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and randomness extraction
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Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically
provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed
with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify
the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for
evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum
random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for
which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor
and Trevisan’s extractor.
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I. INTRODUCTION

Random numbers play a crucial role in many fields
of science, technology, and industry—for instance,
cryptography, statistics, scientific simulations [1], and lottery.
Pseudorandom-number generators (pseudo-RNGs) based on
computational complexities have been well developed in the
past few decades [2] and can generate high-speed random num-
bers with little cost. However, the main drawback of pseudo-
RNGs is that the generated randomness is not information-
theoretically provable. In fact, all of the (software-based)
pseudo-RNGs can be realized by a deterministic algorithm
given sufficient computational power. This pseudorandomness
would cause problems in many applications, such as those
in cryptography [3,4]. Recently, Microsoft confirms that XP
contains RNG bugs;1 security flaws have been found in online
encryption methods due to imperfections of random-number
generation.2

To address the security issues introduced by pseudo-RNGs,
physical RNGs have been developed [5–7]. In particular,
the probabilistic nature of quantum mechanics offers a
natural way to build an information-theoretically provable
RNG [5]—quantum random-number generators (QRNGs).
Note that some physical RNGs have been included in
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1See the news from the Computerworld, “Microsoft confirms that

XP contains random number generator bug,” Gregg Keizer, November
21, 2007.

2See the news from the New York Times, “Flaw Found in an Online
Encryption Method,” John Markoff, February 14, 2012.

microprocessors,3 although the generated randomness is not
quantum mechanical in nature.4

In theory, a QRNG can produce random numbers with
provable randomness. In practice, quantum signals (the source
of true randomness5) are inevitably mixed with classical
noises. An adversary (Eve) can, in principle, control the
classical noise and gain partial information about the raw
random numbers. In this work, we assume a trusted device
scenario, but the classical noise might be deterministic if we
calibrate the system more carefully. For instance, imagine that
an input to our device is an external power supply. Imagine
further that through carefully monitoring the input value of the
power to our device, we have determined that the power may
still fluctuate by, say, up to 1%. In principle, the source of such
fluctuations of an external power supply might be the action of
an adversary—Eve—who, therefore, has complete knowledge
about the actual value of the power supply at all times.

Therefore, it is necessary to apply a postprocessing proce-
dure to distill out the true randomness that Eve has almost

3See, for example, “Intel Corporation Intel 810 Chipset
Design Guide,” June 1999, Ch. 1.3.5, pages 1–10, down-
load.intel.com/design/chipsets/designex/29065701.pdf.

4“Evaluation of VIA C3 ‘Nehemiah’ Random Number
Generator,” Cryptography Research, Inc., February 2003,
www.cryptography.com/public/pdf/VIA_rng.pdf.

5We define “true randomness” when the randomness is information-
theoretically provable. One of the main objectives of our work is to
give a randomness extraction procedure such that the extracted output
numbers are proven random. On one hand, quantum mechanics comes
with randomness in nature. For example, no one can predict the results
of the vacuum fluctuation. On the other hand, it is not clear whether or
not one can extract “true” randomness from the classical noises. That
is, we have not proved the randomness extracted from the classical
noises. Thus, from a conservative point of view (especially for the
usage in cryptography), we only extract random numbers that are
information-theoretically provable.
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no information about. This distilling procedure is called
randomness extraction, realized by employing randomness
extractors. In other words, randomness extractors are used
for distilling the true randomness and eliminating the effect
of classical noises. The goal of randomness extractors [8]
is to extract (almost) perfect randomness from the raw data
generated from a practical QRNG with the help of a short
random seed, which requires an extra source of randomness.
The key input parameter of a randomness extractor is the
min-entropy (see Definition I.1) of raw data. Nonetheless, a
general method to quantify the min-entropy from the raw data
of a QRNG is still missing.

For randomness extraction, previously, some simple meth-
ods have been widely used for QRNGs. For instance, an
exclusive-OR (XOR) operation has been employed in the
literature [9,10]: dividing the raw data into two bit strings and
performing a bitwise XOR operation between them. In addition,
a least-significant-bits operation [6,7] or nonuniversal hashing
functions [11] have been proposed and implemented for
QRNGs. These operations can certainly refine the raw data to
pass some randomness statistical tests. However, the key point
is, the generated randomness is not information-theoretically
provable. Recently, a more sophisticated randomness extrac-
tion procedure is proposed in Ref. [12], which quantifies the
randomness by Shannon entropy instead of min-entropy and
applies nonuniversal hash functions for extraction. Unfortu-
nately, the randomness extracted there is still not information-
theoretically provable due to the following two reasons: ran-
domness cannot be well quantified by Shannon entropy [13,14]
and the randomness from nonuniversal hashing functions relies
on computational assumptions.

