
2

) + 2αQ1Q2

(1 + η)(1 + 2α + η)C
−EJ[cos φ1 + cos φ2 + α cos(2πf + φ1 − φ2)]

+ 2η[αQ2 + (1 + α + η)Q1]V0 sin ωt

(1 + η)(1 + 2α + η)
. (12)

Here, Qj = −2ei∂/∂φj , EJ is the Josephson energy of the
Josephson junctions, and f is the total magnetic flux through
the loop in units of the magnetic flux quantum �0. The terms
on the third line of (12) represent the coupling of the flux
qubit to the applied voltage V0 sin ωt . For the moment, we
will consider this Hamiltonian with V0 = 0.

We let φ± = (φ1 ± φ2) /2. For f �= 0, the symmetry be-
tween φ1 and φ2 is broken, and for f close to 1/2, the ground
and first excited states are distinguished by their behavior along
the φ− direction, as excitations along φ+ are significantly more
expensive. The typical excitation energy for 0.4 < α < 0.6
and 0.5 < f < 0.55 is ωFQ/2π = 12−30 GHz for EJ/h ∼
200 GHz and EC = e2/2C = EJ/40, and the nonlinearities of
the spectrum are all reasonably large. In this work we will
only consider flux qubits operated at the symmetry point of
f = 1/2, in which case the ground and first excited states are
both even along φ+ and even or odd, respectively, along φ−.
From this, we can readily translate operators in the phase basis
to Pauli matrices acting in the qubit basis. We will define the
following compact notation for matrix elements:

Mij

Ô,s
≡ 〈is |Ô|js〉, e.g., M01

Q1,A = 〈0A|Q1|1A〉. (13)

In this notation, we have

Qj → 2e (−1)j M01
∂φ−

σy, sin φj → (−1)j M01
sin φ1

σx,

cos φj → M11
cos φ1

+ M00
cos φ1

2
1 + M11

cos φ1
− M00

cos φ1

2
σ z. (14)

For consistency, all matrix elementsM are calculated between
the V0 = 0 (nonrotating) eigenstates of the flux qubit Hamil-
tonians.

Let us now turn to the coupling Hamiltonian between the
qubits shown in Fig. 2. Direct and indirect coupling of flux
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(1) (1)(1) (2) (2)(2)

αEJ, αC, fαEJ, αC, f

EJ, C EJ, C

EJ, C EJ, CEJ, C EJ, C

(L) (R)

κEJ, κC

κEJ, κC

βEJ, βC, f

gC

V0 sin (ωt + ϕs) V0 sinωtV0 sinωt

ηCηC ηCηCηCηC

f

f

FIG. 2. (Color online) Basic circuit architecture. The regions enclosed in dashed boxes are three-junction flux qubits, which are connected
to a physical ground. The blue (A, left and right) and red (B, center) qubits differ from each other by a rescaling of the area of the central
Josephson junction, which is tuned so that the B qubits have higher energy excitations. A magnetic field penetrates the plane so that f flux
quanta are enclosed by each ring. An oscillating voltage VE (t) is applied near resonant transitions to both qubits, mixing their ground and first
excited states. Excitations in the A flux qubits can tunnel through the B qubits to each other; the oscillating voltage will make this transition
matrix element complex. The qubit properties and the couplings between them are discussed in Sec. III.

qubits, including through intermediary qubits [27], has been
considered theoretically and demonstrated experimentally
[26,28,33,34,49–52]. We label the two A qubits by L and
R. The coupling of the B qubit to the right qubit is a simple
capacitive coupling, and so is given by a constant times σ

y

Bσ
y

R ,
which becomes a ± coupling in the rotating frame:

HBR =
8ECM01

∂φ1 ,BM10
∂φ1 ,R

(1 + 2α + η)(1 + 2β + η)
(σ+

B σ−
R + σ−

B σ+
R ). (15)

It is important to note that both σxσ x and σyσ y become
± couplings in the rotating frame, as the components of
them which lead to net creation or destruction of excitations
are rapidly oscillating and should be dropped. The coupling
between the left qubit and the B qubit consists of two
Josephson junctions; since these junctions define closed loops
through ground, they pick up flux biases f ′ and f ′′ from the
external magnetic field. For simplicity, we choose the wiring
geometry so that these biases are both zero mod 2π . When we
write the coupling between L and B as a set of Pauli matrices,
the ± terms vanish due to the sign flips in (14), but the zz term
survives:

