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The security proofs of continuous-variable quantum key distribution are based on the assumptions that the
eavesdropper can neither act on the local oscillator nor control Bob’s beam splitter. These assumptions may
be invalid in practice due to potential imperfections in the implementations of such protocols. In this paper,
we consider the problem of transmitting the local oscillator in a public channel and propose a wavelength
attack which allows the eavesdropper to control the intensity transmission of Bob’s beam splitter by switching
the wavelength of the input light. Specifically we target continuous-variable quantum key distribution systems
that use the heterodyne detection protocol using either direct or reverse reconciliation. Our attack is proved to
be feasible and renders all of the final keys shared between the legitimate parties insecure, even if they have
monitored the intensity of the local oscillator. To prevent our attack on commercial systems, a simple wavelength
filter should be randomly added before performing monitoring detection.
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I. INTRODUCTION

Quantum key distribution (QKD) enables two distant
partners, Alice and Bob, to share common secret keys in
the presence of an eavesdropper, Eve [1,2]. In theory, the
unconditional security of the QKD protocol is guaranteed
based on the laws of physics, in particular, the no-cloning
theorem. But in practice, the key components of practical
QKD systems have imperfections that do not fulfill the
assumptions of ideal devices in theoretical security proofs.
In discrete-variable QKD, imperfect devices such as single-
photon detectors, phase modulators, Faraday mirrors, and fiber
beam splitters open security loopholes to Eve and lead to
various types of attacks [3–12].

Continuous-variable (CV) QKD [13] has developed im-
mensely over the past decade [14], to the point that
there are companies selling commercially available systems
[15,16]. Even so, CV-QKD is potentially vulnerable to such
idealization-to-practical problems that plague its discrete
variable counterpart. In CV-QKD protocols, Alice encodes the
key information onto the quadratures, X̂ and P̂ , on a bunch
of coherent states and sends them on to Bob. Bob measures
one or both quadratures by performing homodyne [17] or
heterodyne [18] detection on the signal with a relatively strong
local oscillator (LO). Finally, they perform direct or reverse
reconciliation and a privacy amplification process to distill a
common secret key [1,13]. In practice, it is extremely difficult
for Bob to generate an LO with the same initial polarization
and phase as Alice’s signal. Therefore, Alice prepares both the
signal and the LO and sends them to Bob in the same optical
fiber channel at the same time to avoid large drifts of the relative
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polarization and phase [19]. However, this implementation
leaves a security loophole open for Eve.

In Ref. [20], the authors proposed an equal-amplitude
attack. To perform this attack, Eve first intercepts the signal
and LO and measures both of the quadratures by performing
heterodyne detection on them. According to her measurement
results, she reproduces two weak squeezed states which have
the same intensity level as the signal and sends them onto Bob.
Bob treats these two fake states as signal and LO and performs
detections on them as usual. But now the detection is neither
homodyne nor heterodyne detection, therefore Eve is able to
make the extra noise of Bob’s measurement much lower than
the shot noise level. As a result, the total deviation between
Bob’s measurement and Alice’s preparation is lower than
the tolerable threshold derived from the theoretical security
proofs [21,22]. Hence Alice and Bob cannot discover the
presence of Eve.

In order to prevent this attack without modifying the
original measurement setup, Bob needs to monitor the total
intensity or the LO intensity [20]. We note that in this attack,
Eve is assumed to be unable to control Bob’s beam splitters.
But in one of our recent studies [12], we found that it is
possible for Eve to control the outputs of fiber beam splitters
by utilizing their wavelength-dependent properties [23–25].
Importantly, such wavelength-dependent properties can be
found in commercial CV-QKD systems [15,16]. Making use
of this loophole, we propose a wavelength attack on a practical
CV-QKD system using a heterodyne detection protocol [18].
Using this attack Eve can, in principle, achieve all of the secret
keys without being discovered, even if Bob has monitored the
total intensity or the LO intensity. Such an attack has practical
and commercial consequences.

In the security analysis of CV-QKD protocols with direct
(reverse) reconciliation, VA|B (VB|A), Alice (Bob)’s conditional
variance of Bob (Alice) has a status similar to that of the
quantum bit error rate in discrete-variable QKD protocols. To
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show that the hidden Eve would not be discovered in our attack,
our method proves that the upper bound of VA|B (VB|A) under
our wavelength attack is always lower than the maximum value
allowed by the secret key rate formula [18,22].

This paper is organized as follows. In Sec. II, we first
review the heterodyne protocol and the wavelength-dependent
properties of certain fiber beam splitters, then we propose
a wavelength attack scheme on an all-fiber CV-QKD system
using a heterodyne protocol in Sec. III. We prove the feasibility
of this wavelength attack in Sec. IV and, finally conclude in
Sec. V.

II. PRELIMINARY

A. Heterodyne detection protocol

In the heterodyne protocol [18], Alice first prepares a
displaced vacuum state that will be sent to Bob. This is
realized by choosing two real numbers XA and PA from a
Gaussian distribution of variance VA and zero mean. The
whole ensemble of coherent states that Alice will send to
Bob is given by the thermal state with variance V = VA + 1.
Bob receives this coherent state and simultaneously measures
both the amplitude and the phase quadratures of the state using
heterodyne detection. After repeating this process many times,
they finally extract a binary secret key by using either a direct
reconciliation [26] or a reverse reconciliation algorithm [18].
A typical CV-QKD system using a heterodyne protocol can be
realized by the schematic shown in Fig. 1. In this scheme, time
and polarization multiplexing are used so that the signal and
LO can be transmitted in the same channel without interfering.
To avoid the equal-amplitude attack [20], Bob uses a 10:90
beam splitter (not depicted in the figure) before the polarization
beam splitter to monitor the LO intensity [14].

