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Linear-depth quantum circuits for n-qubit Toffoli gates with no ancilla
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We design a circuit structure with linear depth to implement an n-qubit Toffoli gate. The proposed construction
uses a quadratic-size circuit that consists of elementary two-qubit controlled-rotation gates around the x axis
and uses no ancilla qubit. Circuit depth remains linear in quantum technologies with finite-distance interactions
between qubits. The suggested construction is related to the long-standing construction by A. Barenco et al.
[Phys. Rev. A 52, 3457 (1995)], which uses a quadratic-size, quadratic-depth quantum circuit for an n-qubit
Toffoli gate.
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I. INTRODUCTION

Practical implementation of multiqubit quantum gates in
quest of a scalable quantum computing system is essential.
In particular, an n-qubit Toffoli gate plays a key role in
established quantum algorithms. Examples include compiled
circuits for modular multiplication and exponentiation in
Shor’s number-factoring algorithm [1–3] and quantum error-
correction codes [4]. For n = 3, the entangling Toffoli gate,
which flips the “target” state conditioned on its two “controls,”
is universal in reversible Boolean logic (see [5]). Additionally,
with an appropriate single-qubit gate, the three-qubit Toffoli
gate constructs a universal gate set for quantum computing
[6]. In recent years, several protocols have been proposed to
realize the three-qubit Toffoli gate and its variants in different
physical quantum technologies, e.g., with superconducting
qubits [7,8], trapped ions [9,10], optical elements [11,12], and
cavity quantum electrodynamics [13].

A common approach to implement a highly conditional gate
is to apply decomposition, which breaks down the gate into
“elementary” gates with at most one control [14–16]. For an n-
qubit Toffoli gate, this path results in quadratic-size, quadratic-
depth quantum circuits with no ancilla [17], Corollary 7.6]. For
the three-qubit Toffoli gate, the simplest known decomposition
requires five two-qubit gates [17], Lemma 6.1], or exactly
six controlled NOT (CNOT) [18] and several one-qubit gates.
To avoid applying a long, at least quadratic-length sequence
of single- and two-qubit gates, several methods have been
proposed to directly realize multiqubit gates with trapped ions
[19,20], neutral atoms [21], or superconducting qubits [22].

To streamline the realization of Toffoli gates conditioned
on many qubits, which can speed up the progress towards
scalable quantum computation, both theoretical and experi-
mental attempts are extremely important. In this paper, we
propose a theoretical approach to decompose n-qubit Toffoli
gates into two-qubit gates of quadratic size but linear depth
without using additional ancilla qubits. For this purpose,
we change the usual computational basis states |0〉 and |1〉
and propose a construction which exploits quantum rotation
gates conditioned on one qubit. The proposed construction
is related to the synthesis framework we suggested in [23].
In this paper, we focus on quantum algorithms implemented
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without quantum error correction, which is useful for near-term
physical experiments.

The rest of this paper is organized as follows. The
proposed circuit structure is introduced in Sec. II. Circuit
depth is analyzed in Sec. III for quantum computing systems
with arbitrary-length and finite-length interaction distances
between qubits. We compare the proposed structure with prior
constructions in Sec. IV. Section V concludes the paper with
further discussion.

II. CIRCUIT STRUCTURE

The choice of basis states in quantum computing is not
unique, and any two orthogonal unit vectors can be used in
a two-particle quantum computing system to serve as the
computational basis states. Working with rotation gates Rx(π )
around the x axis, we keep 0̂ = |0〉 but change the other vector
to 1̂ = Rx(π )|0〉 = [0 − i]T . Accordingly, Rx(π ) works as a
NOT gate which transforms 0̂ to 1̂ and vice versa. Adding
one and two conditions for Rx(π ) leads to analogous versions
of the conventional two-qubit CNOT and three-qubit Toffoli
gates. Accordingly, an n-qubit Toffoli gate is a π -rotation gate
around the x axis with n − 1 conditionals. In circuit diagrams
throughout the paper, k consecutive gates with the same control
lines are shown as a single gate with one control and k

targets.
Figure 1 shows a possible decomposition for a three-qubit

Toffoli gate. In Fig. 1, if at least one of the first two qubits
is 0̂, then the circuit applies either an identity I gate or
Rx(π

2 − π
2 ) = I gate to the target qubit. Otherwise, Rx(π

2 + π
2 )

is applied, which is a NOT gate.
Theorem 1. An n-qubit Toffoli gate with controls

a1,a2, . . . ,an−1 and target an can be implemented by a network
of the form given in Fig. 2 where all gates are conditional
θ -rotation gates around the x axis.

Proof. To prove this theorem, we restructure the circuit
shown in Fig. 2 as illustrated in Fig. 3. To verify, note that gates
in the first (top) n − 1 lines construct an (n − 1)-qubit Toffoli
gate, gates in the first n − 2 lines construct an (n − 2)-qubit
Toffoli gate, . . . , gates in the first three qubits construct a
three-qubit Toffoli, and, finally, the gate in the first two qubits
is a CNOT. We ignore conditional rotation gates with θ = −π

in Fig. 3 as these gates are applied to restore values of control
qubits.
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a • p = a a • • p = a

b • q = b b • π • −π q = b

c π r = ab ⊕ c c π
2

π
2

−π
2 r = ab ⊕ c

FIG. 1. The three-qubit Toffoli gate and its decomposition into
two-qubit controlled-rotation gates. Two consecutive gates with
controls on a are shown as a single gate with one control and two
targets on b and c.