HLB = −2κEJ

(
M11

cos φ1,L
− M00

cos φ1,L

)
×(

M11
cos φ1,B

− M00
cos φ1,B

)
σ z

Lσ z
B. (16)

Alternately, one could obtain a pure zz coupling by simply
placing a single Josephson junction between a pair of regions,
and choosing the wiring geometry so that the flux bias
f ′ is nonzero, leading to an interaction term of the form
−κEJ cos(φL2 − φB1 + 2πf ′) plus a capacitive term with the
same structure as (15). One could then tune f ′ so that the ±
components of the xx and yy terms from these couplings
interfere with each other, leaving only the zz part of the
coupling.

We are now in a position to plug in numbers and evaluate
J for this architecture. Consider flux qubits wired as in Fig. 2.
If we choose the realistic device parameters listed below,
taking into account the single-qubit energy shifts from the
Dz coupling gives us

Ic = 400 nA, C = 3.25 fF, α = 0.5, f = 0.5,

η = 0.1, β = 0.45, κ = 0.2, g = 0.2,

EJ/h = 200 GHz = 33 EC/h, ωA = 2π × 31 GHz,

ωB = 2π × 36 GHz,
�A

V0

 �B

V0
= 2π × 2.3

GHz

mV
,

(17)

Dz = 2π × 1.0 GHz, D± = 2π × 1.4 GHz. (18)

A plot of J for V0 = 0.25,0.5 mV is shown in Fig. 3, calculated
from (8). For small values of V0, |J | is almost completely
independent of ϕs , but for larger V0 the magnitude fluctuations
become significant. |J | can be further increased by up to an
order of magnitude by choosing device parameters to work in
the regime where f > 1/2, but the relative qubit nonlinearities
are smaller and the system becomes more susceptible to
fluctuations in the external magnetic field. I emphasize that
the parameters listed above certainly do not represent the
best possible choice for many-body physics, and indeed, it
may ultimately turn out that other types of qubits may be
superior for reaching the bosonic fractional quantum Hall
regime described below. Nonetheless, they demonstrate that
my system could be engineered with current technology, and
achieves hopping matrix elements which are around three
orders of magnitude larger than the typical flux qubit decay
and dephasing rates (around a MHz).
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FIG. 3. (Color online) Magnitude and phase of J for the device
parameters given in Eq. (17) at the resonance point ω = ωA. The
blue and purple curves are |J | and arg J/π , respectively, for V0 =
0.25 mV; the yellow and green curves are the same quantities for
V0 = 0.5 mV. J can be made significantly larger by increasing α and
working away from the f = 1/2 symmetry point, but the physical
device nonlinearities are smaller in that regime and the system
becomes more susceptible to fluctuations in the external magnetic
field.

B. Transmon qubits

I will now briefly outline the implementation of my model
in transmon qubits. The basic circuit of a transmon qubit
reduces to that of a single Josephson junction (with large
EJ/EC) connecting a small superconducting island to ground.
The superconducting phase φ of the island is the qubit’s sole
quantum degree of freedom, and partly as a result of this, these
qubits are extremely stable, achieving decay and dephasing
times over an order of magnitude greater than flux qubits
[53,54]. Further, requiring only a single Josephson junction,
they are simpler to fabricate than flux qubits. This stability
and simplicity comes at a cost, however, in that the natural
nonlinearities of transmon qubits are only a few percent of the
excitation energy ω, which strongly constrains the magnitudes
of the coupling terms.

The transmon qubit Hamiltonian is a quantum anharmonic
oscillator,

HT = −4EC
∂2

∂φ2
− EJ cos φ. (19)

The charge and phase operators map to σ matrices in the qubit
basis as they did in flux qubits:

Q → −2eM01
∂φ

σ y, sin φ → M01
sin φσ x,

(20)

cos φ → M11
cos φ + M00

cos φ

2
1 + M11

cos φ − M00
cos φ

2
σ z.