In contrast, an important and promising randomness
extractor, Trevisan’s extractor [15,16], raised considerable
theoretical interest not only because of its data parsimony
compared to other constructions, but particularly because it
is secure against quantum adversaries [17]. The seed length
of Trevisan’s extractor is polylogarithmic in the length of the
input and it can also be proven to be a strong extractor (see
Theorem 22 in [18]). That is, the random seed of Trevisan’s
extractor can be reused. This is particularly important since
for a popular universal-hashing function such as Toeplitz
hashing [19,20], which has been well developed for privacy
amplification [21] in quantum key distribution (QKD)6—the
random seed used to construct a Toeplitz matrix is longer
than the output string. This means that no net randomness
can be extracted if the universal hashing is directly used for
randomness extraction. Despite the considerable theoretical
attention of Trevisan’s extractor, its practical implementation
is still missing. This is probably because Trevisan’s extractor
has a rather complex structure that the quantum information

6Randomness extractors can also be used for privacy amplifica-
tion [21] in quantum key distribution (QKD). Note that privacy
amplification is a crucial step in QKD postprocessing. A few
randomness extractors have been proven to be secure against quantum
side channels [17]. The main advantage is that no (or little)
classical communication is required for privacy amplification. It is
an interesting prospective research topic to apply the techniques
developed in randomness extraction for privacy amplification.

community may not be familiar with and its implementation
involves the nontrivial tradeoff between speed and the values
of security parameters.

Here, we fill the above two gaps: a general method
for the quantification of randomness and a practical im-
plementation of Trevisan’s extractor. We report a generic
scheme that can process the raw data from a QRNG to
random numbers that (nearly) follow a uniform distribution.
The two main contributions of this work can be stated as
follows:

(1) We present a framework for quantifying the quantum
randomness from QRNG by min-entropy and discuss how
one can evaluate this min-entropy in a physical device. We
apply our framework to two different existing QRNGs in the
literature [12,22].

(2) We provide prototypical implementation of Trevisan’s
extractor and show how such implementation can be used
in real-life QRNGs. From this implementation, we discover
the major computational step that limits Trevisan’s extractor
speed.

Based on a few reasonable assumptions on the physical
model of QRNG, the randomness extracted from the pro-
posed postprocessing is information-theoretically provable.
Our generic postprocessing scheme consists of three steps:
(a) model and characterize the QRNG setup through measure-
ments; (b) quantify the quantum randomness of the raw data
with min-entropy; and (c) apply a randomness extractor. To
illustrate the generality of our method, our scheme is applied
to two different types of real-life QRNGs [12,22].

Besides attempt of Trevisan’s extractor, we also implement
the Toeplitz-hashing extractor and prove that the universal-
hashing function [23] constructs a strong extractor (see
Definition I.4), and thus allows us to maintain the randomness
of the seed for subsequent applications. The implementation
speeds for Trevisan’s and the Toeplitz-hashing extractors are
0.7 and 441 kb/s, respectively. The outcomes from both
extractors pass all the standard randomness tests we exploited.

Compared to the Toeplitz-hashing, Trevisan’s extractor
requires a seed with a shorter length. Thus, Trevisan’s extractor
has a certain advantage in cases where the random seed bits
are limited. We note that our prototypical implementation of
Trevisan’s extractor allows researchers to better understand the
complexity and difficulty in the implementation of Trevisan’s
extractor, thus paving the way to future implementations.
Recently, Maurer et al. posted a follow-up paper on our work
in which they built on our results and improved the speed of
implementation [24].

The rest of this paper is organized as follows. We introduce
related notations and definitions in the rest of this section. In
Sec. II, we present a procedure to evaluate the min-entropy
of the quantum signals. We implement Trevisan’s extractor in
Sec. III A and a universal hashing (Toeplitz-hashing) extractor
in Sec. III B. In Sec. IV, we show the results of statistical tests.
Finally, we conclude this paper in Sec. V.

A. Notations and definitions

Notations. Ud represents a uniform distribution on {0,1}d .
The outcome of an ideal RNG, described by a random variable,
follows a uniform distribution.
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Min-entropy is widely used for quantifying the randomness
of a probability distribution [13,14].

Definition I.1 (Min-entropy). The min-entropy of a proba-
bility distribution X on {0,1}n is defined by

H∞(X) = − log2

(
max

v∈{0,1}n
Prob[X = v]

)
. (1)

In cryptography, the deviation of a practical protocol from
an ideal protocol is characterized by a security parameter, ε.
The statistical distance is commonly used as a standard security
measure.

Definition I.2 (ε-close). Two probability distributions X and
Y over the same domain T are ε-close if the statistical distance
between them is bounded by ε,

‖X − Y‖ ≡ max
V ⊆T

∣∣∣∣∣
∑
v∈V

(Prob[X = v] − Prob[Y = v])

∣∣∣∣∣

= 1

2

∑
v∈T

|Prob[X = v] − Prob[Y = v]| � ε. (2)

Here, the second equality in Eq. (2) can be proven by
induction on the domain size |T |. It is obvious that the equality
holds for |T | = 1,2. For the case of |T | � 3, one can always
find two v1 and v2 in T such that (Prob[X = v1] − Prob[Y =
v1])(Prob[X = v2] − Prob[Y = v2]) � 0. Then, one can com-
bine v1 and v2 together as a new variable v′ to form a new
domain T ′. If the statement of the equality S(|T |) holds, the
above argument shows that S(|T | + 1) also holds. Since the
statement holds for S(1) and S(2), by induction, it holds for
all S(|T |) with |T | � 1.

