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Security of decoy-state protocols for general photon-number-splitting attacks
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Decoy-state protocols provide a way to defeat photon-number-splitting attacks in quantum cryptography
implemented with weak coherent pulses. We point out that previous security analyses of such protocols relied
on assumptions about eavesdropping attacks that considered treating each pulse equally and independently. We
give an example to demonstrate that, without such assumptions, the security parameters of previous decoy-state
implementations could be worse than the ones claimed. Next we consider more general photon-number-splitting
attacks, which correlate different pulses, and give an estimation procedure for the number of single-photon signals
with rigorous security statements. The impact of our result is that previous analyses of the number of times a
decoy-state quantum cryptographic system can be reused before it makes a weak key must be revised.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–4] allows two parties,
Alice and Bob, to establish a common and secret key S that
is informationally secure; see [5–7] and references therein. A
widely used setup for QKD is the one suggested by Bennett
and Brassard (BB84) [2]. BB84 is ideally implemented by
preparing and transmitting single-photon pulses. Information
can be encoded in the state of one of two conjugate polarization
bases, e.g., vertical/horizontal or diagonal/antidiagonal. Only
those photons that were prepared by Alice and detected by
Bob in the same basis are useful to build a sifted key, which
forms S after additional steps of information reconciliation
and privacy amplification. Security follows from the inability
of faithfully copying quantum information [8] and the unavoid-
able information-disturbance trade-off in quantum mechanics.
Nevertheless, realistic implementations of BB84 use weak
coherent photon pulses that could involve many photons,
avoiding the assumptions made in security analyses [9–11].
Such pulses could be exploited by Eve, the eavesdropper, to
gain access to the (insecure) distributed key using a so-called
photon-number-splitting (PNS) attack [12,13]. In a simple
proposed PNS attack, Eve measures the number of photons
in the pulse, n. If n = 1, Eve blocks the pulse. If n � 2, Eve
“splits” the pulse to obtain a copy of a single photon with the
correct polarization and keeps it in her quantum memory. Eve
could then obtain a full copy of S by making measurements of
her photons in the correct polarization bases, which are known
after a public discussion between Alice and Bob. Since Alice
and Bob cannot measure n, a PNS attack may go undetected.
Our goal is to provide a protocol for secure QKD in the
presence of PNS attacks.

A simple approach to overcome a PNS attack considers
reducing the probability of multiphoton pulses by reducing the
coherent-pulse intensities. The drawback with this approach
is that the probability of creating single-photon pulses is also
reduced. Then, the rate at which bits to build S are sifted
is far from optimal [13,14]. Another approach is to use decoy
states that allow one to detect PNS attacks without a substantial
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reduction of the rate of sifted bits if Eve is not present [15–17].
In a decoy-state protocol (DSP), one of several weak coherent
sources is randomly selected for each pulse. Such sources
create pulses of different intensities (mean photon numbers).
This gives Alice and Bob a means to estimate f0 and f1, the
number of Bob’s detections due to empty and single-photon
pulses prepared by Alice, in the same basis, respectively. The
values of f0 and f1 are important to determine |S|, the length
of the secure key. For example, in the discussed PNS attack, f1

is substantially smaller than its value when Eve is not present,
and so is |S|.

In more detail, we let K � 1 be the total number of
pulses prepared by Alice. We first assume that the channel
is nonadversarial, i.e., no eavesdropping attacks are present.
If the pulse has a random phase, the number of photons it
contains is sampled according to the Poisson distribution:

pμ
n = Pr(n|μ) = e−μ μn

n!
, (1)

where μ is the mean photon number for that source and
μ � 1 in applications. We let η be the transmission/detection
efficiency of the quantum channel shared by Alice and Bob.
If b = 1 (b = 0) denotes the event in which Bob detects a
nonempty (empty or vacuum) pulse,

yn = Pr(b = 1|n)

is the probability of a detection by Bob given that Alice’s
prepared pulse contained n photons. yn is the so-called n-
photon yield and yn < 1 due to losses in the channel. For
n � 1, we may assume

yn = 1 − (1 − η)n,

which is a good approximation in applications. For n = 0, y0 >

0 denotes Bob’s detector dark-count rate. The total probability
of Bob detecting a pulse (in any one cycle) is the total yield

Y (μ) = Pr(b = 1) =
∑
n�0

Pr(n|μ)yn = e−μy0 + 1 − e−μη.