To construct the alternating ± and zz couplings required to
obtain tunable phases, we introduce alternating capacitive and
flux-biased Josephson junction couplings. The capacitive part
is simply a σyσ y term:

HC = +4e2gC ′′

CC ′ M01
∂φ,A

M10
∂φ,B

σ
y

Aσ
y

B. (21)

On the other hand, the Josephson junction with a flux bias
(Fig. 4) contains xx, yy, and zz terms by default; dropping xz

EJ, CEJ, C

EJ , C , f

EJ, C

gC

V0 sin (ωt + ϕs) V0 sinωtV0 sinωt

ηCηCηC

FIG. 4. (Color online) Implementation of the ±-B-zz link with
transmon qubits. The effective circuit of a transmon qubit is a single
Josephson junction connecting a small superconducting island to
ground; the superconducting phase φ of the island is the qubit’s single
quantum degree of freedom. The ± coupling can be implemented by
a capacitive coupling between two qubits (gC in the figure). The
zz coupling is somewhat more challenging, but can be realized by
connecting two qubits with a Josephson junction (E′′

J and C ′′) with a
flux bias f . The Josephson junction naturally produces xx, yy, and zz

couplings, and since both xx and yy couplings become ± couplings
in the rotating frame, by tuning the flux bias f and appropriately
choosing E′′

J and C ′′, we can get them to cancel each other out,
leaving only the zz term.

terms that will vanish in the rotating frame,

HJJ = +4e2C ′′

CC ′ M01
∂φ,A

M01
∂φ,B

σ
y

Aσ
y

B

− (cos2 2πf − sin2 2πf )E′′
J

× [
M01

sin φ,AM10
sin φ,Bσ x

Aσ x
B

+ 2
(
M11

cos φ,A − M00
cos φ,A

)
× (

M11
cos φ,B − M00

cos φ1,B

)
σ z

Aσ z
B

]
. (22)

Upon transitioning to the rotating frame, both xx and yy

become ± couplings, so by tuning f , E′′
J , and C ′′, we can

cause the ± components to exactly cancel each other, leaving
a pure zz coupling. For appropriate E′′

J and C ′′, the bias field
can be set to zero. The low-energy many-body Hamiltonian
(8) will be the same whether the circuit is comprised of flux
qubits, transmons, or a mix of the two, though the magnitudes
of J and � will of course vary from one implementation to
the next.

C. An alternative formulation: Near-resonantly driven
transitions between excited states

An alternate, and potentially more attractive, formulation
of this architecture in physical qubits is to exploit the non-
linearities of the physical device spectra to drive a transition
between different excited states rather than between |0〉 and
|1〉. Depending on the structure of these nonlinearities, such
a drive signal may not be useful or possible, but for systems
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whose nonlinearities are very large and positive (flux qubits)
or small and negative (transmons), driving the system at
the |1〉 ↔ |2〉 or |2〉 ↔ |3〉 transition can have a number of
practical advantages over the |0〉 ↔ |1〉 formalism described
in the previous section. In this section, I will demonstrate how
artificial gauge fields can be generated in a system driven at
ω12 instead of ω01, and work out the details of implementing
this architecture in transmons or flux qubits.

Consider a superconducting qubit device whose low-lying
states have energies E0 = 0, E1 = ω01, and E2 = 2ω01 + δ,
and let us assume that the energies higher excited states are
all far detuned in energy from ω01 or ω01 + δ, so we can
restrict ourselves to the basis of |0〉, |1〉, and |2〉. We now
consider the familiar set of charge and phase operators Q,
cos φ and sin φ, and make the crucial assumption that the wave
function describing state |1〉 in the phase basis has opposite
parity in φ compared to |0〉 and |2〉. This property holds for both
transmons and flux qubits operated at the f = 1/2 symmetry
point. Within the basis of |0〉,|1〉, and |2〉, we can write the
charge and phase operators as

Q =

⎛
⎜⎝

0 iq12 0

−iq12 0 iq01

0 −iq01 0

⎞
⎟⎠,

sin φ =

⎛
⎜⎝

0 s12 0

s12 0 s01

0 s01 0

⎞
⎟⎠, cos φ =

⎛
⎜⎝

c22 0 c02

0 c11 0

c02 0 c00

⎞
⎟⎠.