To perform the heterodyne detection, Bob uses the photode-
tector to convert the photons into a photocurrent î. Here î and
the photon number n̂ are related by î = qn̂ = qâ†â, where â

and â† are the annihilation and creation operators of the light
state, and q is a suitable constant [27]. The extra quantum noise
δα̂v is unavoidable in Bob’s measurement results when he uses
heterodyne detection due to the unused port of the 50:50 beam

FIG. 1. Schematic of heterodyne detection protocol. BSa, 1:99
beam splitter; BSb, 50:50 beam splitter; PM, phase modulator;
AM, amplitude modulator; PBS, polarization beam splitter; PC,
polarization controller. Alice generates coherent light pulses with
a 1550-nm laser diode, then separates them into a weak signal and
a strong LO with the BSa. The signal is then modulated randomly
following the centered Gaussian distribution in both quadratures, by
using phase and AMs. The signal and LO are separated in time and
modulated into orthogonal polarizations by the PBS before begin
inserted into the channel.

splitter. To show this, let us first describe the signal and LO
by operators α̂s and α̂LO, respectively. These operators can be
broken up into two contributions [28]: the mean values of the
amplitude α as well as the quantum noise fluctuations δα. The
operators can be written as

α̂s = αs + δα̂s, α̂LO = αLO + δα̂LO, (1)

where αs and αLO are complex numbers and we assume that
the amplitude of the LO is much larger than the signal, i.e.,
|αLO| � |αs |, and δα̂s and δα̂LO are the fluctuations of the
signal and LO, respectively.

The photocurrents read by the four photodetectors can be
written as

î1 = q(α∗
LO + δα̂

′†
LO + α∗

s + δα̂′†
s )

× (αLO + δα̂′
LO + αs + δα̂′

s)/4,

î2 = q(α∗
LO + δα̂

′†
LO − α∗

s − δα̂′†
s )

× (αLO + δα̂′
LO − αs − δα̂′

s)/4,
(2)

î3 = q[e−i π
2 (α∗

LO + δα̂
′†
LO) + α∗

s + δα̂′†
s ]

× [ei π
2 (αLO + δα̂′

LO) + αs + δα̂′
s]/4,

î4 = q[e−i π
2 (α∗

LO + δα̂
′†
LO) − α∗

s − δα̂′†
s ]

× [ei π
2 (αLO + δα̂′

LO) − αs − δα̂′
s]/4.

Here we have absorbed the vacuum noise terms δα̂v into the
terms δα̂′. For simplicity, let us assume that αLO is a real
number. To derive the quadratures X̂ and P̂ , the difference
between the two photocurrents should be measured,

ˆδix = i1 − i2

≈ q(αLOα∗
s + αLOαs + αLOδα̂′†

s + αLOδα̂′
s)/2

= qαLO

2
(αs + α∗

s + δα̂′
s + δα̂′†

s )

= qαLO

2
(X + δX̂′)

→ X̂B = 2

qαLO

ˆδix = X + δX̂′,
(3)

ˆδip = i3 − i4

≈ q(iαLOα∗
s − iαLOαs + iαLOδα̂′†

s − iαLOδα̂′
s)/2

= qαLO

2

(
αs − α∗

s

i
+ δα̂′

s − δα̂
′†
s

i

)

= qαLO

2
(P + δP̂ ′)

→ P̂B = 2

qαLO

ˆδip = P + δP̂ ′,

where X ≡ αs + α∗
s and P ≡ −i(αs − α∗

s ) are the ex-
act quadratures that Bob wants to measure, and
δX̂′ ≡ (δα̂s + δα̂

†
s ) + (δα̂v + δα̂†

v) = δX̂ + δX̂v and δP̂ ′ ≡
−i(δα̂s − δα̂

†
s ) − i(δα̂v − δα̂†

v) = δP + δPv are the quantum
noises entering into Bob’s measurement. Several terms have
been neglected above according to the fact that |αLO| �
|αs |. δX̂ and δP̂ satisfy the canonical commutation relation
[δX̂,δP̂ ] = 2i, therefore the Heisenberg uncertainty relation
〈(δX̂)2〉〈(δP̂ )2〉 = 1 is derivable [27].

Under the condition that Eve cannot act on the LO
(a common assumption in the security proofs [1]), only when
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the excess noise reaches two times the shot-noise level can
Eve perform an intercept-resend attack on the channel [29].
This is due to the fact that Eve will introduce vacuum noise by
using heterodyne detection and, consequently, suffer quantum
fluctuations when she reproduces the signal state in a simple
intercept-resend attack.