Roughly speaking, the statistical distance quantifies the
distinguishability of two probability distributions. The factor
of 1/2 in Eq. (2) is used to normalize the statistical distance
so that its value falls into [0,1]. When X is ε-close to Y ,
X is indistinguishable from Y except for a small probability
ε. For example, the output of a practical RNG is said to
be ε-close to an ideal RNG if it satisfies Definition (2). We
emphasize that the security parameters from Definition (2) are
composable. The notion of composability was first proposed
in the classical cryptography for the study of security when
composing classical cryptographic protocols in a complex
manner [25,26]. It is introduced to quantum cryptography by
Refs. [27,28].

Definition I.3 (Extractor). A (k,ε,n,d,m)-extractor is a
function

Ext : {0,1}n × {0,1}d → {0,1}m, (3)

such that for every probability distribution X on {0,1}n with
H∞(X) � k, the probability distribution Ext(X,Ud ) is ε-close
to the uniform distribution on {0,1}m.

In short, an extractor is a function that takes a small seed
of d bits and a partially random source of n bits to output an
almost perfect random bit string of m bits.

Definition I.4 (Strong extractor). A (k,ε,n,d,m)-strong
extractor Ext(X,Ud ) is an extractor such that the probability
distribution Ext(X,Ud ) ◦ Ud is ε-close to the uniform distribu-
tion on {0,1}m+d .

Note that the key advantage of a strong extractor is that the
input (random) seed can be reused (with a security parameter
increased by ε). Thus, one can partition the output of a practical
RNG into (small) blocks and process them by a strong extractor
with the same seed.

Definition I.5 (Universal hashing). A family of hash
functions H, mapping S to T , is two-universal if

Probh∈H{h(x) = h(y)} � 1

|T | , (4)

for all x 
= y ∈ S.

II. QUANTUM RANDOMNESS EVALUATION

In this section, we provide a general framework to evaluate
the quantum (true) randomness from a practical QRNG.
The QRNGs developed in Refs. [12,22] are discussed as
illustrations of the evaluation process. We note that our
evaluation procedure is a generic method that can be applied
to other QRNGs with certain modifications.

A. Physical model

In general, the random numbers of a QRNG come from a
certain measurement. We refer to the measurement outcome as
quantum signal. This quantum signal is inevitably mixed with
classical noises, such as background detections and electronic
noises. From a cryptographic view, these classical noises might
be known to (or even manipulated by) Eve in the worst case
scenario. Hence, the main objective of the postprocessing for
a QRNG is to extract out the quantum (true) randomness and
eliminate the contributions of classical noises.

Let us consider a generic flow chart of QRNG, as shown
in Fig. 1. First, a quantum state is prepared, which is
the source of true randomness. Then, a measurement is
performed on the quantum state. Finally, the raw data is
postprocessed by a randomness extractor to generate truly
random numbers. For example, the quantum state in Ref. [22],
which characterizes the random phases of the photons from
spontaneous emissions, is prepared by operating a laser near
its threshold level; the measurement is operated by a delayed
self-heterodyning system; and the raw data is evaluated
based on a physical model and processed by randomness
extractors. For the QRNG in Ref. [12], the quantum state is
produced by the quadrature amplitude of the vacuum state;

FIG. 1. (Color online) A generic schematic diagram of a QRNG setup. A quantum state is prepared and measured. Then the outcome is
processed to generate random numbers by an extractor.
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the measurement is realized by a homodyne detector; and the
raw data is processed by a hash extractor.

B. Quantum randomness evaluation

The key parameter we need to evaluate here is the min-
entropy, defined in Eq. (1), of the quantum signal contained in
the raw data. In the following, we present a method to evaluate
the min-entropy by deriving the probability distribution of the
quantum signal.

Let us take the QRNG setup in Refs. [10,22] as the first
example to show the detailed procedures of the evaluation
process. In this case, the quantum signal comes from vacuum
fluctuation and the contribution from all other sources of
phase fluctuations is defined as classical noise. The details of
this QRNG can be found in Ref. [22]. The assumptions of the
physical model needed for the derivation of the probability
distribution of the quantum signal are listed as follows:

(1) The total signal is a mixture of quantum signal and
classical noise. Quantum signal is independent of classical
noise.

(2) The quantum signal follows a Gaussian distribution.
The total analog signal is digitalized by an analog-to-digital
convertor (ADC).

(3) The ratio between the variances of quantum signal and
classical noise can be determined, denoted by γ .

(4) Total signal variance can be characterized by sampling,
denoted by σ 2

total. Note that the last assumption can be satisfied
when the sequence of the raw data is independent and
identically distributed (i.i.d.). Also, there is no need to assume
that classical noise follows a Gaussian distribution.