(23)

Here, qij = 〈i|Q|j 〉 and the other coefficients are defined
analogously. Let us now consider the case of a single transmon
qubit, where the nonlinearity δ is small and negative, driven by
the voltage V0 sin [(ω01 + δ + ε) t + ϕs]. In the rotating frame,
the Hamiltonian for this qubit is

HB(T ) =

⎛
⎜⎝

−δ − 2ε �12e
iϕs 0

�12e
−iϕs −δ − ε �01e

iϕs

0 �01e
−iϕs 0

⎞
⎟⎠. (24)

We now choose parameters so that |δ + ε| � �01. In this limit,
the rotating frame eigenstates and energies of (24) are

cos θ = ε√
ε2 + �2

12

; |0B〉 = {0,0,1},

|1B〉 = {e2iϕs (cos θ − 1),eiϕs sin θ,0}√
2 − 2 cos θ

,

(25)

|2B〉 = {e2iϕs (cos θ + 1),eiϕs sin θ,0}√
2 + 2 cos θ

,

E0 = 0, E1/2 = −δ − ε(−/+)
√

ε2 + �2
12.

Since δ is negative, |0〉 is the ground state, and at resonance,
θ = π/2.

Having defined the single-qubit Hamiltonian above, we can
now consider the coupling between two qubits A and B, where
as before ϕs = 0 for qubit A. As in the previous section, we can
evaluate the hopping matrix elements from the three possible

couplings QAQB , sin φA sin φB , and cos φA cos φB to be

〈0A1B |QAQB |1A0B〉 = q2
01

sin θ√
2 − 2 cos θ

e−iϕs ,

〈0A1B | sin φA sin φB |1A0B〉 = s2
01

sin θ√
2 − 2 cos θ

e−iϕs , (26)

〈0A1B | cos φA cos φB |1A0B〉 = −c2
02

√
1 − cos θ

2
e−2iϕs .

We readily see from these equations that a chain of “±” and
“zz” couplings will again produce hopping matrix elements
with arbitrarily tunable complex phases. The physical origin
for these phases is as follows. In the rotating frame, the phase
offset ϕs causes the phase of physical qubit wave functions to
advance by ±ϕs as they absorb or emit photons into the drive
field, which can only induce transitions between |0〉 ↔ |1〉 and
|1〉 ↔ |2〉. Since the first excited state in the rotating frame is a
superposition of states |1〉 and |2〉 in the rest frame, a transition
between it and the ground state driven by Q or sin φ will have
a phase shift of ±ϕs , since this process changes the state just
as it would be changed by a single photon. The cos φ operator,
however, can mix states |0〉 and |2〉 in the rest frame, and
thus acts as an effective two-photon process in a single step,
advancing the phase by ±2ϕs . Consequently, the Q/ sin φ (±)
and cos φ (zz) operators see the phase shifts differently, and
the phase accumulated around a loop which chains together ±
and zz operators can be nonzero, indicating the presence of an
artificial gauge field.

This method can be implemented identically in flux qubits,
where δ is positive, and is between 6 and 24 times ω01 for
EJ = 40EC and 0.75 < α < 0.85. In this case, since the energy
scales are so widely separated we can simply assume that a
|0〉 ↔ |1〉 transition from the drive field is forbidden, giving
us the rotating frame Hamiltonian

HB(FQ) =

⎛
⎜⎝

ω01 − ε �12e
iϕs 0

�12e
−iϕs ω01 0

0 0 0

⎞
⎟⎠. (27)

Aside from additional sign flips in the Q and sin φ operators
which depend on which region of the qubit is being coupled
to, the calculation proceeds identically as it did in transmons.
In both cases, the physical wiring depicted in Figs. 2 and 4 can
be left unchanged.