B. Wavelength-dependent fiber beam splitter

In Ref. [12], we studied the wavelength-dependent property
of the fiber beam splitter which is made by fused biconical
taper technology [23]. The fused biconical taper beam splitter
is made by closing two or more bare optical fibers, fusing
them in a high-temperature environment, and drawing their
two ends at the same time. Subsequently, a specific biconic
tapered waveguide structure can be formed in the heating area.
The fused biconical taper beam splitter is widely use in fiber
QKD systems because of its features of low insertion loss,
good directivity, and low cost. However, intensity transmission
of the fused biconical taper beam splitter is wavelength
dependent, and most types of fused biconical taper beam
splitters work only in a limited range of wavelengths (limited
bandwidths), where the intensity transmission of the beam
splitter can be defined as T ≡ Iport1/(Iport1 + Iport2), where
Iport1 (Iport2) is the output light intensity from beam splitter’s
output port 1 (port 2). A typical coupling ratio at the center
wavelength provides optimal performance, but the intensity
transmission varies periodically with wavelength changes.
The relationship between the wavelength λ and the intensity
transmission T using the coupling model is given in Refs. [24]
and [25]:

T = F 2 sin2

(
Cλ5/2w

F

)
≡ T (λ), (4)

where F 2 is the fraction of power coupled, C · λ5/2 is the
coupling coefficient, and w is the heat source width.

III. WAVELENGTH ATTACK ON A CV-QKD SYSTEM
USING A HETERODYNE PROTOCOL

The basic idea of the wavelength attack is shown in Fig. 2.
Eve intercepts the coherent states sent by Alice. She makes

FIG. 2. (Color online) Schematic diagram of the wavelength
attack scheme. WT-LD, wavelength tunable laser diode; IM, intensity
modulator; BS, 50-50 beam splitter. The WT-LD and IM are used
to produce fake coherent states, with the specific wavelength and
amplitude set by the controller. Dotted (red) beam splitters are the
ones controlled by Eve. The dottted beam splitter on the left has
transmission T1, while the dotted beam splitter at the bottom has
transmission T2. For simplicity, the 10:90 beam splitter and the
generation of |α3〉 are not shown.

heterodyne measurement of the signal using the LO to achieve
the quadrature values XE and PE . After that, Eve generates and
resends three coherent states: a fake signal state |α′

s〉, a fake
LO state |α′

LO〉, and an ancillary state |α3〉. Differently from
the previous intercept-resend attack, these fake states have
different wavelengthes, denoted λ1 (for |α′

s〉), λ2 (for |α′
LO〉),

and λ3 (for |α3〉). According to Eq. (4), the performance of
Bob’s beam splitter is dependent on the wavelength of the
incoming light. Therefore for a fake signal with wavelength
λ1, the transmission of Bob’s beam splitter is determined by
the function T (λ1), which is defined in Eq. (4). Similarly, the
intensity transmission of Bob’s beam splitter to the fake LO
state is determined by T (λ2). In other words, Eve can control
Bob’s beam splitter by tuning the wavelength of her fake states.

With the help of wavelength tunable laser diodes and
intensity modulators, the wavelength and amplitude of these
fake states are carefully chosen to satisfy the conditions

(i) (1 − T ′
3)|α′

3|2 + (1 − T ′
1)|α′

s |2 + (1 − T ′
2)|α′

LO|2
= 0.1|αLO|2,

(ii) (1 − T1)(1 − 2T1)T ′
1|α′

s |2 + (1 − T2)(2T2 − 1)T ′
2|α′

LO|2

=
√

ηXE |αLO|
2

, (5)

(iii) T1(1 − 2T1)T ′
1|α′

s |2 + T2(2T2 − 1)T ′
2|α′

LO|2

=
√

ηPE |αLO|
2

,

where Ti ≡ T (λi) ∈ [0,1](i = 1,2), T ′
j ≡ T ′(λj ) ∈

[0,1] (j = 1,2,3). Here η is the channel transmission
efficiency, |αs | and |αLO| are the amplitudes of the original
signal and the LO, respectively, |α′

s |, |α′
LO|, and α′

3 are the
amplitudes of the fake signal and the fake LO, and T ′

j are
the intensity transmissions of Bob’s 10:90 beam splitter (for
monitoring the LO light intensity).

Condition i ensures that the method of monitoring the LO
intensity is invalid to Eve. Here we assume that Bob uses
a 10:90 beam splitter to split the total light before being
inserted into the PBS [31]. Because the 10:90 beam splitter
is also wavelength dependent, its intensity transmission can be
determined by a function similar to Eq. (4), which is denoted
T ′(λ) � F ′2 sin2(C ′λ5/2w′

F ′ ). Here |α3〉 is used to compensate
the intensity when α′

s and α′
LO are both small. Eve selects

an appropriate wavelength λ3 such that T3 = 0, therefore the
intensity of |α3〉 is much lower than the shot-noise level and
negligible.

As Bob measures the quadratures X̂B and P̂B by performing
heterodyne detection on the fake signal and the fake LO,
conditions ii and iii make Bob’s measurement results coincide
with those attained by Eve. To see explicitly where these
relations come from, see Eqs. (B6) and (B7) in Appendix B.
Note that the fake signal and the fake LO have different wave-
lengths, and hence, no interference occurs in this detection.
The effect of this on measurement detection is that we no
longer have heterodyne detection outputs but rather outputs
that are proportional to Eve’s measurements. Therefore, the
photocurrents recorded by the photodetectors consist of parts
from the signal and the LO. Eve should also make T ′

1|α′
s |2 and

T ′
2|α′

LO|2 much smaller than |αLO|2 in order to suppress the
shot noise. We prove in Sec. IV that the extra noise introduced
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by Bob’s measurement is much lower than the shot-noise level,
therefore the total noise can be kept under the alarm threshold.
In other words, Eve can safely achieve the key information
without being discovered by Alice or Bob.

