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An all-linear-optical scheme for a fully featured quantum router is presented. This device directs the signal
photonic qubit according to the state of one control photonic qubit. In the introduction we formulate the list of
requirements imposed on a fully quantum router. Then we describe our proposal, showing the exact principle
of operation on a linear-optical scheme. Subsequently we provide a generalization of the scheme in order to
optimize the success probability by means of a tunable controlled-phase gate. Finally, we show how one can
modify the device to route multiple signal qubits using the same control qubit.
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I. INTRODUCTION

Quantum communications represent a very important part
of a rapidly developing research area called quantum informa-
tion processing [1,2]. Communications networks are now an
indispensable technology allowing people to transmit informa-
tion quickly over large distances. In classical communications
networks laws of classical physics are used to govern their
operation. Recent research in quantum physics and quantum
information suggests that quantum laws of nature can provide
significant improvement of capabilities of communications
devices [3–5], while using similar resources and keeping sim-
ilar network architecture [6,7]. Not surprisingly, a significant
amount of theoretical and experimental research has been
dedicated to the concept of quantum communications networks
[8]. The most notable result of this effort is a number of
protocols for quantum cryptography [9,10], which is a method
for unconditionally secure transmission of information using
various quantum properties of information carriers. Quantum
communications networks can benefit from purely quantum
effects such as entanglement or the probabilistic nature of
measurement.

The more complex both the classical and quantum networks
are, the more pronounced is the need for correct routing
of the signal from its source to its intended destination
[11,12]. Classical routers are well-known ingredients of
classical networks allowing one to direct signal information
according to control information (e.g., IP address) [13]. The
analogy between classical and quantum networks suggests
that complex quantum networks would also require elaborate
routing protocols. This need is even more pronounced since
in contrast to classical information one cannot perfectly
duplicate an unknown qubit of quantum information [14].
However, approximate cloning is possible and has been
intensely studied both theoretically and experimentally over
the last decades [15–17], resulting in, e.g., establishing and
implementing optimal state-dependent cloning for a wide class
of qubit distributions [18,19]. Nevertheless the impossibility of
perfect cloning prevents using the concept of multidirectional
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broadcast (known from classical networks) in a quantum
network.

In this paper we address the problem of designing a quantum
router (see the conceptional scheme in Fig. 1). We consider the
platform of individual photons and linear optics because of its
experimental accessibility and also because of the particular
suitability of light for information transmission [20]. The
router has to fulfill five requirements to be suitable for quantum
communications networks:

(1) Both the signal and control information have to be
stored in quantum objects (qubits), and therefore routers
using classical information to route the quantum signal are
considered only semiquantum routers.

(2) The signal information is unchanged under the routing
operation; the degree of freedom used to store the signal qubit
information has to be kept undisturbed.

(3) The router has to be able to route the signal into a
coherent superposition of both output modes.

(4) The router has to work without any need for posts-
election on the signal output. If the router is probabilistic,
successful operation can be identified by detection on the
control state.

(5) To optimize the resources of the quantum network, only
an individual control qubit is required to direct one signal
qubit.

There have been several schemes for quantum routers
already proposed; some of them have been experimentally
implemented, but none of them meets all five requirements
defined in the above paragraph. The first group of these
proposals uses light-matter interaction in order to achieve
quantum routing [21–23]. Such interaction is, however, often
very challenging for experimental implementation. The second
group of the proposals considers solely the platform of
optical interactions to accomplish the routing. There are
some proposals for a semiquantum router, where the control
information is classical using intensive light pulses [24]. There
are also proposals in which the control information is quantum,
but the signal state collapses in the router so requirement 2
is not met [25]. Recently we have proposed a fully quantum
router using only linear optics [26]. This device, however, does
not meet requirement 5 since it requires two quantum bits to
control routing of one single qubit of signal information.

062333-11050-2947/2013/87(6)/062333(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.062333


LEMR, BARTKIEWICZ, ČERNOCH, AND SOUBUSTA PHYSICAL REVIEW A 87, 062333 (2013)

quantum
router

signal
input

control
input

signal output

1

2 }|Ψs〉

|Ψc〉 = cos θ|0〉 + eıϑ sin θ|1〉

A1(θ, ϑ)|Ψs〉1
+A2(θ, ϑ)|Ψs〉2

FIG. 1. (Color online) Conceptual scheme of a quantum router.