(2)

Y (μ) can be estimated by Alice and Bob, via public discus-
sion, from the frequency of detections after all pulses were
transmitted.
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In QKD, we allow Eve to manipulate the parameters that
characterize the channel at her will. We use the superscript E to
represent the interaction of Eve with the communication. For
example, yE

n denotes the n-photon yield in the presence of Eve.
In a general intercept-resend attack, Eve may intercept a pulse
and resend a different one. That is, each detection by Bob is not
guaranteed to come from the same pulse that Alice prepared. In
a simple PNS attack, Eve makes nondemolition measurements
of n. With this information, Eve sets yE

1 = 0 �= y1 and yE
n � yn

for n � 2, so that

Y (μ) ≈ Y E (μ).

Then, if Alice and Bob can only estimate the total yields,
a PNS attack could be “invisible” with the right choices of
yE

2 ,yE
3 , . . .. To increase the multiphoton yield, Eve may use

an ideal channel to resend the pulses. (Note that sophisticated
PNS attacks that do not change the Poisson distribution are
possible [13].) A PNS attack allows Eve to have the full key
S if

Pr(n � 2|μ) � Y (μ).

In this case, Eve possesses a photon with the same polarization
as that of the pulse detected by Bob and no single-photon
pulses are involved in creating S. Only if Pr(n � 2|μ) < Y (μ)
are some security guarantees possible [14]. Such an inequality
is satisfied when μ ≈ η, implying a rate for sifted bits of order
η2 [Eq. (2)]. This is undesirably small (η � 1).

Remarkably, DSPs give an optimal rate of order η with
small resource overheads. A goal in a DSP is to estimate
yE

0 and yE
1 , which provide a lower bound on f E

0 and f E
1 ,

respectively. Empty and single-photon pulses cannot be split
and the information carried in their polarization cannot be
faithfully copied, making them useful for creating a secure key.
For the estimation, Alice uses photon sources with different
values of μ, but they are identical otherwise. In a conventional
DSP, it is assumed that Eve’s PNS attack treats every n-photon
pulse equally and independently, regardless of its source. That
is, Eve’s attack is simulated by independent and identically
distributed (i.i.d.) random variables. The total yield in this
case is, for any given μ,

Y E (μ) =
∑
n�0

pμ
n yE

n . (3)

Equation (3) describes mathematically what we denote as the
i.i.d. assumption. It follows that

yE
0 = Y E (μ)|μ=0, yE

1 = ∂μ[eμY E (μ)]|μ=0. (4)

Then, if Eve’s attack satisfies Y (μ) ≈ Y E (μ) for all μ,

yE
0 ≈ y0, yE

1 ≈ y1 = η.

That is, by being able to estimate Y E (μ) for two values of
μ � 1 via public discussion, Alice and Bob can restrict Eve’s
attack so that the dark-count rate and single-photon yield are
almost unchanged from the nonadversarial case. In addition,
if a third source with μ ≈ 1 is randomly invoked, an optimal
key rate of order η will be achieved.

In reality, the estimation of yE
0 and yE

1 is subject to
finite statistics and can be technically involved. Nevertheless,
the i.i.d. assumption in Eq. (3) allows Alice and Bob to
gain information about Eve’s attack by running the protocol

and analyzing the (binomial) distributions of the detection
events for each source. However, we remark that if Eve
were to correlate her attacks, the i.i.d. assumption and the
corresponding security analyses would be invalid. This is the
main motivation behind our analysis.