Finally, we note that as there are limitations on the
intensities, conditions ii and iii may not always be satisfied.
However, in the analysis in Appendix A, we find that the
probability of failing condition ii or iii is extremely close to 0.

IV. FEASIBILITY ANALYSIS

To analyze the feasibility of the wavelength attack, we first
note that the following assumptions should be satisfied:

(i) This attack is restricted to an all-fiber coherent-state
CV-QKD using the heterodyne protocol.

(ii) All of Bob’s beam splitters have the same wavelength-
dependent property; i.e., their intensity transmissions are all
determined by Eq. (4) with the same parameters. This function
and the detection efficiencies of Bob’s detectors are both
known by Eve. Here we assume that the detection efficiencies
are wavelength independent, for simplicity. In practice, Eve
can simply absorb the differences into the light amplitudes
modulated by her and the final results are unchanged.

(iii) Eve has the ability to replace the quantum channel with
a noiseless fiber, and her detectors have a high efficiency and
negligible excess noise.

Before analyzing the feasibility of the wavelength attack,
let us first rapidly review the security analysis of the Gaussian
protocols based on coherent states and heterodyne detections
under individual attacks. In what follows, we restrict ourselves
to Gaussian attacks, which are proven optimal [30].

In the case of Gaussian attacks, the channel connecting
Alice and Bob can be fully characterized by its transmission
η and its excess noise ε above the shot-noise level, such that
the total noise measured by Bob is 1 + ηε (in shot-noise units)
[19]. Alternatively, one may use the total added noise defined
as χ ≡ (1 − η)/η + ε for convenience. The secret key rates for
Heisenberg-limited individual attack in direct reconciliation
and reverse reconciliation are given, respectively, by [30]

KDR = log2
(1 + χ )[1 + η(V + χ )]

(1 + χV )[1 + η(1 + χ )]
, (6)

KRR = log2
V + η(1 + χV )

η(1 + χV )[1 + η(1 + χ )]
, (7)

where V = VA + 1 is the variance of Alice’s modulated state
as mentioned in Sec. II A. Note that we use the “Heisenberg-
limited attack” rather than the optimal attack [22,30], as
such an attack upper bounds Eve’s information, thereby
emphasizing our wavelength attack, which can beat even such
a stringent attack. From the above formulas, we can see that
when V and η are settled in practice, the secret key rate is fully
determined by χ , which can be precisely estimated from the
experimental data [19].

Another important parameter in the security proof is Alice’s
(Bob’s) conditional variance of Bob’s (Alice’s) measure-
ment VA|B (VB|A) in direct reconciliation (reverse reconcili-
ation),which can be thought of as the uncertainty in Alice’s
(Bob’s) estimates of Bob’s (Alice’s) quadrature measurement
result. In the CV-QKD, Alice and Bob use VA|B (VB|A) to
estimate the shot noise and modulation imperfections [19].

VA|B is defined (where both quadratures are symmetrized) as

VA|B = 〈
X2

A

〉 − 〈XAX̂B〉2〈
X̂2

B

〉 , (8)

and similarly, we have VB|A defined as

VB|A = 〈
X̂2

B

〉 − 〈XAX̂B〉2〈
X2

A

〉 . (9)

We note that VA|B (VB|A) performs a role in CV-QKD
protocols similarly to the quantum bit error rate in discrete-
variable QKD protocols, which provide Alice and Bob an
intuitive tool to detect the presence of Eve. To clarify this idea,
let us first state the relation between VA|B (VB|A) and χ . As
the Gaussian character of the channel is maintained whether
or not Eve performs Gaussian attacks, the conditional variance
between Alice and Bob, which we denote V normal

A|B and V normal
B|A ,

can be calculated as follows [30]:

V normal
A|B = (V − 1)[η(χ + 1) + 1]

η(V + χ ) + 1
, (10)

V normal
B|A = 1

2 [η(1 + χ ) + 1]. (11)

Note that there may be a little difference from the expressions
in [30] due to the differences in the definitions of V.

On the other hand, to make the secret key rate positive, we
require that [according to Eqs. (6) and (7)]

χ < χDR
max =

√
4η2 + 1 − 1

2η
, (12)

with 2
3 < η < 1 for direct reconciliation, or

χ < χRR
max =

√(
4
η2 + 1

)
V 2 − 2V + 1 − V − 1

2V
, (13)

with 0 < η < 1 for reverse reconciliation, should be satisfied.
Combining Eq. (10) with Eq. (12), we find that for the

sake of deriving a positive secret key rate, the upper bound of
V normal

A|B yields

V max
A|B = (V − 1)(

√
4η2 + 1 + 2η + 1)√

4η2 + 1 + 2ηV + 1
. (14)

In other words, if VA|B is smaller than this threshold, the
heterodyne protocol in direct reconciliation is considered to
be secure. Similarly, the upper bound of V normal

B|A is derived to
be

V max
B|A =

√
(4 + η2)V 2 − 2η2V + η2 + (η + 2)V − η

4V
. (15)

And the heterodyne protocol in reverse reconciliation is
considered to be secure if VB|A is smaller than this threshold.