In summary, to derive the probability distribution of the
quantum signal, the key point is to find out its variance.
This is done by measuring the total variance of the raw
data and the quantum-to-classical ratio. That is, with assump-
tions (1), (3), and (4), one can easily derive the quantum
variance,

σ 2
quantum = γ σ 2

total

1 + γ
. (5)

From the variance together with the Gaussian distribution
assumption, one can get the whole probability distribution
of the quantum signal. Since the analog signal is sampled
by an eight-bit ADC to generate digital bits [22], one can
evaluate the probability distribution of the digitalized output on
{0,1}8, given the Gaussian distribution of the quantum signal.
Then the min-entropy of the quantum signal can be derived by
Definition I.1. Following the detailed calculation procedures
in Ref. [22], a min-entropy of 6.7 bits per eight-bit raw sample
(from an eight-bit ADC) is obtained. In Ref. [22], the authors
use the ADC to cut off bins evenly along the voltage axis.
By carefully designing the bin size, one might increase the
min-entropy.

Next, we discuss how our evaluation process can be applied
to Ref. [12]. The assumptions of a physical model are similar to
the ones discuss above in that the vacuum state fluctuation used
there [12] also follows a Gaussian distribution. To rigorously
quantify the randomness by min-entropy, from the data about
the variance of total signal and classical noise there (see
Fig. 2 in Ref. [12]), the variance of quantum signal can be

derived. Afterward, instead of calculating Shannon entropy
there, the min-entropy of the quantum signal can be derived by
Definition I.1 given the Gaussian distribution of the quantum
signal about the probability distribution of the digitalized
output on {0,1}16.7

We note that our framework can also be applied to other
types of QRNGs, such as those with discrete variables rather
than continuous variables. The key point is to evaluate the min-
entropy of quantum signals through quantitatively separating
its contributions from quantum signals and classical noises.
Such an extension would be an interesting prospective research
topic.

C. Upper bound of randomness

The randomness of a given QRNG setup is a limited
resource. This can be shown by providing the upper bound
of randomness, say, via Shannon entropy, that one can extract
from the measurement outcome.8 The upper bound also
indicates how much margin is left for further improvement
in postprocessing.

Here, since we only have the experimental data of
Ref. [22], we take it as an example to show how one can eval-
uate the upper bound of entropy for a practical QRNG setup.
The quantum signal is measured by a photodetector (PD).
Given a perfect photon-number resolving detector, the upper
bound of the min-entropy is determined by the photon number
within the detection time window. The laser power used in the
setup is 0.95 mW,9 which corresponds to 1.5 × 106 photons at
1550 nm within a 200 ps detection time window. Thus, the
maximal entropy of a sample from the PD can be estimated by
log2(1.5 × 106) = 20.5 bits, which is the upper bound of the
min-entropy of the QRNG source.

III. RANDOMNESS EXTRACTION

In this section, we will present our prototypical implementa-
tions of Trevisan’s extractor and the Toeplitz-hashing extractor.
These implementations can be easily used for the extraction
of Refs. [12,22], and other more general QRNGs.

A. Trevisan’s extractor

1. Results summary

Trevisan proposed an approach to construct randomness
extractors based on pseudorandom-number generators [15].
Trevisan’s extractor has a number of important theoretical

7Without the detailed data values of Ref. [12], we did not calculate
the final result of min-entropy. As indicated earlier in Sec. II B, the
missing experimental parameters are the total variance of quantum
signals and classical noises and the ratio between the variances of
quantum signals and classical noises.

8Roughly speaking, the min-entropy can be regarded as the lower
bound of randomness one can extract, whereas Shannon entropy can
be treated as the upper bound. The min-entropy is always no greater
than the corresponding Shannon entropy.

9In principle, one can go beyond this limitation by increasing the
laser power. However, the upper bound of min-entropy can only
increase logarithmically with power intensity.
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advantages.10 First, it is secure against a quantum adversary.
Second, the seed length is polylogarithmic in the length of the
input. Third, it can also be proven to be a strong extractor with
certain modifications on the security parameters (Theorem 22
in [18]). However, a real-life implementation of this important
extractor was never reported in the literature.

Here, we implement its improved version by Raz, Reingold,
and Vadhan [16]. There are two main steps to construct Tre-
visan’s extractor: one-bit extractor and combinatorial design.
The one-bit extractor can be realized by an error correcting
code, which is constructed by concatenating a Reed-Solomon
code with a Hadamard code, as shown in Appendix A of
Ref. [18]. For the combinatorial design part, we implement a
refined version of Nisan-Wigderson design [2,29].

Our implementation of Trevisan’s extractor yields an output
speed of 0.7 kb/s. From our result, we locate the major
computational step that limits Trevisan’s extractor speed,
which lies on the error-correction-based one-bit extractor.
Recently, Maurer et al. posted a follow-up paper [24] on our
work, where alternative one-bit extractors, rather than listing
errorcorrecting codes, are utilized. As a result, the extraction
speed in the implementation of Maurer et al. is substantially
improved [24], which can go up to 150 kb/s. Compared to
the Toeplitz-hashing extractor (Sec. III B), Trevisan’s extractor
requires a seed with a shorter length. Thus, Trevisan’s extractor
has a certain advantage in cases where the random seed bits
are limited. Although our implementation results show that
the speed of the Toeplitz-hashing extractor (441 kb/s) is much
faster than that of Trevisan’s extractor (0.7 kb/s), a detailed
comparison between these two extractors is an interesting
prospective research project.