Driving the qubits at this transition instead of |0〉 ↔ |1〉
has a number of advantages. First, the energies of the rotating
frame excited states are larger, avoiding the need for strong
Rabi frequencies to get high-energy excitations. Second, the
hopping phase between two qubits can be tuned arbitrarily
without changing the magnitude even if both qubits are on
resonance; in the |0〉 ↔ |1〉 case one of the qubits had to be
significantly detuned to obtain these phases. Note, however,
that if one wishes to tune the phase between any two sites
without changing the phases between any other sites, one
must still include “auxiliary” qubits to mediate the tunneling.
Third and most importantly, decays in the rest frame (such
as an energy loss process which sends |1〉 → |0〉) cannot
spontaneously create rotating frame excitations from the
ground state when the qubits are driven near ω12, since the
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rotating and rest frame ground states are the same and do not
mix with state |1〉. This means that the qubit array will be empty
of excitations unless the system is populated by a second pulse
near the rotating frame energy, making the population easier
to control and eliminating a significant heating source in the
many-body system.

We see from these calculations that both flux qubits and
transmons could be used to simulate artificial gauge fields
in exotic many-body systems. I will now describe both the
simplest and most interesting of these systems: strongly
interacting bosons in a uniform magnetic field, which would
realize a bosonic fractional quantum Hall effect.

IV. MANY-BODY STATES AND THE LOWEST
LANDAU LEVEL

By considering a 2D lattice of qubits we arrive at the
final hopping Hamiltonian (8). Previous studies [7,8,11,55–63]
have shown that the square lattice version of this Hamiltonian
is analogous to the 2D lowest Landau level problem of strongly
interacting bosons, and realizes Abelian and non-Abelian
fractional ground states at the appropriate fixed densities. I
expect that small arrays should be sufficient to observe quan-
tum Hall physics, since the magnetic length lB = 1/

√
2π�

(where � is the gauge-invariant phase accumulated when a
particle circulates around a plaquette) can be less than a lattice
spacing [64]. Connections between flux qubits beyond nearest
neighbors can reproduce the exact lowest Landau level of the
continuum [61,63] and lead to more robust fractional quantum
Hall states, but they may not be necessary to observe the
Laughlin state at ν = 1/2 [7]. Here we adopt the standard
definition of the filling fraction ν as the ratio of particle to
flux density. A wide range of other possible quantum spin- 1

2
models with two-body interactions, both with complex phases
and without, could be studied in this device architecture; I find
quantum Hall systems to be the most intriguing, due to the
existence of Abelian anyons at ν = 1/2 and the existence (with
tuning) of non-Abelian anyons at ν = 1 and 3/2 [5,63], along
with other exotic states at different filling fractions. The boson
density could be controlled by using a second external field at
frequency ω′ near the rotating frame energy EA to populate
the lattice; the ω′ dependence of the system’s response to this
field could be used to measure the gaps of the many-body
states.

The incoherent particle loss rates in my array from
single qubit decay and dephasing effects should not be a
significant obstacle to studying strongly correlated many-
body states. Using values from the previous section and from
the superconducting qubit literature [21,65], a typical hopping
parameter would be J/h̄ = 1 GHz. The decay rate would be
roughly given by the decay plus dephasing rate of the qubits,
which for flux qubits is of order 1 MHz. With a Landau band
spacing of ωLLL 
 3J in a square lattice at � = 1/4 quanta
per plaquette, the relative correction to the Landau bandwidth
from this process would thus be insignificant, provided that
the system is driven to balance the incoherent particle loss.
I expect that this loss rate by itself will not prevent quantum
Hall states from forming in our array [25]. Likewise, a small
number of “dead” sites (where a qubit is defective and cannot
be excited) should also be relatively harmless—the many-body

wave function can eliminate these defects simply by nucleating
a quasihole at each site. So long as the density of flux quanta is
large compared to the defect density, these defects will simply
make small shifts in the gap energy and particle density of the
gapped states, but will not have any other qualitative effects
on the system.

More worrisome is the issue of time-independent random
variations in the qubit properties at every site, which could
disrupt the formation of topological states if these variations
became large enough. To quantify this issue, I numerically
simulated the broadening of the lowest Landau level in our
model as a function of three static (quenched) noise sources:
random fluctuations in the on-site potential (shifts in the
rotating frame excitation energy of a given A qubit), random
fluctuations in the magnitude of J , and random fluctuations
in the phase of J between neighboring sites. In a real system,
these noise sources would be correlated, but as the details
of those correlations would depend in part on the physical
implementation of the qubits, I have assumed that each type
of quenched disorder is applied randomly to every site with
no dependence on the other types or on the disorder at
nearby sites. To determine the broadening from each noise
source, I numerically diagonalized the single-particle hopping
matrix on 8 × 8 and 12 × 12 lattices with periodic boundary
conditions, given by the Hamiltonian

HLLL =
∑
ij

(Fij )Jij (ei(φij +πδφij ) + H.c.)