For these reasons, we can prove our attack feasible by
showing that Eve can make VA|B < V max

A|B (in the direct
reconciliation protocol) and VB|A < V max

B|A (in the reverse rec-
onciliation protocol) when she is performing the wavelength
attack.
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A. Eve’s wavelength attack

When Eve performs the wavelength attack, with channel
noise, from a real value XA chosen by Alice to the measure-
ment result X̂B achieved by Bob is written as (we write down
the quadrature X̂ only since the other quadrature P̂ can be
presented in a similar way)

XA → X̂A = XA + N̂A

→ X̂E = 1√
2

(X̂A + N̂E) (16)

→ X̂B = √
ηX̂E + N̂B,

where N̂E represents the vacuum noise in Eve’s heterodyne
detection whose variance is normalized to 1, and N̂B is the
vacuum noise introduced by the heterodyne detection. The
variance of each of the terms is given by VE = 1

2 (V + 1)
and VB = ηVE + VNB. Here VNB can then be considered as
Eve’s conditional variance of Bob’s measurement result. In
Appendix B, we derive the value of VNB and show that it is
smaller than 0.13. We are now ready to derive the conditional
variances under Eve’s attack, which are denoted V attack

A|B and
V attack

B|A .

1. V attack
A|B in direct reconciliation

According to the definition of VA|B in Eq. (8), the value of
V attack

A|B can be computed as

V attack
A|B = 2(VNB + η)(V − 1)

2VNB + η(V + 1)
. (17)

Combining Eqs. (B10) and (B11) and the discussion above,
we can estimate that the value of V attack

A|B is not larger than 1.9.
As shown in Fig. 3 (where we set V = 11 and ε = 0.01 [22]),
V attack

A|B is always lower than V max
A|B , so that Alice and Bob can

never discover the eavesdropper under this attack. Besides,
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FIG. 3. (Color online) In direct reconciliation, the relation
between the channel loss and the conditional variance VA|B in three
cases: (a) the maximum tolerable value V max

A|B , (b) the value of V normal
A|B ,

and (c) the value of V attack
A|B . See text for details. Curves are plotted

for experimentally realistic values, V = 11 and ε = 0.01. We can see
that V attack

A|B is always lower than V max
A|B and lower than V normal

A|B when the
channel loss is larger than 0.58 dB, at which point the key between
Alice and Bob is no longer secure.
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FIG. 4. (Color online) In reverse reconciliation, the relation
between the channel loss and the conditional variance VB|A in three
cases: (a) the maximum tolerable value V max

B|A , (b) the value of V normal
B|A ,

and (c) the value of V attack
B|A . See text for details. Curves are plotted

for experimentally realistic values, V = 11 and ε = 0.01. We can see
that V attack

B|A is always lower than V max
B|A and lower than V normal

B|A when
the channel loss is greater than 0.58 dB, again leading to an insecure
key.

one should note that V attack
A|B is always lower than the normal

level when the channel loss is larger than 0.58 dB, therefore
Eve should increase the deviations on purpose to make V attack

A|B
close to V normal

A|B in order to avoid suspicion.

2. V attack
B|A in reverse reconciliation

In reverse reconciliation, using Eq. (9) with Eq. (16), the
value of V attack

B|A can be computed as

V attack
B|A = η + VNB. (18)

Combining Eqs. (B10) and (B11) and the discussion above,
we can estimate that the value of V attack

B|A is never larger than
η + 0.13. As shown in Fig. 4 (where, again, we have set V =
11 and ε = 0.01), it is always lower than the value of V max

B|A ,
so that Alice and Bob can never discover the eavesdropper
under such an attack. Besides, one should note that V attack

B|A is
lower than V normal

B|A when the channel loss is larger than 0.58 dB.
Hence, Eve should increase the deviations to make V attack

A|B close
to V normal

A|B in order to avoid suspicion.

V. DISCUSSION AND CONCLUSION

There are two points about the wavelength attack that
should be made:

(1) As shown in Fig. 3 and Fig. 4, V attack
A|B and V attack

B|A are
lower than V normal

A|B and V normal
B|A , respectively, when η < 0.88.

This is impossible when the protocol works normally, therefore
Eve should add extra noise in her measurement result to
increase V attack

A|B and V attack
B|A . So perfect heterodyne detection

is not necessary for Eve. In other words, assumption iii listed
in Sec. IV can be compromised.

(2) In theory, the wavelength attack cannot be avoided
by adding a wavelength filter before the monitoring detector,
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because Eve can simply increase the input light intensity [12].
To make this method work, Bob should randomly choose to
add or not to add a wavelength filter before the monitoring
detector and observe the differences.

Finally, we note that a commercial CV-QKD system, as sold
at [15], currently uses a wavelength-dependent beam splitter,
although it does not fall into the regime studied in this paper
because it uses homodyne detection rather than heterodyne
detection. However, our results show that if one were going
to use heterodyne detection with a commercial QKD unit,
then the precautions mentioned here would need to be taken.
Furthermore, possible quantum hacking opportunities with
homodyne detection and wavelength-dependent beam splitters
warrant further investigation.

