
PHYSICAL REVIEW A 87, 062320 (2013)

Accurate simulations of planar topological codes cannot use cyclic boundaries
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Cyclic boundaries are used in many branches of physics and mathematics, typically to assist the approximation
of a large space. We show that when determining the performance of planar, fault-tolerant, topological quantum
error correction, using cyclic boundaries leads to a significant underestimate of the logical error rate. We
present cyclic and noncyclic surface code simulations exhibiting this discrepancy and analytic formulas precisely
reproducing the observed behavior in the limit of low physical error. These asymptotic formulas are then used to
prove that the underestimate is exponentially large in the code distance d at any fixed physical error rate p below
the threshold error rate pth.
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Topological quantum error correction (TQEC) is the lowest
overhead technique for achieving reliable large-scale quantum
computation given a two-dimensional (2D) lattice of qubits
with nearest-neighbor interactions [1]. As such, accurate
simulations of the performance of such codes under physically
realistic assumptions are of great practical relevance. Much of
the existing literature on TQEC uses cyclic boundaries [2–5].
While this is sufficient to obtain the threshold error rate pth of
a given TQEC scheme, we show that this is not sufficient to
obtain an accurate logical error rate at a given code distance
d and physical error rate p < pth. Indeed, we show that cyclic
boundaries lead to an exponentially growing underestimate of
the logical error rate with d.

Without loss of generality, we shall focus on the surface
code [6–10] making use of minimum-weight perfect matching
for decoding [11–14]. Our results are relevant to any periodic,
fault-tolerant implementation of any planar TQEC code. An
up-to-date and detailed review of the surface code can be found
in [15].

While the field of TQEC is complex, our presentation shall
assume only basic quantum mechanics and otherwise be self-
contained. We shall start with an introduction to the surface
code.

I. THE SURFACE CODE

The patterns of stabilizers [16] associated with distance
d = 3 noncyclic and cyclic surface codes are shown in Fig. 1.
A stabilizer of a state |�〉 is simply an operator A such
that A|�〉 = |�〉. We denote the Pauli matrices by X, Y ,
and Z. Each white and black dot in Fig. 1 is a quantum
bit (qubit), namely, a two-level quantum system. The two
states are denoted |0〉 = (1,0)T and |1〉 = (0,1)T . Light gray
bubbles around groups of Z operators and dark gray bubbles
around groups of X operators denote tensor products, with the
extremities of each bubble touching the qubits operated on by
each component of the tensor product. Note that all stabilizers
commute, so a simultaneous eigenstate of all stabilizers exists.

A generic quantum circuit measuring the eigenvalue of
any operator A such that A2 = I is shown in Fig. 2(a).
The H (Hadamard) gate maps |0〉 → (|0〉 + |1〉)/

√
2 and

|1〉 → (|0〉 − |1〉)/
√

2. The MZ gate represents projective
measurement in the Z basis. The central structure is a

controlled-A gate, meaning A is applied only if the control
qubit (the one touched by the dot) is |1〉. Time runs from
left to right. Explicitly, the initial state is |0〉|�〉. After
the first Hadamard we will have (|0〉 + |1〉)|�〉/

√
2. After

controlled A we obtain (|0〉|�〉 + |1〉A|�〉)/
√

2. The second
Hadamard gives |0〉(|�〉 + A|�〉)/2 + |1〉(|�〉 − A|�〉)/2. If
projective Z basis measurement reports |0〉, we will have the
+1 eigenstate of A, namely, (|�〉 + A|�〉)/

√
2. Similarly, a

report of |1〉 indicates the −1 eigenstate. Figures 2(b) and
2(c) show how to specialize this generic circuit to measure
surface code stabilizers in a manner permitting simultaneous
measurement of all stabilizers.

Using the circuit definitions and identity in Fig. 3, a
portion of the simultaneous stabilizer measurement procedure
is shown in Fig. 4. This procedure has been designed
to make use of only controlled-X (CX) interaction gates.
Assuming control-target ordering, note that CX|00〉 = |00〉,
whereas CX|10〉 = |11〉. This gives intuitive justification for
the statement CXXc|�〉 = XcXtCX|�〉, namely, CX copies X

errors from the control qubit to the target qubit, which can be
verified via matrix multiplication.