II. PRINCIPLE OF OPERATION

In this section we describe an all-linear-optical quan-
tum router that meets all five requirements mentioned in
the introduction. The router makes use of three quantum
gates: controlled-phase gate (c-phase gate) [28–32], quantum
nondemolition presence detection gate (QND gate) [33],
and programmable-phase gate (PPG) [34–36]. In order for
the setup to work completely without the need for signal
postselection, both the QND and the detector D have to be
equipped with photon-number resolving detectors. Without
them, the router still works but does not fulfill requirement
4. Linear-optical schemes of all of these gates are already
published and with the exception of the QND gate are also
already tested experimentally. The reader is encouraged to get
more details in the cited papers. Figure 2 shows the scheme
for linear-optical implementation of the quantum router. We
propose using two degrees of freedom of individual photons:
(1) polarization encoding, used to store both the signal and
control qubits, and (2) path (spatial mode) encoding, used
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FIG. 2. (Color online) Scheme of the linear-optical implemen-
tation of a quantum router. PBS denotes polarizing beam splitter,
PDBS denotes polarization dependent beam splitter, λ/2 and λ/4
denote half- and quarter-wave plates, NDF denotes neutral-density
filter, c-phase denotes controlled phase gate, QND denotes quantum
nondemolition detector, PPG denotes programmable-phase gate, and
D/A denotes polarization analysis (for more details see Ref. [27]).
Red lines depict signal modes, while blue lines depict control modes.

for the routing operation; the signal photon is routed into
superposition of two output ports.

The signal qubit enters the setup using the input port sin,
while the control qubit enters the router using port c. Let us
assume the signal qubit takes the form of a general quantum
polarization state:

|�s〉 = α|H 〉 + β|V 〉, (1)

where |H 〉 and |V 〉 denote the states of horizontal and vertical
linear polarizations and |α2| + |β2| = 1. For reasons apparent
later, it is suitable to parametrize the state of the control qubit
by angles θ and ϑ :

|�c〉 = cos θ |H 〉 + eıϑ sin θ |V 〉. (2)

After the signal qubit enters the router, it is subjected to
the polarizing beam splitter (PBS1) transmitting horizontally
polarized light and reflecting light of vertical polarization. At
this point the state of both signal and control qubits reads

|�s〉 ⊗ |�c1〉 = α cos θ |H1Hc〉 + αeıϑ sin θ |H1Vc〉
+β cos θ |V2Hc〉 + βeıϑ sin θ |V2Vc〉, (3)

where indices denote spatial modes of the qubits.
For better readability, let us now consider the evolution of

both arms of the interferometer (labeled in Fig. 2 as 1© and
2©) separately starting with the lower arm 1© corresponding to

the first two terms in Eq. (3): The horizontally polarized signal
photon undergoes a generalized Hadamard transformation on
a half-wave plate (HWP) rotated by −30◦ 1:

|H1〉 → 1

2
|H1〉 −

√
3

2
|V1〉.

Subsequently both the signal and control qubit photons enter
the c-phase gate implemented using polarization dependent
beam splitter (PDBS) of intensity transmissivities TV = 1

3 and
TH = 1 for vertical and horizontal polarization, respectively.
Postselecting only on the cases in which there is one photon
in signal and one photon in control mode, the transformation
performed by the c-phase gate renders the investigated first
two terms of Eq. (3) to

α cos θ

2
(|H1〉 + |V1〉) |Hc〉 + αeıϑ sin θ

2
√

3
(|H1〉 − |V1〉) |Vc〉.

In the next step, the signal qubit undergoes Hadamard
transform also using a HWP yielding the terms

α cos θ√
2

|H1Hc〉 + αeıϑ sin θ√
6

|V1Vc〉.

As mentioned above, the c-phase gate is successful only when
the signal and control qubits leave the gate by separate output
ports. In order to postselect only on such cases, the control
qubit has to be subjected to QND presence detection via the
QND gate. The QND presence detection requires an entangled
pair of photons as a resource, but these photons are of a fixed
quantum state, are generated locally solely for the purposes of

1In the entire paper, rotations of wave plates are given as the
angle between the optical axis of the wave plate and the direction
of horizontal linear polarization.