In conclusion, we have proposed a realistic quantum
hacking attack, namely, the wavelength attack, on continuous-
variable QKD systems using heterodyne detection. If Alice
and Bob do not take the necessary precautions for such an
attack, the final secret key is, in principle, totally insecure,
as Eve can obtain all the information about the final key.
This is different from the equal-amplitude attack proposed
in Ref. [20], as in the wavelength attack, Eve has the ability
to control Bob’s beam splitter, and therefore the suggestion of
testing the total intensity in Ref. [20] would not prevent such
an attack from occurring. To close such a loophole in practical
CV-QKD systems, it is simply enough for Bob to randomly
add a wavelength filter before his detection.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China (Grants No. 2011CBA00200 and No.
2011CB921200) and the National Natural Science Founda-
tion of China (Grants No. 60921091 and No. 61101137).
C.W. acknowledges support from the Ontario postdoctoral
fellowship program, CQIQC postdoctoral fellowship pro-

gram, CIFAR, Canada Research Chair program, NSERC, and
QuantumWorks.

APPENDIX A: ACHIEVABLE X E AND PE

We estimate the achievable range of XE and PE in this
Appendix. Before the analysis, let us first rewrite Eq. (4) as

T (λ) = F 2 sin2

(
Cw

F
λ5/2

)
= sin2(AX), (A1)

where A = Cw
F

and X = λ5/2; here we set F = 1 for simplicity.
For the 50:50 BS, T (λ0) = sin2(AX0) = 0.5, where λ0 =
1550 nm, hence AX0 = arcsin(

√
0.5). For other wavelengths,

AX = arcsin(
√

T (λ)) and we can get X = arcsin(
√

T (λ))
arcsin(0.5) X0.

For the 10:90 BS, we similarly rewrite its transmission as
T ′(λ) = sin2(BX) and easily derive that BX0 = arcsin(

√
0.9).

Therefore,

T ′(λ) = sin2

(
arcsin

(√
T (λ)

)
arcsin

√
0.5

arcsin
√

0.9

)
. (A2)

Moreover, as mentioned in Sec. IV A, to suppress the shot
noise we should make |α′′

s | ≡ T ′
1|α′

s |2 and |α′′
LO| ≡ T ′

2|α′
LO|2

much smaller than |αLO|2. In a practical CV-QKD system, the
LO pulse arriving on Bob’s side typically includes more than
108 photons [14]. For this reason, we constrain the maximum
value of both |α′′

s |2 and |α′′
LO|2 to be 106 � 10−2|αLO|2. On the

other hand, to guarantee condition i, Eve should also make
(1 − T ′

1)|α′
s |2 and (1 − T ′

2)|α′
LO|2 not larger than 5 × 106. We

then get the following maximum value constraints on the fake-
state intensities:

|α′′
s |2 � Max

{
106,

1 − T ′
1

T ′
1

106

}
,

(A3)

|α′′
LO|2 � Max

{
106,

1 − T ′
2

T ′
2

106

}
.

From conditions ii and iii, we can get

√
ηXE = 2[(1 − T1)(1 − 2T1)|α′′

s |2 + (1 − T2)(2T2 − 1)|α′′
LO|2]

|αLO| ,
√

ηPE = 2[T1(1 − 2T1)|α′′
s |2 + T2(2T2 − 1)|α′′

LO|2]

|αLO| . (A4)

Combining Eqs. (A2), (A3) and (3), now we have enough
information to derive the achievable value range of XE

and PE by analytical calculations or numerical simulations.
Either of these methods shows that (

√
ηXE,

√
ηPE) satisfying

η|XE|2 + η|PE|2 < 20 are always achievable. To see how
high the probability of |XE|(or |PE|) > 20 is, we can apply
the error integral function erfc(x) = 2√

π

∫ ∞
x

e−x2
dx and get

P [|√ηXE| > 20 or |√ηPE| > 20] = erfc( 20√
2V

), where V is
the variance of XE and PE chosen by Gaussian distribution
[32]. For the experimentally realistic value V = 11, we get
erfc( 20√

22
) = 1.637 × 10−9 ≈ 0, which concludes our claim in

Sec. III. When XE or PE is out of reach, Eve can simply turn
to performing the original intercept-resend strategy. The extra
noise it involves is 1 (shot-noise unit) times this extremely low
probability, which is negligible.

APPENDIX B: DERIVATION OF VNB

To derive VNB, let us start from the generation of Eve’s fake
states. As described in Sec. III, Eve generates the fake signal
state and the fake LO state according to her measurement
results and sends them to Bob. These fake states can be
described by the operators

α̂′
s = α′

s + δâ′
s , α̂′

LO = α′
LO + δâ′

LO, (B1)

where complex numbers α′
s and α′

LO are the amplitudes and
δâ′

s and δâ′
LO represent the fluctuations of the amplitudes as

discussed in Sec. II A. Similarly, 〈(δX̂′
k)2〉 = 〈(δP̂ ′

k)2〉 = 1,
where δX̂k = δâ′

k + δâ
′†
k and δP̂k = −i(δâ′

k − δâ
′†
k ), k = s,
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LO. After the (original) 10:90 beam splitter, they become

α̂′′
s =

√
T ′

1α̂
′
s +

√
1 − T ′

1δâv1 = α′′
s + δâ′′

s , α̂′′
LO =

√
T ′

2α̂
′
LO +

√
1 − T ′

2δâ
′
v2 = α′′

LO + δâ′′
LO, (B2)

where δâv1 and δâv2 are the vacuum noises that interfere with the fake signal and the fake LO, respectively, at the beam splitter.
α′′

s ≡ √
T ′

1α
′
s , δâ′′

s ≡ √
T ′

1δâ
′
s + √

1 − T ′
1δâ

′
v1, and similarly for the LO.