2. Implementation procedure

We sketch out the implementation procedure in this section,
while the implementation details are shown in Appendix A.
We input an ni-bit string, raw data from a QRNG, with
a min-entropy at least k, and a d-bit random seed (y)
into an (k,ε,ni,d,nf ) extractor, constructed by combining
an (ni,1/2 − ε/4nf ) error correcting code11 and an (me,ρ)
design,12 and then output an nf -bit string which is ε-close to
a uniform distribution. Here, k, ε, and ni are given from the
source and practical use of random numbers. We need to figure
out d (as small as possible) and nf (as large as possible).

(1) Map the input ni-bit string to an n̄-bit string according
to the (ni,1/2 − ε/4nf ) error correcting code. Here, n̄ can
be assumed to be a power of 2 [15]. In practice, one can
concatenate the Reed-Solomon code and Hadamard code
together (see Appendix A of [18]), where the codeword length
is given by

n̄ = 22me , me = �log2 ni + 2 log2 nf − 2 log2 ε + 4�. (6)

10For a discussion, see, for example, a follow-up paper by Mauerer
et al. [24].
11An (n,p) error correcting code has a codeword length of n and is

able to correct error rates up to p.
12An (m,ρ) design means a collection of m subsets. The average

number of overlap elements between two subsets is no more than ρ.
Details can be found in Ref. [29].

Also, nf can be upper bounded by k for the error correcting
code construction.

(2) Construct an (me,ρ) design [29], with

me = 1
2 log2 n̄ = O( log2(ni/ε)),

(7)
ρ = [k − 3 log2(nf /ε) − d − 3]/nf ,

where the second equation is from Proposition 10 and
Theorem 22 in Ref. [18], typically 1 � ρ � 1.5. The design
parameter ρ can be viewed as the ratio of min-entropy that can
be extracted. One can simply pick up ρ = 1 if the output length
is to be optimized (Lemma 17 in Ref. [18]). The extractor
seed, with a length of d, is composed of blocks of seeds with
lengths of the square of the smallest power of 2 which is greater
than me. Note that this block design idea is proposed by Raz
et al. [18]. Here, we are interested in a design with ρ = 1,
so that most of randomness can be extracted. According to
the explicit design proposed by Nisan and Wigderson [2] and
proved in Refs. [29,30], the number of such blocks and hence
the seed length are given by

b = �log2 nf � − md + 1,

d = 22md b = O( log2
2(ni/ε) log2 ni), (8)

md ≡ �log2 2me�.
In fact, any design with d � �log2 n̄�2b and ρ = 1 can be
applied here.

(3) The ith bit of the nf -bit output is given by the ySi
th bit of

the encoded n̄-bit string, where ySi
is a substring of y, formed

by the bits of y at the positions given by the elements of Si .

B. Universal hashing

Owing to the similarity between the definitions of extractors
and privacy amplification [21], any privacy amplification
scheme can be used as an extractor, in principle. However, there
is one subtle difference. In privacy amplification, the random
seed (public randomness) is assumed to be free, whereas in an
extractor, one needs to take the seed into account as it does
consume random bits. Therefore, a direct transplant of privacy
amplification schemes may not work for randomness extrac-
tion. In fact, for a popular universal hashing function, Toeplitz
hashing [19,20], the random seed used to construct a Toeplitz
matrix is longer than the output string. This means that no net
randomness can be extracted if the universal hashing is directly
used for randomness extraction. To overcome this problem,
one needs to prove that the privacy amplification scheme
constructs a strong extractor (see Definition I.4), thus allowing
one to maintain the randomness of the seed for subsequent ap-
plications. Fortunately, the extractors constructed by universal
hashing functions [23] (see Definition I.5) can be easily proven
to be strong extractors by the Leftover Hash Lemma [8].

Lemma III.1 (Leftover Hash Lemma [8]). Let H =
{h1,h2, . . . ,h2d } be a (two-)universal hashing family, mapping
from {0,1}n to {0,1}m, and X be a probability distribution on
{0,1}n with H∞(X) � k. Then for x ∈ X and hy ∈ H where
y ∈ Ud , the probability distribution formed by hy(x) ◦ y is ε =
2(m−k)/2 close to Um+d . That is, it forms a (k,2(m−k)/2,n,d,m)-
strong extractor.

We note that Lemma III.1 also implies that the Toeplitz
matrix may be reused in the privacy amplification of
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FIG. 2. (Color online) Autocorrelation evaluation results. All normalized correlation is evaluated from a 10 Mb record of the raw data.
(a) Autocorrelation of the raw data (between bits). The average value of autocorrelation coefficient is 9.5 × 10−4. The most significant
correlations are within eight bits, due to the usage of eight-bit ADC. (b) Autocorrelation of the raw data (between samples). The average value
is 4.9 × 10−4. (c) Autocorrelation of the outcomes from the Toeplitz-hashing extractor. The average value is −1.0 × 10−5. (d) Autocorrelation
of the outcomes from Trevisan’s extractor. The average value is 1.6 × 10−5. In theory, for a truly random 10 × 106 bit string, the average
normalized correlation coefficient is 0 with a standard deviation of 4 × 10−4.