A given stabilizer measurement, performed repeatedly in
the absence of errors, will always return the same result, either
+1 or −1. Two sequential measurements reporting different
values are defined to be a detection event and indicate that at
least one error has occurred nearby. We call the space-time
coordinate of the beginning of the second measurement the
space-time coordinate of the detection event. It is conceptually
straightforward to analyze the propagation of all possible
single errors and to determine the total probability of any
given pair of detection events due to all distinct single errors.
We can visualize each such probability as a cylinder with
space-time end points corresponding to the detection events
and diameter proportional to the total probability. We call such
a visualization a nest and each cylinder a stick.

Nests for X-stabilizer measurement in the surface code
assuming noncyclic and cyclic boundaries are shown in Figs. 5
and 6, respectively. These figures were generated using our tool
AUTOTUNE [17]. Due to the complexity of Figs. 5 and 6 and the
impossibility of truly appreciating their structure from a single
2D image, their raw data and BLENDER three-dimensional (3D)
files have been included in the Supplemental Material [18].
The reader seeking a deep understanding of this work needs
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FIG. 1. (Color online) patterns of stabilizers of a distance d = 3
surface code with (a) noncyclic boundaries and (b) cyclic boundaries.
Examples of logical operators of each type have been given. Each
white and black dot represents a qubit. Light gray bubbles around
groups of Z operators and dark gray bubbles around groups of X

operators denote tensor products, with the extremities of each bubble
touching the qubits operated on by each component of the tensor
product.

to take the time to become familiar with the structure of these
figures. Additional discussion of specific surface code error
propagation details can be found in [19]; however, this is not
required reading.

II. LOGICAL ERRORS

The distance d of a surface code is the length of the shortest
chain of operators that commutes with all stabilizers and is
not a product of stabilizers itself. In our simulations, we use
a standard depolarizing error model; namely, initialization
prepares the wrong state with probability p, measurement
reports the wrong value with probability p, single-qubit gates
randomly apply one of X, Y , and Z with total probability p, and
two-qubit gates randomly apply one of the 15 nontrivial tensor
products of I , X, Y , and Z with total probability p. A logical
error is a pattern of physical errors that is uncorrectable. A code
with distance d has logical states (e.g., |0L〉 and |1L〉) that can
only be interconverted by applying at least d operators. This
means, however, that the application of �(d + 1)/2� operators
can make you closer to a different logical state than the
original, meaning correction will fail as correction takes you
to the closest logical state. When d is even, application of d/2
operators can leave you in an ambiguous state that can also

1

2
3

4

(b)

(c)

A

H0 MZ

A

A

A

H

1

2

3

4

(a)

A

H0 MZH

Ψ

FIG. 2. (a) A generic quantum circuit measuring the eigenvalue of
any operator A such that A2 = I . The H (Hadamard) gate maps |0〉 →
(|0〉 + |1〉)/

√
2 and |1〉 → (|0〉 − |1〉)/

√
2. The MZ gate represents

projective measurement in the Z basis. The central structure is a
controlled-A gate, meaning A is applied only if the control qubit
(the one touched by the dot) is |1〉. Time runs from left to right.
(b) Surface code qubit layout with numbered interactions. (c) Generic
quantum circuit measuring the stabilizers of the surface code (A = X

or Z). Numbers correspond to (b) and indicate a north, west, east,
south interaction sequence. This sequence enables all stabilizers to
be measured simultaneously.

cause correction to fail to return the quantum computer to the
original state.

The probability of each type of logical error per round
of error detection for various distances d and noncyclic and
cyclic boundaries as a function of the physical depolarizing
error rate p is shown in Figs. 7–12. It can be seen that the
logical error rates of the cyclic case are significantly lower,
particularly logical X1 and Z2 errors. We can determine

X

Z

H

d

d

(a)

(b)

H

(c)