Bob performs heterodyne detection on these fake states. According to Eq. (4), Bob’s beam splitter has different intensity
transmissions for α̂′′

s and α̂′′
LO because of their different wavelengths, denoted T1 and T2. After passing the first set of beam

splitters, α̂′′
s is separated into α̂1 and α̂3, while α̂′′

LO is separated into α̂2 and α̂4 (cf. Fig. 2), which can be expressed as
follows:

α̂1 =
√

1 − T1α̂
′′
s +

√
T1δâ

′
v1, α̂2 =

√
1 − T2α̂

′′
LO +

√
T2δâ

′
v2,

(B3)
α̂3 =

√
T1α̂

′′
s −

√
1 − T1δâ

′
v1, α̂4 = ei π

2 (
√

T2α̂
′′
LO −

√
1 − T2δâ

′
v2).

To simplify the symbols, let us define δα̂1 ≡ √
1 − T1δâ

′′
s + √

T1δα̂
′
v1, δα̂2 ≡ √

1 − T2δâ
′′
LO + √

T2δα̂
′
v2, δα̂3 ≡ √

T1δâ
′′
s −√

1 − T1δα̂
′
v1, and δα̂4 ≡ √

T2δâ
′′
LO − √

1 − T2δα̂
′
v2. Furthermore, we define the quadratures of δα̂k by δX̂k = δα̂k + δα̂

†
k and

δP̂k = −i(δα̂k − δα̂
†
k), where k = 1,2,3,4. Finally, after combining at the second set of beam splitters, the electromagnetic fields

arriving at the four detectors can be written as

b̂1 =
√

1 − T1α̂1 +
√

T1δα̂
′′
v1 +

√
T2α̂2 +

√
1 − T2δα̂

′′
v2, b̂2 =

√
T1α̂1 −

√
1 − T1δα̂

′′
v1 −

√
1 − T2α̂2 +

√
T2δα̂

′′
v2,

(B4)
b̂3 =

√
1 − T1α̂3 +

√
T1δα̂

′′
v3 +

√
T2α̂4 +

√
1 − T2δα̂

′′
v4, b̂4 =

√
T1α̂3 −

√
1 − T1δα̂

′′
v3 −

√
1 − T2α̂4 +

√
T2δα̂

′′
v4,

where the photocurrents are given by îk = qb̂
†
kb̂k . Bob’s quadrature measurement results are then derived from the difference in

photocurrents, using the method in Sec. II A. First, for detectors D1 and D2, we have

îx = î1 − î2

= q(b̂†1b̂1 − b̂
†
2b̂2)

= q{(1 − 2T1)[(1 − T1)|α′′
s |2 +

√
1 − T1(α′′∗

s δα̂1 + α′′
s δα̂

†
1)] + (2T2 − 1)[(1 − T2)|α′′

LO|2 +
√

1 − T2(α′′∗
LOδα̂2 + α′′

LOδα̂
†
2)]

+ 2
√

T1(1 − T1)(α′′∗
s δα̂′′

v1 + α′′
s δα̂

′′†
v1) + 2

√
T2(1 − T2)(α′′∗

LOδα̂′′
v2 + α′′

LOδα̂
′′†
v2) +

√
(1 − T1)T2[

√
(1 − T1)(1 − T2)

× (α′′∗
s α′′

LO + α′′
s α

′′∗
LO) +

√
1 − T1(α′′∗

s δα̂2 + α′′
s δα̂

†
2) +

√
1 − T2(α′′

LOδα̂
†
1 + α′′∗

LOα̂1)] −
√

(1 − T2)T1[
√

(1 − T1)(1 − T2)

× (α′′∗
s α′′

LO + α′′
s α

′′∗
LO) +

√
1 − T1(α′′∗

s δα̂2 + α′′
s δα̂

†
2) +

√
1 − T2(α′′

LOδα̂
†
1 + α′′∗

LOα̂1)]

+ (
√

T1T2(1 − T2) −
√

(1 − T1)(1 − T2)2)(α′′
LOδα̂

′′†
v1 + α′′∗

LOδα̂′′
v1)

+ (
√

(1 − T1)2(1 − T2) −
√

T1T2(1 − T1))(α′′
s δα̂

′′†
v2 + α′′∗

s δα̂′′
v2)}, (B5)

where the terms δα̂†δα̂ are already neglected. Note that α̂′
LO and α̂′

s have different frequencies, therefore any terms not containing
the product of the same frequencies vanish during the measurement. The remaining terms compose the measurement result
of îx :

îx = q[(1 − T1)(1 − 2T1)|α′′
s |2 + (1 − 2T1)

√
1 − T1(α′′∗

s δα̂1 + α′′
s δα̂

†
1) + (1 − T2)(2T2 − 1)|α′′

LO|2

+ (2T2 − 1)
√

1 − T2(α′′∗
LOδα̂2 + α′′

LOδα̂
†
2) + 2

√
T1(1 − T1)(α′′∗

s δα̂′′
v1 + α′′

s δα̂
′′†
v1) + 2

√
T2(1 − T2)(α′′∗

LOδα̂′
v2 + α′′

LOδα̂
′′†
v2)].