In this paper, we give an example that shows how the
i.i.d. assumption can be simply bypassed by Eve, resulting
in security parameters that are worse from those obtained
under the assumption. We then analyze the security of DSPs
for general PNS attacks. Our main result is an estimation
procedure that gives a lower bound on f E

0 and f E
1 , with a

confidence level that is an input to the estimation procedure.
Our security analysis does not use the i.i.d. assumption and
is particularly relevant when Eve performs a PNS attack that
could correlate different pulses in one session or even different
sessions. We compare some results obtained by our estimation
procedure with those obtained by using the i.i.d. assumption,
and we emphasize the importance of our procedure.

II. THE SECURITY PARAMETER, THE I.I.D.
ASSUMPTION, AND FINITE STATISTICS

Of high significance in cryptographic protocols is ε, the
so-called security parameter. ε measures the deviation of a
real protocol implementation from an ideal one. We use the
same definition used in Ref. [7], which states that a real QKD
protocol is ε-secure if it is ε-indistinguishable from a perfectly
secure and ideal one. This definition is equivalent to a statement
on the trace norm of the difference between the quantum states
resulting from the real and ideal protocols, respectively. It
implies that a QKD protocol that is ε-secure can be safely
reused order 1/ε times without compromising its security.

Usually, one fixes a value for ε and then determines the
size of S based on several protocol performance parameters.
These parameters include the number of pulses sent by Alice,
the number of pulses detected by Bob, and the estimated bit
error rates at each mean photon number. For DSPs, ε has a
component εDSP that determines the confidence level in the
estimation of a lower bound of f E

0 and f E
1 , due to finite

statistics.
A possible way to obtain such lower bounds, under the i.i.d.

assumption, is the one followed in Ref. [17]. In this case, we
consider a DSP with three sources, i = U,V,W . The mean
photon number in each pulse, for each source, is μU = 0,
μV � 1, and μW ∈ O(1). Each source i randomly prepares a
pulse with probability qi and we let Ki be the total number
of pulses for that source. Ki is known to Alice and Bob by
public discussion after all pulses are sent and Ki ≈ qiK when
K � 1. We write Di,E for the random variable that counts
the number of pulses from source i detected by Bob under
the presence of Eve [18]. The exact value that Di,E takes in
a session can also be obtained by Alice and Bob via public
discussion after the pulses were transmitted.

Under the i.i.d. assumption [Eq. (3)], Di,E is sampled
according to the binomial distribution. Then, Di,E/Ki is an
estimator of the total yield Y E (μi) = E[Di,E/Ki], where E[.]
denotes the mean value. That is, for a given ε̄DSP, we can
establish confidence intervals

Di,E

Ki
+ c(ε̄DSP)σ i,E � Y E (μi) � Di,E

Ki
− c(ε̄DSP)σ i,E , (5)
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with confidence level 1 − ε̄DSP. The constant c depends on
ε̄DSP and can be obtained by using Chernoff’s bound [19] (see
Appendix B). The standard deviation in this case is

σ i,E ≈
√

Y E (μi)[1 − Y E (μi)]

qiK
. (6)

Using Eq. (3) for Y E (μi), we can search for the minimum
values of yE

0 and yE
1 that satisfy Eqs. (5), e.g., by executing

a linear program. Both yE
0 and yE

1 can then be used to obtain
the desired lower bounds on f E

0 and f E
1 , respectively, with

corresponding confidence level 1 − εDSP. This last step also
requires using the i.i.d. assumption [20].

III. INCREASING THE LENGTH OF CONFIDENCE
INTERVALS: AN ATTACK

The analysis in Sec. II used the i.i.d. assumption that
resulted in a value for σ i,E given by Eq. (6). Nevertheless,
the actual value of σ i,E could be much higher in more general
PNS attacks. For the same confidence level, a bigger σ i,E

implies a “wider” confidence interval for the estimation of the
yield Y E (μi) (Appendix B) and thus smaller lower bounds on
f E

0 and f E
1 . The overall result in the DSP is a secret key S of

smaller size for the same security parameter.
To illustrate how Eve can bypass the i.i.d. assumption, we

suggest a potential attack that results in almost no change for
the total yields [i.e., Y (μi) ≈ Y E (μi)] [21] but the variances
σ i,E are increased with respect to those of the binomial
distribution [Eq. (6)]. The suggested attack could be detected
by Alice and Bob by estimating the variances directly via
public discussion. Nevertheless, it still shows that a better
analysis of the security of DSPs is needed to make rigorous
claims.