QKD. Then, one can use a private key (as a seed) to
construct a Toeplitz matrix for privacy amplification without
compromising (much of) the privacy of the seed. Hence,
reusing the seed can save the classical communication for
privacy amplification, which is normally required in standard
QKD postprocessing [31]. It is also practically beneficial
for privacy amplification to divide the raw key data into
small blocks and apply a small Toeplitz matrix individually.
However, the finite-size effect of a small block can
significantly lower the privacy amplification efficiency [32].
This issue is an interesting research topic for future study.

Here, we use Toeplitz matrices for universal hashing
function construction [19,20] and implement the Toeplitz-
hashing extractor. A Toeplitz matrix of dimension n × m

requires only the specification of the first row and the first
column, and the other elements of the matrix are determined
by descending diagonally down from left to right. Thus, the

total number of random bits required to construct (choose) a
Toeplitz matrix is n + m − 1.

The procedure of Toeplitz-hashing extractor is given as
follows:

(1) Given raw data of size n with a min-entropy of k and a
security parameter ε, determine the output length to be

m = k − 2 log2 ε. (9)

(2) Construct a Toeplitz matrix with an n + m − 1-random-
bit seed.13

(3) The extracted random-bit string is obtained by multi-
plying the raw data with the Toeplitz matrix.

13For demonstration purposes, we use pseudorandom numbers for
this step.
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We implement a Toeplitz-hashing extractor to the QRNG
presented in Ref. [22]. As mentioned in Sec. II, the min-entropy
of the raw data is bounded by 6.7 bits per sample. With the input
bit-string length of 212 = 4096, the output bit-string length is
4096 × 6.7/8 � 3430. Thus, we use a 4096 × 3230 Toeplitz
matrix for randomness extraction, which results in ε < 2−100

as from Eq. (9). Our implementation of a Toeplitz-hashing
extractor achieves generation rates of 441 kbits/s.14

Notice that recently Toeplitz matrix hashing is implemented
for QKD privacy amplification with a block size exceeding
106 [33]. As discussed above, privacy amplification requires a
big block size due to the finite-size key effect [31], whereas in
the application of randomness extraction, a small block size
will only reduce the efficiency. Nevertheless, the technique de-
veloped in [33] could be useful for extractor implementations
as well, which we will leave for future investigation.

IV. RANDOMNESS TEST

A. Statistical tests

We apply three standard statistical tests—DIEHARD,15

NIST,16 and TESTU01 [34]—to evaluate our results. Again,
since we only have the data about the QRNG of Ref. [22],
we use it as the test of our implementation of randomness
extractors. First, the raw data from the QRNG [22] does not
pass the statistical tests due to the classical noises mixed in the
raw data and the fact that the as-obtained quantum signals fol-
low a Gaussian distribution instead of a uniform distribution.
Secondly, the random numbers from a pseudo-RNG cannot
pass all the tests, which exposes its underlying determinism.
Finally, we repeatedly operate the Toeplitz-hashing extractor
and Trevisan’s extractor on our raw data. The outputs from
both extractors successfully pass all the standard statistical
tests, which indicates that our postprocessing is effective in
extracting out uniform randomness from a weak randomness
source. All the test results are shown in Appendix B.

B. Autocorrelation

An alternative approach to verify randomness is evaluating
the autocorrelation. The autocorrelations of the raw data are
shown in Figs. 2(a) (between bits) and 2(b) (between samples).
From Fig. 2(a), we can see that the autocorrelation is significant
only within an eight-bit sample, but drop to the vicinity of
below 1 × 10−3. Also, the low values of the autocorrelation
between samples [Fig. 2(b)] verify the assumption that the

14Toeplitz hashing can be implemented much faster with hardware
implementation [20].
15www.stat.fsu.edu/pub/diehard/
16www.csrc.nist.gov/groups/ST/toolkit/rng/

sequence of raw data is i.i.d. (see Sec. II A). We remark that
due to the finite bandwidth of a practical detector and statistical
fluctuations, the autocorrelation is around 1 × 10−3 but never
drops to 0.

After postprocessing by either Travisan’s extractor or the
Toeplitz-hashing extractor, not only the correlation within
eight bits (from a sample digitalized by an eight-bit ADC)
is eliminated, but also the autocorrelation beyond eight bits
drops to 1 × 10−5. The autocorrelations of the postprocessing
outputs are shown in Figs. 2(c) and 2(d), where the low residual
values indicate the good randomness of our extracted results.