(B6)

Similarly, we get the measurement result of îp as

îp = î3 − î4 = q(b̂†3b̂3 − b̂
†
4b̂4)

= q[T1(1 − 2T1)|α′′
s |2 + (1 − 2T1)

√
T1(α′′∗

s δα̂3 + α′′
s δα̂

†
3) + T2(2T2 − 1)|α′′

LO|2 + (2T2 − 1)
√

T2(α′′∗
LOδα̂4 + α′′

LOδα̂
†
4)

+ 2T1

√
1 − T1(α′′∗

s δα′′
v3 + α′′

s δα
′′†
v3) + i2T2

√
1 − T2(α′′

LOδα
′′†
v4 − α′′∗

LOδα′′
v4)]. (B7)

Note that the squared modulus terms in the last two equations are what helped us derive the set of conditions
in Eq. (5). The measurement results corresponding to Bob’s quadratures X̂B and P̂B are then calculated
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using Eq. (3):

X̂B = 2îx

q|αLO| = 2[(1 − T1)(1 − 2T1)|α′′
s |2 + (1 − T2)(2T2 − 1)|α′′

LO|2]

|αLO|

+ 2[(1 − 2T1)
√

1 − T1(α′′∗
s δα̂1 + α′′

s δα̂
†
1) + (2T2 − 1)

√
1 − T2(α′′∗

LOδα̂2 + α′′
LOδα̂

†
2)]

|αLO|

+ 4[
√

T1(1 − T1)(α′′∗
s δα̂′′

v1 + α′′
s δα̂

′′†
v1) + √

T2(1 − T2)(α′′∗
LOδα̂′′

v2 + α′′
LOδα̂

′′†
v2)]

|αLO|
= √

ηXE + X̂NB,
(B8)

P̂B = 2îx

q|αLO| = 2[T1(1 − 2T1)|α′′
s |2 + T2(2T2 − 1)|α′′

LO|2]

|αLO|

+ 2[(1 − 2T1)
√

T1(α′′∗
s δα̂3 + α′′

s δα̂
†
3) + (2T2 − 1)

√
T2(α′′∗

LOδα̂4 + α′′
LOδα̂

†
4)]

|αLO|

+ 4[T1
√

1 − T1(α′′∗
s δα′′

v3 + α′′
s δα

′′†
v3) + iT2

√
1 − T2(α′′

LOδα
′′†
v4 − α′′∗

LOδα′′
v4)]

|αLO|
= √

ηPE + P̂NB,

where we have used conditions ii and iii from Eq. (5). Let α′′
LO and α′′

s be real; we then get the following inequalities:

X̂NB = 2[(1 − 2T1)
√

1 − T1α
′′
s (δα̂1 + δα̂

†
1) + (2T2 − 1)

√
1 − T2α

′′
LO(δα̂2 + δα̂

†
2)]

|αLO|

+ 4[
√

T1(1 − T1)α′′
s (δα̂′′

v1 + δα̂
′′†
v1) + √

T2(1 − T2)α′′
LO(δα̂′′

v2 + δα̂
′′†
v2)]

|αLO| ,

(B9)

P̂NB = 2[
√

T1(1 − 2T1)α′′
s (δα̂3 + δα̂

†
3) + √

T2(2T2 − 1)α′′
LO(δα̂2 + δα̂

†
4)]

|αLO|

+ 4[T1
√

1 − T1α
′′
s (δα′′

v3 + δα
′′†
v3) + iT2

√
1 − T2α

′′
LO(δα′′†

v4 − δα′′
v4)]

|αLO| .

Therefore,

VNB,x = 〈(X̂NB)2〉 = 4
[〈

(1 − 2T1)2(1 − T1)α′′2
s δX2

1

〉 + 〈
(2T2 − 1)2(1 − T2)α′′2

LOδX2
2

〉]
|αLO|2

+ 16
[〈
T1(1 − T1)2α′′2

s δX′′2
v1

〉 + 〈
T2(1 − T2)2α′′2

LOδX′′2
v2

〉]
|αLO|2

< 13 × max{|α′′
s |2,|α′′

LO|2}
|αLO|2 = 0.13, (B10)

VNB,p = 〈(P̂NB)2〉 = 4
[〈

(1 − 2T1)2T1α
′′2
s δX2

3

〉 + 〈
(2T2 − 1)2T2α

′′2
LOδX2

4

〉]
|αLO|2

+ 16
[〈
T 2

1 (1 − T1)α′′2
s δX′′2

v3

〉 + 〈
T 2

2 (1 − T2)α′′2
LOδX′′2

v4

〉]
|αLO|2

< 13 × max{|α′′
s |2,|α′′

LO|2}
|αLO|2 = 0.13. (B11)

Here we use the facts that the maximum values of (1 − 2T )2(1 − T ), (1 − 2T )2T , T (1 − T )2, and T 2(1 − T ) are 1, 1, 4
27 , and

4
27 , respectively; 〈δX2〉 = 〈δP 2〉 = 1; and the constraint of max{|α′′

s |2,|α′′
LO|2} < 10−2|αLO|2 (see Appendix A).
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