+
∑

i

JNNδUini. (28)

Here, the hopping matrix elements are restricted to nearest
and next-nearest neighbors with relative magnitudes chosen
as in [61], δUi and δφij are dimensionless parameters which
are Gaussian distributed about 0, JNN is the average nearest-
neighbor hopping energy, and Fij is a dimensionless parameter
which is Gaussian distributed about 1. I diagonalized (28)
for 25 random distributions of noise for each data point (in
steps of 0.02 for each σ ), and from the spectrum I extracted
the lowest Landau-level (LLL) broadening �, which is the
ratio of the energy splitting between the lowest and highest
LLL states to the splitting between the highest LLL state and
the bottom of the first excited band. I then fit �

(
σU/J/�

)
as a function of the standard deviation of each noise source
with the other two sources set to zero; this relationship was
linear in each case for small fluctuations. The results of our
simulations are shown in Table I; note that �0 is nonzero
even without defects, as a consequence of truncating the
Hamiltonian in [61] to nearest- and next-nearest-neighbor
hopping.

It is important to note that this calculation only captures
distortions to the single-particle spectrum and that the many-
body response to noise of this type is a subtle problem beyond
the scope of this work. However, one should qualitatively
expect that the topological states should be disrupted when the
normalized Landau-level splitting � approaches the dimen-
sionless quasiparticle excitation gap �qp/JNN. In numerical
studies of this system in the clean limit with hard-core
two-body repulsion (largely unpublished), �qp/JNN typically
ranged between 0.2 and 1 for correlated states at different
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TABLE I. Robustness of the lowest Landau level to external noise
sources. For the random noise simulations described in the text, I fit
the normalized splitting � of the lowest Landau level to the function
� = �0 + CUσU + CJ σJ + C�σ� , where the σ ’s are the standard
deviation of each noise source (local potential, hopping magnitude,
and hopping phase) which is applied randomly to every site (σU ) and
link between sites (σJ and σ� ). As seen in the Hamiltonian (28), the
potential fluctuations are in units of JNN and the phase fluctuations are
in units of π . Above the flux density � = 1/3, truncation to nearest-
and next-nearest-neighbor hopping introduces significant broadening
even in the clean system, so flux densities of 1/3 or less should be
the focus of experiments on our design.

Flux density �0 CU CJ C�

1/4 0.015 0.41 1.42 1.75
1/3 0.018 0.72 1.21 2.36
3/8 0.08 0.35 0.99 1.94

flux and particle densities, and tended to be larger at smaller
filling fractions. This suggests that many-body quantum Hall
states should exist in my system when noise is sufficiently well
controlled.

V. A SIMPLE EXPERIMENT TO DEMONSTRATE
THE GAUGE FIELD

While the ultimate purpose of this proposal is to study
exotic many-body states in an array of hundreds or thousands
of flux qubits, the existence of a nontrivial gauge field can be
demonstrated by studying an arrangement of four flux qubits,
connected in a loop. Consider a square loop of four flux qubits
labeled (1–4), where qubit 1 sits at the top left corner and qubit
4 at the bottom right, as shown in Fig. 5. For this choice, any
hop through a Dz coupling will accumulate a phase ψ , giving a
total of � = 2ψ for a complete circuit of the loop. Conversely,
if the phases of the voltages applied to the B qubits are shifted
by π from one qubit pair to the next, the magnitude of the
hopping matrix element will be unchanged but there will be
no complex phase accumulation. In this case, the B qubits
have identical rotating frame energies to the A qubits, and
differ from them through the relative phases ϕsi of the applied
voltages. We will assume for simplicity that the magnitudes of
the hopping matrix elements from the Dz and D± couplings
are both equal to J .