V. CONCLUDING REMARKS

We have modeled QRNG to evaluate the min-entropy of the
quantum source, and discussed implementation of a popular
extractor—Trevisan’s extractor. We have also implemented
a Toeplitz-hashing-based extractor. We have applied our
postprocessing scheme to a recent QRNG implementation
[22] and the min-entropy evaluation procedure on another
implementation [12]. The random numbers obtained at the
end of postprocessing passed through all the tests of DIEHARD,
NIST, and TESTU01.

From our implementation of Trevisan’s extractor, we find
that the bottleneck for its extraction speed lies on the one-bit
extractor part. Thus, in order to improve the implementa-
tion speed, one should investigate the one-bit extractor. In
fact, the recent follow-up work by Maurer et al. shows
that such improvement can be made [24]. Our prototypical
implementation of Trevisan’s extractor allows researchers
to better understand the complexity and difficulty in the
implementation of Trevisan’s extractor, thus paving the way
to future implementations.
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APPENDIX A: TREVISAN’S EXTRACTOR
IMPLEMENTATION DETAILS

The choice of block size not only determines the seed cost
and security parameter of the random output, but also affects

TABLE I. A parameter set for Trevisan’s extractor.

Extraction efficiency RS GF(2me ) Design GF(2md ) Input Output
ρ = 1 me = 128 md = 8 ni = 215 nf = 214

Security parameter ECC codeword Blocks Seed

ε =
√

24−menin
2
f n̄ = 22me b = 7 d = 4m2

eb
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TABLE II. Real-time profile of the speed of combinatoric design. Parameters are selected to result in the highest generation rate. Number
theoretical operations in GF2m dominate the speed performance of the ECC, and determine the speed of real-time performance and bit rate (per
second).

Experimental no. Theoretical no. of Experimental no. of GF2m Real time
log2 nf of GF2m operation GF2m operation operation per nf size (s)

10 65280 262144 63.75 41.1934
11 196352 786432 95.875 124.8
12 458496 2097152 111.9375 300.81
13 982784 5242880 119.96875 685.91
14 203130 12582912 123.984375 1603.8
15 4128512 29360128 125.99 3960.4
16 8322816 67108864 126.9960938 10911

TABLE III. Real-time profile of the speed of the error control code (ECC). Parameters are selected to result in the highest generation rate.
Number-theoretical operations in GF2m dominate the speed performance of the ECC, and determine the speed of real-time performance and
bit rate (per second).

Experimental no. of Theoretical no. of Experiment no. of GF2m Real Bit
nf (power) GF2m operation GF2m operation operation per nf size time (s) rate (s−1)

1024(10) 15360 16384 15 1.4488 706.8
2048(11) 63488 65536 31 5.9326 345.21121
4096(12) 258048 262144 63 23.5451 173.96401
8192(13) 1040384 1048576 127 95.72 173.96
16384(14) 4177920 4194304 255 380.19 43.1
32768(15) 16744482 16777216 511 1536.8 21.32

TABLE IV. DIEHARD. Data size is 240 Mbits. For the cases of multiple P values, a Kolmogorov-Smirnov (KS) test is used to obtain a final
P value, which measures the uniformity of the multiple P values. The test is successful if all final P values satisfy 0.01 � P � 0.99.

Pseudo-RNG Raw data Trevisan’s Toeplitz hashing

Statistical test Result Result P value Result P value Result

Birthday spacings (KS) Success Failure 0.822630 Success 0.340863 Success
Overlapping permutations Success Failure 0.679927 Success 0.403824 Success
Ranks of 31 × 31 matrices Success Failure 0.419095 Success 0.349441 Success
Ranks of 31 × 32 matrices Success Failure 0.715705 Success 0.816752 Success
Ranks of 6 × 8 matrices (KS) Success Failure 0.195485 Success 0.408573 Success
Bit stream test Success Failure 0.048260 Success 0.281680 Success
Monkey test OPSO Success Failure 0.027300 Success 0.892600 Success
Monkey test OQSO Success Failure 0.023200 Success 0.267200 Success
Monkey test DNA Failure Failure 0.038000 Success 0.736700 Success
Count 1’s in stream of bytes Success Failure 0.380162 Success 0.639691 Success
Count 1’s in specific bytes Failure Failure 0.020417 Success 0.373149 Success
Parking lot test (KS) Failure Failure 0.629013 Success 0.151689 Success
Minimum distance test (KS) Success Failure 0.019499 Success 0.688780 Success
Random spheres test (KS) Success Failure 0.488703 Success 0.939227 Success
Squeeze test Success Failure 0.238004 Success 0.155403 Success
Overlapping sums test (KS) Success Failure 0.022339 Success 0.909675 Success
Runs test (up) (KS) Failure Failure 0.403504 Success 0.181024 Success
Runs test (down) (KS) Success Failure 0.119132 Success 0.668512 Success
Craps test no. of wins Success Failure 0.757521 Success 0.826358 Success
Craps test throws per game Success Failure 0.179705 Success 0.862986 Success
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TABLE V. NIST. Data size is 3.25 Gbits (500 sequences with each sequence around 6.5 Mbits). To pass the test, P value should be larger
than the lowest significant level α = 0.01, and the proportion of sequences satisfying P > α should be greater than 0.976. Where the test has
multiple P values, the worst case is selected.