062333-2



RESOURCE-EFFICIENT LINEAR-OPTICAL QUANTUM ROUTER PHYSICAL REVIEW A 87, 062333 (2013)

the QND gate, and do not take another part in the quantum
network. The control qubit state does not change under the
QND gate, but a success probability factor of 1

2 is added to take
into account the success probability of the QND gate. More
information about the QND gate can be found in Ref. [33]. In
the last step, the control qubit is subjected to a half-wave plate
rotated at 22.5◦ yielding the terms

α cos θ

2
√

2
|H1〉(|Hc〉 + |Vc〉) + αeıϑ sin θ

2
√

6
|V1〉(|Hc〉 − |Vc〉),

and then the control qubit alone impinges on the PPG
composed only of a PBS. The PPG gate heralds successful
operation only if there is a control qubit with horizontal
polarization at its input, thus projecting the signal in the lower
arm 1© onto

α cos θ

2
√

2
|H1〉 + αeıϑ sin θ

2
√

6
|V1〉, (4)

and in this form it impinges on the PBS2.
Now we examine the evolution of the second two terms in

Eq. (3) corresponding to the propagation of the signal qubit
by the upper arm 2©: In this case the control qubit enters the
c-phase gate alone, rendering the investigated terms to

β cos θ |V2Hc〉 + βeıϑ sin θ√
3

|V2Vc〉.

Again, we postselect only on those cases in which the control
qubit leaves the c-phase gate by the mode c. This postselection
is again assured by the QND gate, which witnesses the control
qubit presence with a success probability of 1

2 . Considering
also the action of HWP we get

β cos θ

2
|V2〉(|Hc〉 + |Vc〉) + βeıϑ sin θ

2
√

3
|V2〉(|Hc〉 − |Vc〉).

Subsequently the signal qubit undergoes a Hadamard transfor-
mation yielding

β cos θ

2
√

2
(|H2Hc〉 + |H2Vc〉 − |V2Hc〉 − |V2Vc〉)

+ βeıϑ sin θ

2
√

6
(|H2Hc〉 − |H2Vc〉 − |V2Hc〉 + |V2Vc〉) .

In the next step, both the signal and control qubits meet on the
PPG gate’s polarizing beam splitter. Since we postselect only
on the cases in which there is exactly one photon at the output
of mode c, we continue considering only the terms

β cos θ

2
√

2
(|H2Hc〉 − |V2Vc〉) + βeıϑ sin θ

2
√

6
(|H2Hc〉 + |V2Vc〉) .

As usual, the control photon impinges on the detector. Depend-
ing on the outcome of the polarizing detection measurement
performed, the signal qubit collapses into

β cos θ

4
(|H2〉 − |V2〉) + βeıϑ sin θ

4
√

3
(|H2〉 + |V2〉), (5)

when the diagonally polarized control qubit was detected, or

β cos θ

4
(|H2〉 + |V2〉) + βeıϑ sin θ

4
√

3
(|H2〉 − |V2〉),

when we observe the antidiagonally polarized control photon.
In the latter case, we do apply a feedforward consisting of a
HWP placed at 0◦ causing |V2〉 → −|V2〉 and thus correcting
the signal to the form of Eq. (5). The subsequent Hadamard
gate renders the signal to the form of

βeıϑ sin θ

2
√

3
|H2〉 + β cos θ

2
|V2〉.

Before the signal impinges on the second polarizing beam
splitter PBS2, we introduce filtering by a neutral-density filter
(NDF) of transmissivity T = 1

2 to balance the amplitude with
respect to the lower arm contribution described in Eq. (4).

After having both the terms of Eq. (3) evaluated, let us
recall that the total state of the signal qubit reads

|�s〉 = α cos θ

2
√

2
|H1〉 + αeıϑ sin θ

2
√

6
|V1〉

+ βeıϑ sin θ

2
√

6
|H2〉 + β cos θ

2
√

2
|V2〉,

and after being subjected to the PBS2 it takes the form of

|�s〉 = cos θ

2
√

2
(α|H1〉 − β|V1〉) + eıϑ sin θ

2
√

6
(β|H2〉 + α|V2〉).