FIG. 3. (a) Circuit symbol for controlled X. (b) Circuit symbol
for controlled Z. (c) Circuit identity relating controlled X and
controlled Z.
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FIG. 4. (Color online) Two-dimensional surface code (gray).
Time runs vertically. Squares represent initialization to |0〉, and circles
represent Z-basis measurement. Slashed squares represent initializa-
tion to |+〉, and slashed circles represent X-basis measurement (both
achieved using Hadamard gates). (a) A single error leading to a pair
of detection events (ellipses). A detection event is a sequential pair of
measurements with differing value. Lines ending in arrows show the
paths of error propagation. (b) An error leading to a single detection
event due to proximity to a boundary of the lattice.

the low-p asymptotic forms of the curves in Figs. 7 and 8
using the work of [20]. These analytic expressions (simple
equations of the form Apd/2) are shown as dashed lines
and are detailed in Table I and were derived completely
independently of the simulations. No fitting parameters were
used. The agreement with the simulation data should be perfect
to statistical accuracy in the limit of low p. In practice, it is
only possible to obtain logical error data at sufficiently low
p to see perfect agreement for d = 4. Logical error rates at
low p for d > 4 are simply too small to accurately measure
using stochastic simulations. Nevertheless, the general trend of
the simulation data towards the analytic asymptotic curves is
well indicated, implying the processes leading to failure in the
noncyclic surface code are well understood. For the purposes
of this paper, it is only important to note that the asymptotic
form is as it should be; namely, at least d/2 errors, each of
which has probability O(p), are required to cause failure.

As the noncyclic code distance d increases, the number
of minimum stick topologically nontrivial paths connecting
opposing boundaries grows exponentially (consider larger
versions of Fig. 5). Such paths can be associated with logical
operators of minimum weight d, each of which, crudely
speaking, increases the probability of logical error. More
precise discussion can be found in [20]. By contrast, in a
distance d surface code with cyclic boundaries, there are
precisely d minimum stick topologically nontrivial cyclic
paths. Diagonal sticks never zigzag and hence never create
additional cyclic paths.

While the most concrete way to verify that diagonal
sticks never zigzag is to pore through the raw data in the
Supplemental Material [18], the reason for this behavior
can be understood intuitively. Consider any cyclic-boundary,
transversely invariant, periodic, fault-tolerant TQEC with the

FIG. 5. (Color online) Nest of seven rounds of Fig. 1(a) fault-
tolerant X-stabilizer measurements. Note that there are six columns
of cylinders (sticks), with each column corresponding to a distinct
X stabilizer in Fig. 1(a). Stabilizers are measured using the quantum
circuits shown in Fig. 4. Under the assumption that the surface code is
initially in the +1 eigenstate of all stabilizers, a physical measurement
error during measurement of the bottom left X stabilizer will lead to
a −1 eigenstate being reported, generating a detection event. Under
the assumption that this is the only error, the next measurement of
this X stabilizer will report +1, generating a second detection event
associated with the physical measurement error. This pair of detection
events along with the probability of the physical measurement error
contributes to the diameter of the front, bottom, left vertical stick
connecting the first two layers of the nest. By tracing the propagation
of all possible errors in all seven rounds of the error detection
circuitry, the complete nest is generated. This is done using our tool
AUTOTUNE [17].

property that any single error generates two detection events.
Choose any data qubit. By the assumption that any single error
generates two detection events, any such data qubit will be a
member of precisely two stabilizers of each type (X and Z).
By the assumption of fault tolerance, the data qubit cannot
simultaneously interact with syndrome qubits associated with
different stabilizers. Without loss of generality, let us assume
that we have a Z stabilizer to the left and right of the data
qubit. By the assumption of transversal invariance, all data
qubits with a Z stabilizer to the left and right must all interact
with one or the other first. Without loss of generality, let us
assume that the data qubit interacts with the syndrome qubit
to its right first. If an X error occurs after interaction with
the right syndrome qubit, this error will be detected by the
left syndrome qubit in this round of error detection but not
by the right syndrome qubit until the next round of error
detection. This will result in a diagonal stick with end points
separated by one unit of space and one unit of time. No matter
when an X error occurs on this data qubit, the right end of
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FIG. 6. (Color online) Nest of seven rounds of Fig. 1(b) fault-
tolerant X-stabilizer measurements. Note that there are nine columns
of cylinders (sticks), with each column corresponding to a distinct
X stabilizer in Fig. 1(b). Stabilizers are measured using the quantum
circuits shown in Fig. 4. In this case, not all sticks are visible as sticks
connecting opposite extremities of the figure (cyclic boundaries) are
indistinguishable from sticks connecting neighboring stabilizers in
the interior. This means a detailed understanding of the geometry of
the figure can only being gained by wading through the raw data
contained in the Supplemental Material [18].