In the attack, Eve first picks an integer value for τ � 1,
where τ 2 denotes a scale for a variance or “correlation” of
a particular distribution. Eve receives all pulses from Alice
and we let kn be the total number of n-photon pulses in the
protocol. Note that the exact value of kn is known to Eve but
not to Alice and Bob. In general, kn is sampled according to
the binomial distribution

Pr(kn) =
(

K

kn

)
(pn)kn(1 − pn)K−kn ,

where pn is the probability of a pulse containing n photons:

pn = ∑
i q

ip
μi

n . The mean and variance for such distribution
are

E[kn] = pnK, σ 2
kn

= pn(1 − pn)K.

Given kn, Eve randomly picks a value for dE
n ∈

{0,1, . . . , kn}, where dE
n = ∑

i d
i,E
n is the total number of detec-

tions due to n-photon pulses prepared by Alice. In particular,
we assume that Eve can control dE

0 , which determines the
dark-count rate. The distribution associated with dE

n has the
following properties:

E[dE
n |kn] = ynkn, σ 2

dE
n |kn

= τ 2yn(1 − yn)kn. (7)

We let di,E
n be the number of n-photon pulses, prepared by

Alice’s ith source only and detected by Bob. The exact value
of di,E

n is unknown to all parties. Because Eve does not know
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FIG. 1. (Color online) The standard deviations σU,E and σV,E

for an attack in which Eve correlates n-photon pulses according to
the value of τ . The channel parameters are 1 � τ � 100, K = 1010,
qU = 0.01, qV = 0.0275, μU = 0, μV = 0.063, η = 10−3, and y0 =
2 × 10−6 [17]. The results in Sec. II are recovered for τ = 1.

the source being used in the DSP, di,E
n is sampled according to

the binomial distribution when given dE
n :

Pr
(
di,E

n |dE
n

) =
(

dE
n

di,E
n

)(
qi

n

)di,E
n

(
1 − qi

n

)dE
n −di,E

n , (8)

where

qi
n = qie−μi

(μi)n∑
i ′=U,V,W qi ′e−μi′ (μi ′)n

. (9)

The distribution associated with di,E
n satisfies

E
[
di,E

n |dE
n

] = qi
nd

E
n , σ 2

d
i,E
n |dE

n

= qi
n

(
1 − qi

n

)
qE

n .

As in Sec. II, we let (σ i,E )2 be the variance associated with
the random variable Zi,E = Di,E/Ki , where

Di,E =
∑
n�0

di,E
n (10)

and E[Zi,E ] = Y E (μi). An accurate estimate of Zi,E can be
obtained if we approximate Ki ≈ qiK , in the limit of large
K . In addition, because K is fixed, the variables kn are not
independent. However, in the large-K limit, kn can also be
approximated by its mean value. This implies that the kn are
almost independent and so are the dE

n and di,E
n for different

values of n. Under these approximations,

(σ i,E )2 ≈ 1

(qiK)2

∑
n�0

σ 2
d

i,E
n

. (11)

In Appendix A we show that

σ 2
d

i,E
n

= [
(τ 2 − 1)qi

n(1 − yn) + (
1 − qi

nynpn

)]
qi

nynpnK. (12)

By inserting Eq. (12) in Eq. (11), we can obtain the variances
as a function of τ . In Fig. 1 we compute σU,E and σV,E . The
i.i.d. assumption discussed in Sec. II corresponds to τ = 1
(see Appendix A). Using these results in Eq. (5) yields wider
confidence intervals for the same confidence level.

To illustrate our point further, we consider a simple
protocol in which a single source U is used to estimate the
dark-count rate. Here, μU = 0 and dE

0 = DU,E is known.
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FIG. 2. (Color online) Estimation of dark counts: confidence
intervals for different correlated attacks, parametrized by τ , and
confidence bounds, parametrized by c.