Pseudo-RNG Raw data Toeplitz hashing

Statistical test Result Result P value Proportion Result

Frequency Success Failure 0.373625 0.9900 Success
Block frequency Success Failure 0.310049 0.9960 Success
Cumulative sums Success Failure 0.422638 0.9980 Success
Runs Success Failure 0.703417 0.9900 Success
Longest run Success Failure 0.013569 0.9880 Success
Rank Success Failure 0.411840 0.9940 Success
FFT Success Failure 0.987079 0.9860 Success
Nonoverlapping template Failure Failure 0.727851 0.9820 Success
Overlapping template Success Failure 0.110083 0.9780 Success
Universal Success Failure 0.962688 0.9880 Success
Approximate entropy Success Failure 0.674543 0.9920 Success
Random excursions Success Failure 0.409207 0.9900 Success
Random-excursions variant Success Failure 0.426358 0.9840 Success
Serial Success Failure 0.217570 0.9860 Success
Linear complexity Success Failure 0.657833 0.9940 Success

the complexity aspect of the performance. For demonstration
purposes, we pick up a set of parameters for Trevisan’s
extractor, listed in Table I, which can be run sufficiently fast
on a personal computer.

In this case, the random seed length is larger than the output
length, and we can concatenate a hashing-based extractor to
make the entropy loss minimum [18]. We pick up the output
length of nf = 1 Mb. On one hand, too large a nf will slow
down the extractor, much owing to the O(n2) complexity with
respect to input length; on the other hand, too small a nf will
result in not only high seed cost but also a degradation of
security (a larger security parameter ε).

Careful analysis of computational complexity is essential
to understanding the tractability or intractability of our

implementation given a reasonable computational power. The
analysis of complexity of the combinatorial design in Table II
demonstrates that the most economical parameter in terms
of rate is at nf = 214. A smaller parameter will render the
design powerless due to associated high key cost, and a larger
parameter results in unwieldy complexity growth.

As in Table III, the top generation rate of our extractor is
706.8 bits/s; the low speed of the extractor is a consequence of
the lack of efficient implementation of finite field operations.
Although slow in speed, the results from Trevisan’s extractor
do pass the statistical tests of DIEHARD. This increase in
performance is at the cost of decrease in speed. The severe
restriction on speed has limited the usage of Trevisan’s
extractor in real-time applications.

TABLE VI. TESTU01 (small crush). Given the constraint of the data size and computational power of crush and big crush of TESTU01, we
only perform the small crush test here. Data size is 8 Gbits. The P value from a failing test converges to 0 or 1. Where the test has multiple P

values, the worst case is selected.

Pseudo-RNG Raw data Toeplitz hashing

Statistical test Result Result P value Result

BirthdaySpacings Success Failure 0.5300 Success
Collision Success Failure 0.1500 Success
Gap Chi-square Success Failure 0.8900 Success
SimpPoker Chi-square Success Failure 0.3500 Success
CouponCollector Chi-square Success Failure 0.6700 Success
MaxOft Chi-square Success Failure 0.6900 Success
MaxOft Anderson-Darling Success Failure 0.9500 Success
WeightDistrib Chi-square Success Failure 0.5600 Success
MatrixRank Chi-square Success Failure 0.5100 Success
Hammingindep Chi-square Success Failure 0.1000 Success
RandomWalk1 H Chi-square Success Failure 0.9931 Success
RandomWalk1 M Chi-square Success Failure 0.8300 Success
RandomWalk1 J Chi-square Success Failure 0.9400 Success
RandomWalk1 R Chi-square Success Failure 0.7000 Success
RandomWalk1 C Chi-square Success Failure 0.6600 Success
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Our implementation is done on a mere PC, but a mainframe
computer can crunch number-theoretical operations much
faster than a PC. Furthermore, as a future perspective, once
we tackle the implementation on any graphical processing
unit (GPU) platforms, the architecture of GPUs will allow us
to exploit the intrinsic parallelism of the extractor much more
efficiently via multithreading capability.

APPENDIX B: STATISTICAL TEST RESULTS

We employ three statistical tests—DIEHARD, NIST, and
TESTU01 [34]—to evaluate the randomness of our extracted
results from the Toeplitz-hashing extractor and Trevisan’s
extractor. The test results are shown in Tables IV–VI. We

can see that the outputs from two extractors successfully pass
all the standard statistical tests. Here, given the constraint
of computational power for Trevisan’s extractor, we skip the
NIST and TESTU01 tests for its results. Without postprocessing,
the raw data cannot pass any statistical tests, which is mainly
due to the classical noises mixed in the raw data, and the
fact that the measured quantum fluctuations follow Gaussian
distribution instead of uniform distribution. This demonstrates
the requirement of effective postprocessing in the QRNG.

For control purposes, we also perform the statistical tests
on a pseudo-RNG generated from MATLAB2007. It generates
uniformly random numbers from 0 to 255 (as emulation of
eight-bit ADC output). The results are shown in Tables IV–VI.
It cannot pass all tests.
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