the stick will never be lower than the left. In this example,
only sticks horizontal or upward diagonal to the right sticks
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FIG. 7. (Color online) Probability of logical X error as defined in
Fig. 1(a) (noncyclic) as a function of the depolarizing error rate p for
various distances d . Referring to the left-hand side, the distance d =
4,6,8 curves correspond to the top, middle, and bottom lines, respec-
tively. The analytic forms of the dashed curves can be found in Table I.
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FIG. 8. (Color online) Probability of logical Z error as defined
in Fig. 1(a) (noncyclic) as a function of the depolarizing error rate p

for various distances d . Referring to the left-hand side, the distance
d = 4,6,8 curves correspond to the top, middle, and bottom lines,
respectively. The analytic forms of the dashed curves can be found in
Table I.

will be generated. By systematically considering all gates and
qubits, similar arguments can always be constructed. In short,
diagonal sticks never zigzag.

Logical errors will occur 50% of the time when physical
errors occur corresponding to half the sticks in a given
minimum-weight logical operator. This implies the low-p
asymptotic logical error rate, for even distances, will be

pL = 1

2
d

(
d

d/2

)
εd/2, (1)

where ε is the probability of a stick within a minimum stick
logical operator. Note that the symmetry of a cyclic-boundary
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FIG. 9. (Color online) probability of logical X1 error as defined
in Fig. 1(b) (cyclic) as a function of the depolarizing error rate p

for various distances d (curves labeled with squares). The analytic
forms of the dashed curves can be found in Table I. The logical
X curves (noncyclic) from Fig. 7 have been included for comparison
(curves labeled with stars). Referring to the left-hand side, the distance
d = 4,6,8 curves correspond to the top, middle, and bottom lines of
each type (stars, squares), respectively.
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FIG. 10. (Color online) Probability of logical Z1 error as defined
in Fig. 1(b) (cyclic) as a function of the depolarizing error rate p

for various distances d . Referring to the left-hand side, the distance
d = 4,6,8 curves correspond to the top, middle, and bottom lines,
respectively. The analytic forms of the dashed curves can be found in
Table I.

surface code implies that all such sticks will have the same
probability.

From the Supplemental Material [18], we find that a Z1

logical operator (left to right) is associated with sticks of
probability ε = 4.8p, for example, by considering the (4,1,6)
to (4,3,6) stick [the first two numbers correspond to the
coordinates in Fig. 1(b), the entry is marked with an asterisk in
the Supplemental Material, and ε listed there is for p = 0.04].
A Z2 logical operator (top to bottom) is associated with
sticks of probability ε = 3.2p. Inserting these expressions into
Eq. (1) and noting that by symmetry the logical X1 and Z2 error
rates will be the same, as will the logical X2 and Z1 error rates,
we can see in Table I that at distance d = 10 the cyclic logical
Z error rate is already over a factor of 10 too low and the cyclic
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FIG. 11. (Color online) Probability of logical X2 error as defined
in Fig. 1(b) (cyclic) as a function of the depolarizing error rate p

for various distances d . Referring to the left-hand side, the distance
d = 4,6,8 curves correspond to the top, middle, and bottom lines,
respectively. The analytic forms of the dashed curves are identical to
those of Fig. 10 and can be found in Table I.
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FIG. 12. (Color online) Probability of logical Z2 error as defined
in Fig. 1(b) (cyclic) as a function of the depolarizing error rate p for
various distances d (curves labeled with squares). The analytic forms
of the dashed curves are identical to those of Fig. 9 and can be found
in Table I. The logical Z curves (noncyclic) from Fig. 8 have been
included for comparison (curves labeled with stars). Referring to the
left-hand side, the distance d = 4,6,8 curves correspond to the top,
middle, and bottom lines of each type (stars, squares), respectively.

logical X error rate nearly 2 orders of magnitude too low. The
degree of underestimation grows exponentially with d.