In the nonadversarial case, dE
0 is sampled according to the

binomial distribution with probability y0 and known sample
size k0 = KU . Nevertheless, for the correlated attack, we
assume that Eve “receives” the KU pulses and groups them
according to blocks of size τ 2. Then, Eve will force (prevent)
the detection of all pulses in any one block with probability
y0 (1 − y0). The random variable dE

0 for the correlated attack
satisfies

E[dE
0 ] = y0k0,

σ 2
dE

0
(τ ) = [y0(τ 2)2 − (y0τ

2)2]
k0

τ 2
= τ 2y0(1 − y0)k0,

and τ = 1 corresponds again to the i.i.d. assumption [see
Eq. (7)]. In Fig. 2, we plot the probability that ZU,E =
DU,E/KU satisfies

E[ZU,E ] + cσdE
0
(1) � ZU,E � E[ZU,E ] − cσdE

0
(1),

for different values of c and τ . For τ = 1, such a probability
corresponds to the confidence level in Eq. (5). E[ZU,E ] = y0

in this example.
Our results demonstrate that, for a fixed security parameter,

the accuracy in the estimation of the dark-count rate strongly
depends on Eve’s attack and can be substantially different from
the one obtained under the i.i.d. assumption (τ = 1).

IV. SECURITY OF DSP: CORRELATED PNS ATTACKS

We go beyond the i.i.d. assumption and study more general
and correlated PNS attacks, in which Eve has full control
of Bob’s detection events. The secure key rate in a realistic
implementation of QKD is [17]

s � f E∗
0 + f E∗

1 − κECF EH2(BER) − κPAf E∗
1 H2

(
bmax

1

)
, (13)

which determines the size of the distributed key as |S| = sK .
F E is the total number of pulses detected by Bob and prepared
by Alice in the same basis, which are useful for the sifted
key. In BB84, F E ≈ DE/2, where DE is the total number of
detections. f E∗

n is a lower bound on f E
n , the number of n-photon

pulses prepared and detected in the same basis. H2(.) is the
Shannon entropy, κEC and κPA are coefficients due to the error
correction and privacy amplification steps, BER is the total bit
error rate, and bmax

1 is an upper bound to the bit error rate due
to single-photon pulses only.

FIG. 3. (Color online) A general PNS attack with three decoy
sources: μU = 0, μV � 1, and μW ∈ O(1). Each block represents
the number of pulses with n = 0,1,2, . . ., respectively. The random
variables kn indicate the number of n-photon pulses prepared by Alice
and the superscript i denotes the source used for such pulses. Eve’s
attack controls the number of detections by Bob, due to n-photon
pulses, through dE

n .

In a DSP, we characterize a general PNS attack by the
distribution

Pr
(
dE

0 ,dE
1 , . . . |k0,k1, . . .

)
; (14)

see Fig. 3 for an example. Our goal is to build an estimation
procedure that places confidence intervals on f E

0 = ∑
i f

i,E
0

and f E
1 = ∑

i f
i,E
1 from the known Di,E . These intervals

ultimately imply a lower bound on s [see Eq. (13)].
We assume that there are three sources satisfying μU =

0 < μV < μW , and μW ∈ O(1). Nevertheless, our analysis
can be easily generalized to the case in which more sources
are present, where the estimation is more accurate. For
each source, Bob’s detections satisfy Eq. (10). If a simple
relationship between each di,E

n and dE
n could be found, we

could execute a program to solve Eqs. (10). Such a relationship
could be obtained from the binomial distribution associated
with di,E

n , when given dE
n [Eq. (8)] (see below).