The additional half-wave plate at 0◦ in the first output corrects
−V → +V , and polarization swap H ↔ V is applied to the
second output by inserting a half-wave plate at 45◦ yielding
the final form of the signal state at the output of the router:

|�s〉out = A1|�s〉1 + A2|�s〉2, (6)

where one can clearly observe the routing operation. The
polarization state remains in the original form of Eq. (1),
but the spatial degree of freedom is modified depending
on the parameter θ of the control qubit. The ratio between
the amplitudes A2 and A1 depends straightforwardly on this
parameter:

tan χ = |A2|
|A1| = tan θ√

3
, (7)

where we have introduced the routing ratio parameter χ in a
similar manner as splitting ratio parametrization is introduced
for ordinary beam splitters. Since θ lies in the interval [0; π

2 ],
the router can direct all the signal to the first output (A1), to
the second output (A2), or to any of their superposition.

The success probability Psucc = |A1|2 + |A2|2 does not
depend on the signal state parameters α and β but only on
the ratio χ and therefore on the control qubit parameter θ . One
can easily find the relation between success probability and
the routing parameter χ or the control qubit parameter θ :

Psucc = 1 + 2 cos2 θ

24
= 1 + tan2 χ

8 + 24 tan2 χ
. (8)

It reaches a maximum of 1
8 for χ = θ = 0, and, on the other

hand, it is minimized for χ = θ = π
2 to a value of 1

24 . The plot
in Fig. 3 shows the success probability of routing as a function
of the routing parameter χ . It also depicts the relation between
the routing parameter χ and the control qubit parameter θ .

Note that the neutral-density filter of the intensity trans-
missivity of 1

3 can be placed to output port s1 in order to
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FIG. 3. (Color online) Success probability of the routing proce-
dure as a function of the routing ratio parameter χ . Additionally
the plot shows the relation between the routing parameter χ and the
control qubit parameter θ .

equalize the success probability so it is completely control
state independent and fixed to the value of 1

24 .

III. TUNABLE C-PHASE GATE BASED ROUTER

In the previous section we have considered only the c-phase
gate with a fixed phase shift of ϕ = π (also known as the
controlled-sign gate). In some cases, however, higher success
probability can be achieved using a tunable c-phase gate that
can be set to exercise a phase shift ϕ of any value in the range
[0; π ]. The reason for considering this tunable c-phase gate
lies in the fact that the success probability of the gate is a
function of its phase shift. In 2010, Konrad Kieling and his
colleagues [30] discovered the success probability PC relation
to the phase shift ϕ 2:

PC =
[

1 + 2

∣∣∣∣ sin
ϕ

2

∣∣∣∣ + 23/2 sin

(
π − ϕ

4

)∣∣∣∣ sin
ϕ

2

∣∣∣∣
1/2]−2

. (9)

In order to make the c-phase gate tunable, one needs to replace
the fixed polarization dependent beam splitter by an interaction
Mach-Zehnder interferometer with tunable phase and losses
[see Fig. 4(a)].

In a recent paper [32], we showed that if one does not
seek this success probability to be input state independent the
c-phase gate can be generalized to perform the transformation

|H1Hc〉 → |H1Hc〉, |H1Vc〉 →
√

AC |H1Vc〉,
|V1Hc〉 →

√
AC |V1Hc〉, |V1Vc〉 → ACeıϕ|V1Vc〉,

|V2Hc〉 → |V2Hc〉, |V2Vc〉 →
√

AC |V2Vc〉, (10)

where we have already adopted the notation of Eq. (3) and
introduced |AC |2 = PC . Note that in the first and fifth cases
there is no photon entering the interaction interferometer,
while in the second, third, and sixth cases there is exactly one
photon entering this interferometer. In the fourth case, both
the photons are subjected to the interferometer. The success
probability thus becomes input state dependent but higher in
average.

2PC is the optimal success probability achievable using only linear
optics and vacuum ancillae.

When using the tunable c-phase gate for routing, several
modifications of the setup have to be put in place [see
Fig. 4(b)]: First, the PPG gate has to be replaced by a second
c-phase gate set to the same phase shift as the first one.
This c-phase gate would exercise the same transformation
as described by Eq. (10), but with indices 1 ↔ 2 swapped.
Second, the transformation (HWP) performed on the control
qubit between the two interaction gates is removed, and so is
the NDF in upper arm 2©. Finally, a generalized transformation
in both arms 1© and 2© before the signal enters the c-phase
gates has to be recalculated. This transformation reflecting the
success probability of the c-phase gate reads

|H1〉 →
√

AC√
1 + AC

|H1〉 + 1√
1 + AC

|V1〉

in 1© and

|V2〉 →
√

AC√
1 + AC

|H2〉 − 1√
1 + AC

|V2〉

in 2©. This transformation assures the signal state indepen-
dence of the routing procedure.