III. THRESHOLD FOR ASYMPTOTIC BEHAVIOR

It might be thought that the asymptotic expressions of
Table I are only valid approximations for very low p and
that the approximation grows worse as the code distance d

increases. This is not the case. In any given round of noncyclic
error detection, we can choose d boundary sticks to associate
end points of logical operators with. A logical operator must be
a non-self-intersecting paths of sticks connecting to anywhere
on the opposing boundary. A logical operator must contain at
least d sticks to connect opposing boundaries but can contain
arbitrarily many more. Given no point in the nests of the surface
code, cyclic or otherwise, is associated with more than 12
sticks, the number of logical operators associated with a given
round of error detection is upper bounded by

∑∞
m=d d11m−2.

A logical error will be associated with a logical operator if at
least �m/2� of its sticks are associated with physical errors.

Given a particular path of length m, the probabil-
ity of at least �m/2� of its lines being associated with

TABLE I. Low-p analytic asymptotic formulas derived from first
principles, not simulation. Each entry represents a curve of the form
pL = Apd/2. The definitions of the logical operators X, Z, X1, Z1

can be found in Fig. 1.

d pL(X) pL(Z) pL(X1) pL(Z1)

4 3.97 × 102p2 4.70 × 102p2 1.23 × 102p2 2.76 × 102p2

6 1.67 × 104p3 2.09 × 104p3 1.97 × 103p3 6.64 × 103p3

8 7.02 × 105p4 9.34 × 105p4 2.94 × 104p4 1.49 × 105p4

10 2.93 × 107p5 4.18 × 107p5 4.23 × 105p5 3.21 × 106p5
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errors is

m∑
i=� m

2 �

(
m

i

)
εi �

m∑
i=� m

2 �

(
m

�m
2 �

)
εi =

(
m

�m
2 �

)
ε� m

2 �
m−� m

2 �∑
i=0

εi

�
(

m

�m
2 �

)
ε� m

2 � 1

1 − ε
� ε� m

2 �
m∑

i=0

(
m

i

)

= 2mε� m
2 �. (2)

The total probability of logical error per round of error
detection is therefore upper bounded by

∞∑
m=d

d11m−22mε� m
2 � = d11d−22d

∞∑
m=d

11m−d2m−dε� m
2 �. (3)

Restricting to even d (for convenience) gives

d
22d

121
εd/2

∞∑
m=0

22mε� m
2 � = d

22d

121
εd/2

∞∑
m=0

(222m + 222m+1)εm

< 44d
22d

121
εd/2

∞∑
m=0

484mεm. (4)

Writing the prefactor as B yields

B

∞∑
m=0

484mεm = B

(
1 +

∞∑
m=1

484mεm

)

= B

(
1 + 484ε

1 − 484ε

)
. (5)

The leading-order εd/2 behavior therefore provably dom-
inates for ε � 1/484, for arbitrary d. Since our argument
was not particularly tight, leading-order behavior actually
dominates at significantly higher values. This implies that
there is a constant and reasonably high value of p at which
leading-order error processes dominate for arbitrarily large d.
This makes sense, as at some constant low density of errors,
the overwhelmingly most likely type of logical error at any
arbitrarily large d will be one consisting of the minimum
possible number of errors.

Furthermore, given we can choose some value of p at which
our asymptotics apply with high accuracy for arbitrary d, the
exponential separation of the cyclic and noncyclic logical error
rates holds at any value p all the way up to the threshold
error rate pth as the logical error rate curves must pivot at the
threshold and stretch down to meet the asymptotic curves.

IV. DISCUSSION

In summary, we have shown that one of the most commonly
used simplifying assumptions in physics and mathematics,
namely, cyclic boundaries, cannot be used if one wishes to
accurately study the logical error rates of planar topological
codes. The level of inaccuracy introduced by this seemingly
harmless assumption is exponentially large in the code distance
d. This implies that cyclic boundaries should be avoided
when performing accurate studies of practical topological
quantum error correction. We hope that this work encourages
the quantum information community to seriously question the
accuracy of results derived using unphysical assumptions. Two
common assumptions that we feel deserve particular scrutiny
are assuming perfect multibody quantum measurements and
assuming arbitrarily long-range coherent interactions without
time, overhead, or error rate penalty.
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