Our estimation procedure uses di,E
n to determine the

confidence intervals

�i,n

(
di,E

n

)
� dE

n � φi,n

(
di,E

n

)
. (15)

The corresponding confidence level for each inequality is 1 −
εn/2. The upper and lower bounds are monotonic and invertible
functions. Then,

φ−1
i,n

(
dE

n

)
� di,E

n � �−1
i,n

(
dE

n

)
, (16)

with the same confidence levels. Such confidence levels do
not result from the binomial distribution as we are analyzing
the inverse problem, namely, the estimation of dE

n from the
available information (i.e., Di,E and Ki). From Eqs. (10) and
(16), we obtain∑

n�0

φ−1
i,n

(
dE

n

)
� Di,E �

∑
n�0

�−1
i,n

(
dE

n

)
; (17)

see Fig. 4 for an example.
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dV,E
0 dV,E

1

dE0 dE1
Φ−1

V,1(d
E
1 )Φ−1

V,0(d
E
0 )

φ−1
V,0(d

E
0 )V,0 φ−1

V,1(d
E
1 )

Pr ≥ 1 − ( 0 + 1)

FIG. 4. (Color online) Upper and lower bounds on d
V,E
0 + d

V,E
1 ≈

dV,E . The yellow (bottom) blocks represent the number of pulses
from source V with n = 0 and n = 1. The black (upper left) and
blue (upper right) blocks represent the total number of pulses with
n = 0 and n = 1, respectively. The confidence level for this case is
not smaller than 1 − (ε0 + ε1).

Next, our estimation procedure executes a program to obtain
dE∗

0 and dE∗
1 , the corresponding smallest values of dE

0 and dE
1 ,

subject to the constraints given by Eqs. (17). From the union
bound, the confidence level in such values is 1 − ε̄DSP, with

ε̄DSP � 3
∑
n�0

εn, (18)

when three sources are used. Since f E∗
0 and f E∗

1 are sampled
according to a binomial distribution when given F E (i.e., the
preparation and detection basis are random), we obtain

f E∗
n = F E dE∗

n

DE − c(δ̄DSP)

√
F E dE∗

n

DE

(
1 − dE∗

n

DE

)
, (19)

where the constant c(δ̄DSP) � 0 can be obtained using Eq. (B3).
The overall confidence level for the key rate s is 1 − εDSP,
where the security parameter satisfies

εDSP � ε̄DSP + δ̄DSP. (20)

In the next section we obtain the confidence intervals and levels
specifically for our method.

V. CONFIDENCE INTERVALS FOR THE
ESTIMATION PROCEDURE

Our method takes εDSP as input and outputs f E∗
0 and f E∗

1 .
To satisfy Eq. (20), we can set

c(δ̄DSP) = 2
√| log(εDSP/2)| (21)

and

εn = (εDSP/12)(1/2)n (22)

[see Eqs. (B3) and (C1)]. Next, we will find dE∗
0 and dE∗

1 as
required by Eq. (19).

If φ depends on di,E
n only, the probability that dE

n is smaller
than φ is

K∑
dE

n =0

Pr
(
dE

n

) ∑
dE

n �d
i,E
n >ui

n

Pr
(
di,E

n

∣∣dE
n

) = εn

2
, (23)

with

ui
n = φ−1

i,n

(
dE

n

)
.

When given dE
n , the random variable di,E

n is sampled according
to Eq. (8). From Chernoff’s bound (Appendix B)

εn� 2 max
0�dE

n �K
exp

{
−

(
ui

n − qi
nd

E
n

)2

4qi
n

(
1 − qi

n

)
dE

n

}
, (24)

and we choose the lower bound so that

φi,n

(
di,E

n

) = di,E
n

qi
n

− cn

1 − qi
n

2qi
n

⎡
⎣

√√√√c2
n + 4d

i,E
n(

1 − qi
n

)2 − cn

⎤
⎦,

(25)

with cn � 0. The error probability satisfies

εn � 2 exp
{ − c2

n/4
}
; (26)

see Appendix C. A similar analysis gives the upper bound

�i,n

(
di,E

n

) = di,E
n

qi
n

+ cn

1 − qi
n

2qi
n

⎡
⎣

√√√√c2
n + 4d

i,E
n(

1 − qi
n

)2 + cn

⎤
⎦,

(27)

with the same confidence level. Then, to satisfy Eq. (22), it
suffices to set

c2
n(εDSP) = 4| log(εDSP/24) + n log(1/2)|.