After incorporating these modifications, one can proceed in
exactly the same manner as in Sec. II to reveal that the signal
state just before impinging on the PBS2 takes the form of

α
√

AC

2
√

2 + 2AC

[
2 cos θ + ACeıϑ sin θ (1 + eıϕ)

] |H1〉

+
αeıϑ sin θ

√
A3

C

2
√

2 + 2AC

(1 − eıϕ)|V1〉 (11)

in the first arm 1© and the form of

β
√

AC

2
√

2 + 2AC

[
2 cos θ + ACeıϑ sin θ (1 + eıϕ)

] |V2〉

+
βeıϑ sin θ

√
A3

C

2
√

2 + 2AC

(1 − eıϕ)|H2〉 (12)

in the second arm 2©. The Eqs. (11) and (12) indicate that
the value of the phase shift ϕ imposed by the gate limits the
routing ratio χ :

tan χ = AC sin θ |1 − eıϕ|
|2 cos θ + ACeıϑ sin θ (1 + eıϕ)| .

For the sake of readability, we limit to ϑ = 0 in the remaining
part of this section. Thus, even for θ = π

2 the routing ratio is
bound by the relation

χL(ϕ) ≡ max{χ (ϕ,θ )}θ = atan

(
1 − cos ϕ

sin ϕ

)
= ϕ

2
, (13)

where we have introduced the routing ratio limit χL for a given
phase shift ϕ.

Using this definition, we can formulate the range of
achievable routing ratios for a given phase shift ϕ to be
χ ∈ [0; χL] obtained when tuning monotonically the control
qubit in the range θ ∈ [0; π

2 ]. Note that, as expected, χL = 0
for ϕ = 0 and χL = π

2 for ϕ = π .
We can also easily find the success probability of the router

by calculating the norm of the output state Eqs. (11) and (12).

062333-4



RESOURCE-EFFICIENT LINEAR-OPTICAL QUANTUM ROUTER PHYSICAL REVIEW A 87, 062333 (2013)

BS BS

PS

NDF
PBS

PBS

PBS

PBS

(a)

|Hs〉

|Φc〉

c-phase

c-phase

D/A

QND

s1

s2

PBS1

PBS2

(b)

λ/2

λ/2 λ/2

λ/2 λ/2

λ/2

|Ψs〉

|Φc〉

FIG. 4. (Color online) (a) Linear-optical scheme of a tunable
c-phase gate. The interaction Mach-Zehnder interferometer replaces
the fixed polarization dependent beam splitter (PDBS) in the original
scheme. The phase shift imposed by the gate is tuned by setting
specific values of phase shift (PS) and losses (NDF) in this
interferometer (for more details see Ref. [31]). (b) Modified scheme
of the router using two tunable c-phase gates. Red lines depict signal
modes, while blue lines depict control modes.

This success probability function depends on both ϕ and θ .
For a fixed value of ϕ we can find its minimum of

min{Psucc(ϕ,θ )}θ = 3

√
A4

C

2 + 2AC

(14)

always for θ = π
2 . On the other hand, the maximum success

probability is obtained for different values of θ depending on
the phase shift ϕ:

θ |Pmax = 1

2
atan

[
AC(1 − cos ϕ)

1 − A2
C

]
. (15)

Both the success probability and the routing ratio limit are
functions of the gate phase shift ϕ. To illustrate their mutual
relation, we have plotted the success probability as a function
routing limit in Fig. 5. In this figure, we show the maximum and
minimum success probability together with the range between
them for a given routing ratio limit. Observing this plot, we
conclude that for sufficiently small values of routing ratio
limit (e.g., χL = π

8 ) the tunable c-phase gate offers increased
success probability in comparison with the scheme proposed
in the previous section. On the other hand, for larger routing
ratio limits (closer to π

2 ), the former scheme does better since
it uses only one c-phase gate together with a more efficient
PPG gate.