To demonstrate that the alternating voltages generate a
nonzero effective flux through the four-qubit loop, we first
initialize the array by letting all four qubits relax to their ground
states. At time t = 0, we apply a microwave pulse to qubit 1
to excite it into the rotating frame excited state |1A〉, and then
at time t we measure the state of qubit 4. The probability of
qubit 4 being excited is given by

P4(t) = |〈01020314|eiHt/h̄|11020304〉|2

= 1

4

[
cos

(
2tJ

h̄
cos

�

4

)
− cos

(
2tJ

h̄
sin

�

4

)]2

. (29)

This interference pattern is particularly striking when � is
nearly equal to π . If we let � = π + ε, the probability

V0 sinωAt

V0 sinωAt V0 sinωAt + ϕs2

V0 sinωAt + ϕs3

gC (±) gC (±)

A1 B2

B3 A4

fΦ0

fΦ0

κEJ , κ EC

κEJ , κ EC

(zz)

(zz)
γin

γout

γout (optional)

FIG. 5. (Color online) Configuration to demonstrate the artificial
gauge field in four transmon qubits (blue and red boxed regions), as
outlined in Sec. V. As described in Sec. V, appropriately tuning the
phase offsets ϕsi will produce a gauge-invariant phase difference in
the two paths that the mobile fluxon excitation could take from qubit
1 to qubit 4. The resulting interference of these two paths can be
detected in the time-dependent probability P4 (t) of qubit 4 being in
its excited state. Additional flux biases convert the single Josephson
junction couplings between A and B transmon qubits to pure zz

interactions.

distribution becomes

P4(t) =
(

sin

√
2J t

h̄

)2(
sin

J tε

2
√

2h̄

)2

. (30)

In the limit of ε → 0, the probability of qubit 4 being occupied
becomes zero at all times, due to the perfect interference of the
two paths. This is a dramatic effect, and while field fluctuations
and fabrication defects would prevent perfect interference in
a real device, the strong slowing of the occupation periodicity
of qubit 4 as � approaches π would be readily observable.
Such interference is only possible if there is a gauge-invariant
phase difference between the two paths, and would therefore
demonstrate that nontrivial effective gauge fields are realized
in my architecture.

An alternative experiment would be to connect a microwave
source to qubit 1 and a microwave drain at qubit 2, and measure
the transmission coefficient as a function of � for photons
near the rotating frame excitation energy EA. At � = 0 the
transmission coefficient should be maximal, and at � = π

it should be zero (or nearly zero when defects are taken into
account), owing to the destructive interference of the two paths
which is the key signature of a gauge field. I note also that a
similar arrangement of three qubits with two ± links and one
zz link could potentially engineer a charge noise free variant
of the circulator design in [39]; as a microwave circulator
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requires time-reversal symmetry breaking to function, it could
also demonstrate the existence of a nontrivial gauge field.

VI. CONCLUSION

I have demonstrated a method for realizing a quantum
Hall state of bosons using asymmetric qubit pairs, driven
by applied oscillating electric fields. I also demonstrated
that my model could be implemented in lattices of flux or
transmon qubits. With appropriate protocols for stabilizing
the average particle density and measuring the conductivity,
I expect that conductivity quantization could be observed on
small arrays, though I note that the details of how to measure
the conductivity are beyond the scope of this article. The
statistics of anyonic collective modes could be determined
through similar methods [66–69].

Further, the dynamical tunability of my model could be
exploited to realize exotic combinations of states that would
be difficult or impossible to study in cold atom or solid
state systems. One could locally adjust the applied voltage
V0 sin (ωt + ϕs) and flux bias f to change the gauge-field
density and effective chemical potential in a given region,
creating islands of arbitrary shape which could be at a different
filling fraction than the surrounding lattice and thus have
different anyonic modes. Alternately, by reversing the signs
of all the phase shifts ϕs in a region, one can create a sharp

boundary between regions with effective gauge fields of equal
magnitude but opposite sign. In both cases, we expect physics
along the boundaries to be rich.

Finally, by locally tuning V0, ϕs , and f to manipulate
vortices in the qubit lattice, arrays of ordinary qubits could
be used to construct a topological non-Abelian anyon qubit
[4,5,70], trading information density for topological protection
against decoherence. Though far down the road, in that
sense my proposal could be similar to the surface code
and cluster state [71,72] ideas developed in recent years,
and could provide a new potential mechanism for reduc-
ing decoherence in superconducting quantum information
devices.
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