To complete the estimation procedure, we invert Eqs. (25)
and (27) and obtain∑

n�0

qi
nd

E
n + cn(εDSP)

√
qi

n

(
1 − qi

n

)
dE

n � Di,E ,

(28)
Di,E �

∑
n�0

qi
nd

E
n − cn(εDSP)

√
qi

n

(
1 − qi

n

)
dE

n .

We can then execute a program that finds the minimum values
of dE

0 and dE
1 subject to Eqs. (28). For instance, a quadratic

program can be used to search
√

qi
nd

E∗
n . Such minimum values

will be used in Eqs. (19) and (13) to obtain the key rate.
A technical remark is in order. When n → ∞, qi

n(1 −
qi

n) → 0 exponentially fast in n. Then, the contribution of
large-n terms in Eqs. (28) is negligible. We can set a suitable
cutoff nmax � n in the number of photons per pulse in our
analysis, to avoid unnecessary computational overheads in
finding dE∗

0 and dE∗
1 , and with an insignificant impact in the

estimated values.

VI. CONCLUSIONS

We analyzed general photon-number-splitting attacks and
pointed out that previous security analyses on decoy-state
protocols for QKD made a strong assumption on the attack. We
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provided an estimation procedure that sets a lower bound on
the size of the secure, distributed key, with the corresponding
confidence levels. Our procedure requires executing a program
to find the minimum values of the number of detections due to
empty and single-photon pulses, subject to constraints that are
determined by the results of the protocol and by the desired
security parameter. This results in rigorous security guarantees
even if Eve correlates her attack according to the number of
photons in the pulse.

We emphasize that our estimation procedure is not unique:
Any time that a confidence interval can be set as a function
of publicly available information for general attacks, then an
estimation procedure is possible. In addition, our choice of
confidence intervals and εn is not essential and could be further
optimized to improve the size of the secure key.
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APPENDIX A: PROPERTIES OF ZE
i

We let X ∈ {0,1, . . . ,K} be a random variable and
f (X) the probability distribution. The random variable Y ∈
{0,1, . . . ,K} has the conditional distribution g(Y |X). The
probability of Y is h(Y ) = ∑K

X=0 g(Y |X)f (X). Then, it is
easy to show that

σ 2
Y = E

[
σ 2

Y |X
] + σ 2

E[Y |X], (A1)

where

σ 2
Y =

K∑
Y=0

h(Y )Y 2 −
(

K∑
Y=0

h(Y )Y

)2

is the variance of Y . Also,

E[Y |X] =
K∑

Y=0

g(Y |X)Y

is the expected value of Y when given X,

σ 2
E[Y |X] =

K∑
X=0

f (X)E[Y |X] −
(

K∑
X=0

f (X)E[Y |X]

)2

is the variance of E[Y |X],

σ 2
Y |X =

K∑
Y=0

g(Y |X)Y 2 −
(

K∑
Y=0

g(Y |X)Y

)2

is the variance of Y when given X, and

E
[
σ 2

Y |X
] =

K∑
X=0

f (X)σ 2
Y |X

is the expected value of such a variance.

In the attack discussed in Sec. III, K is fixed and the
distribution of kn satisfies

E[kn] = pnK, σ 2
kn

= pn(1 − pn)K.

Next, dE
n is chosen such that, when given kn,

E
[
dE

n

∣∣kn

] = ynkn, σ 2
dE

n |kn
= τ 2yn(1 − yn)kn.

It follows that

E
[
σ 2

dE
n |kn

] = τ 2yn(1 − yn)pnK,

σ 2

E

[
dE

n |kn

] = (yn)2σ 2
kn

= (yn)2pn(1 − pn)K.

Then,

σ 2
dE

n
= τ 2yn(1 − yn)pnK + (yn)2pn(1 − pn)K.

When given dE
n , the distribution for di,E

n satisfies

E
[
di,E

n

∣∣dE
n

] = qi
nd

E
n , σ 2

d
i,E
n |dE

n

= qi
n

(
1 − qi

n

)
dE

n .