IV. MULTIQUBIT ROUTING

So far we have only considered routing a single signal
qubit using one control qubit. In principle, however, the device
can route a chain of signal qubits making use of the same

10-3

10-2

10-1

1

Su
cc
es
sp
ro
ba
bi
lit
y
P s
uc
c

0 /8 /4 3 /8 /2
Routing ratio limit L

Min. Psucc
Max. Psucc

1/24

1/8

FIG. 5. (Color online) Maximum and minimum success probabil-
ity of the router using two tunable c-phase gates depicted as functions
of the routing ratio limit. The plot indicates that for sufficiently
small values of routing ratio limit the tunable c-phase gate offers
better performance than the scheme devised in the previous section
(maximum and minimum success probability of the previous scheme
is depicted using black dashed lines at 1

8 and 1
24 ). The dotted line shows

the success probability if the standard state-independent c-phase gate
is used instead of the generalized version.

control qubit. Figure 6 depicts the configuration for such
multiqubit routing. In this model, two c-phase gates are used
as in the previous section, but the control qubit is not detected
immediately. After interacting with the first signal qubit, the
control qubit presence is verified in a QND gate and then it
is transferred back to the input of the router so it meets with
the second signal qubit. After interacting with the last signal
qubit, the control qubit is subjected to polarization analysis,
thus projecting the state of all signal qubits.

Let us assume the state of the nth signal qubit to be

|�n〉 = αn|H 〉 + βn|V 〉.
Thus, the state of the entire system can be expressed as

|�c〉
∏
n

|�n〉in = (cos θ |H 〉 + eıϑ sin θ |V 〉)
∏
n

|�n〉in,

where the control qubit |�c〉 has been introduced as in previous
sections. The procedure described in the previous paragraph

router

c

c

D/A

QND s1

s2

}

signal

control

FIG. 6. (Color online) Scheme for multiqubit routing; c denotes
the classical optical coupler. Red lines depict signal modes, while
blue lines depict control modes.

062333-5
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then renders the state to

cos θ |H 〉
∏
n

|�n〉out1 + eıϑ sin θ

3
|V 〉

∏
n

|�n〉out2,

where out1 and out2 denote output ports of the router.
Subsequent detection of the control qubit in the |H 〉 ± |V 〉
basis projects the state to the required form of

cos θ
∏
n

|�n〉out1 + eıϑ sin θ

3

∏
n

|�n〉out2.

Since the routing operation is probabilistic, the success
probability of routing n qubits decreases exponentially with
n. Considering the success probability of one run of the router
to be Psucc (as calculated in previous section), the n-qubit router
will perform with success probability

Ptotal = 21−4n

(
1 − 8

9
sin2 θ

)n

.

It is worth noting that, apart from routing, this procedure
can be used to generate the so-called noon states [37,38].
These states of the form of (|N0〉 + |0N〉), where N denotes
the number of photons, are useful for instance in quantum
metrology [39] or quantum lithography [40].

V. CONCLUSIONS

We have presented an all-linear-optical scheme for a
fully quantum router. The router meets all the requirements
presented in the introduction. This concept is more practical
than some of the previously presented routers making use of
experimentally difficult light-matter interaction or unrealistic
strengths of nonlinear optical phenomena [21–24]. In contrast
to previously published linear-optical schemes, our router
provides genuine quantum routing being controlled by a qubit
while not disturbing the state of the signal qubit (in contrast
to [25]). Also, it only requires one control qubit to route a single
signal qubit, making it more resource efficient (in contrast
to [26]).

The proposed scheme operates with success probabilities
ranging between 1

8 and 1
24 depending on the control qubit state.

We also discuss optimization of the success probability that
can be reached by using tunable c-phase gates. The presented
analysis shows how efficiency can be increased up to 1

2 if only
a small amplitude of the signal is needed to be sent to output
port 2. Note also that detector efficiency just scales the success
probability but does not change fidelity of the output.

We have also provided a recipe for a multiqubit router,
in which the same control qubit is used to route the general
number of signal qubits. In this case, the success probability of
the procedure scales exponentially with the number of routed
signal qubits.

While the entire scheme presented in this paper relies
only on linear-optical quantum gates, it should be pointed out
that the same setup can be constructed using gates based on
nonlinear optical phenomena. Namely, the modified version
as depicted in Fig. 4(b) can be transposed to nonlinear
optics straightforwardly simply by replacing linear-optical
c-phase gates by their nonlinear analogs. The benefit of
such construction would be a significant improvement in
success probability, since nonlinear c-phase gates can work
deterministically. Also, the need for QND presence detec-
tion of the control qubit would become redundant. The
nonlinear implementation of the c-phase gate is a heav-
ily investigated topic currently facing severe experimental
challenges [41–45].
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