Therefore,

σ 2

E

[
d

i,E
n

∣∣dE
n

] = (
qi

n

)2
σ 2

dE
n
, E

[
σ 2

d
i,E
n |dE

n

] = qi
n

(
1 − qi

n

)
ynpnK.

Also,

σ 2
d

i,E
n

= (
qi

n

)2
σ 2

dE
n

+ qi
n

(
1 − qi

n

)
ynpnK

= (
qi

n

)2
[τ 2yn(1 − yn)pnK + (yn)2pn(1 − pn)K]

+ qi
n

(
1 − qi

n

)
ynpnK

= [
(τ 2 − 1)qi

n(1 − yn) + (
1 − qi

nynpn

)]
qi

nynpnK.

The first term on the right-hand side vanishes when τ = 1. The
second term is(

1 − qi
nynpn

)
qi

nynpnK = (
1 − qiynp

μi

n

)
qiynp

μi

n K,

so that ∑
n�0

σ 2
d

i,E
n

= qiY (μi)K − (qi)2K
∑
n�0

[
ynp

μi

n

]2
,

for τ = 1. Moreover, since
∑

n�0[ynp
μi

n ]2 � Y (μi) � 1, then∑
n�0

σ 2
d

i,E
n

≈ qiY (μi)[1 − Y (μi)]K,

which shows that the case discussed in Sec. II, i.e., the i.i.d.
assumption, corresponds to choosing τ = 1 in this case.

APPENDIX B: CHERNOFF BOUND

Chernoff’s bound [19] sets a bound on the probabilities of
“rare” events as a function of the standard deviation of the cor-
responding distribution. More precisely, we let X1,X2, . . . ,Xn

be a set of i.i.d. random variables that satisfy |Xj | � 1 and
define X = ∑

j Xj . A general version of Chernoff’s bound
implies

Pr[X > E[X] + cσ ] � exp{−c2/4}, (B1)

where σ = n1/2
√

E[(Xj )2] − (E[Xj ])2 is the standard devia-
tion. For the special case of the binomial distribution where
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Xj = 1 with probability a and Xj = 0 otherwise,

σ =
√

na(1 − a), E[X] = na,

and

Pr[X > k] = Ia(k,n − k + 1)

� exp{−(k − na)2/[4a(1 − a)n]}. (B2)

Here, Ia(k, n − k + 1) is the so-called regularized incomplete
beta function. To satisfy Pr[X > k] � ε, it suffices to choose
c such that

|c| = 2
√

| log ε|. (B3)

APPENDIX C: CALCULATIONS OF ERRORS

If εn � (ε/12)(1/2)n, then

ε̄ =
∑

i

∑
n

εn � 3(ε/12) · 2 = ε/2, (C1)

where we considered that three sources i are involved in the
DSP.

Chernoff’s bound for the binomial distribution [Eq. (B2)]
implies that

εn � 2 exp

{
−

(
ui

n−qi
nd

E
n

)2

4qi
n

(
1−qi

n

)
dE

n

}
.

If we set

ui
n = φ−1

i,n

(
dE

n

) = qi
nd

E
n + cn

√
qi

n

(
1 − qi

n

)
dE

n , (C2)

then

εn � 2 exp
{− c2

n/4
}
,

as in Eq. (26). Replacing ui
n by di,E

n and dE
n by φi,n(di,E

n ) in
Eq. (C2), and solving the resulting quadratic equation, we
obtain√

φi,n

(
d

i,E
n

)
=

[
− cn

√
qi

n

(
1 − qi

n

) +
√

c2
nq

i
n

(
1 − qi

n

)+ 4qi
nd

i,E
n

]
/
(
2qi

n

)
.

That is,

φi,n

(
di,E

n

) = di,E
n

qi
n

+ c2
n

(
1 − qi

n

)
2qi

n

−
cn

√
c2
n

(
1 − qi

n

)[(
1 − qi

n

) + 4d
i,E
n

]
2qi

n

,

which yields Eq. (25). Changing cn → −cn provides the
upper bound without changing εn, i.e., the confidence
level.
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