Consider the subcircuit � shown in Fig. 3. Focusing on �,
assume � input qubits are ai and � output qubits are bi for
1 � i � n − 1. Assume that ak is the first qubit (starting from
k = 1) with value 0̂. After applying �, we have b1 = a1, bi = 0
for 2 � i � k − 1, bk = 1, and bi = ai for k + 1 � i � n.

Now, consider the complete circuit in Fig. 3. The case a1 =
0̂ is trivial because gates in � are disabled, the gate with control
qubit a1 and target qubit an is deactivated, and other applied
gates cancel out the effects of each other. Therefore, we assume
a1 = 1̂. Note that before applying �, each controlled-rotation
gate with control qubit ai for 2 � i � n − 1 applies π/2n−i to
qubit an. Similarly, after applying �, each controlled-rotation
gate with control qubit ai for 2 � i � n − 1 applies −π/2n−i

to qubit an.
If ak (starting from k = 1) is the first qubit with value 0̂,

then conditional rotation gates with controls a1,a2, . . . ,ak−1

are activated, and a θ1-rotation gate with θ1 = π
2n−2 + π

2n−2 +
π

2n−3 + · · · + π
2n−k+1 is applied to the target qubit. However,

after applying � a θ2-rotation gate with θ2 = −π
2n−k is applied,

which removes the effect of θ1 given θ1 = −θ2. Additionally,
each gate with control qubit ai for k + 1 � i < n − 1 after �
removes the effect of the corresponding gate before �.

Finally, if ai = 1̂ for all 1 � i � n − 1, then all gates before
� are enabled and all gates after � are disabled, and a θ -
rotation gate with θ = π

2n−2 + π
2n−2 + π

2n−3 + · · · + π
22 + π

2 = π

is applied to the target qubit an. �
Figures 4 and 5(a) show the proposed construction for four-

qubit and five-qubit Toffoli gates. In Fig. 5(b), the construction
used in the proof of Theorem 1 is illustrated for a five-qubit
Toffoli gate. To count the number of two-qubit gates in the
proposed construction, note that there are 2�i=n−2

i=1 i + n − 1
gates to construct the transformation on the target line, and

2�i=n−3
i=1 i + n − 2 gates to restore control lines to their original

values. Therefore, the total number of two-qubit gates in the
proposed construction is 2n2 − 6n + 5 or 2n2 + O(n).

III. DEPTH ANALYSIS

In this section, we show that in spite of the quadratic size of
the proposed structure for an n-qubit Toffoli gate (no ancilla),
the circuit depth is linear. In order to consider depth, we
restructure the construction shown in Fig. 2. In particular,
we change the structure to have gates with common targets
(vs common controls in Fig. 2) in sequence. Additionally, we
divide the circuit in Fig. 2 into six parts, namely, C1,C2, . . . ,C6,
as shown in Fig. 2. To evaluate circuit depth, we focus on
C1. The result can be extended to the whole circuit. Figure 6
illustrates C1 in Fig. 5(a) with time steps for each gate.

Theorem 2. The proposed structure for an n-qubit Toffoli
gate can be implemented by a linear-depth circuit.

Proof. Restructuring the circuit structure in Fig. 2 to have
gates with common targets in sequence, one can verify that in
C1 + C2 there are n − 1 gates with targets on qubit n, n − 2
gates with targets on qubit n − 1, . . ., one gate with targets
on qubit 2. Assign time steps 1,2, . . . ,n − 1 to n − 1 gates
with targets on qubit n. Next, consider the n − 2 gates with
targets on qubit n − 1. Among these gates, n − 3 gates can
be executed in parallel with the gates with targets on qubit n.
Precisely, gates with targets on qubit n − 2 can be executed
in time steps 3,4, . . . ,n − 1,n. Similarly, the next n − 4 gates
can be executed in time steps 5,6, . . . ,n + 1. Following this
path results in 2n − 3 time steps for C1 + C2. Likewise, C3 can
be parallelized to depth 2n − 5, C4 + C5 can be parallelized
to depth 2n − 5, and, finally, C6 can be parallelized to depth
2n − 7. Altogether, the circuit depth for an n-qubit Toffoli gate
in the proposed construction is 8n − 20. �

While circuit depth in the proposed construction is linear,
our construction includes many long-distance two-qubit gates.
In general, restricting interactions to only linear dimension
(one dimension) results in O(n) overhead. However, circuit
depth in the proposed construction remains linear even in very
restrictive quantum architectures with possible interactions
in a line. Assume a SWAP gate between qubits a1 and a2 is

a1 • •
a2 • π • • −π •
a3

π
2

π
2

−π
2

π
2

−π
2

−π
2

a4
π
4

π
4

−π
4

π
4

−π
4

−π
4

· · · · · · · · · · · ·
an−3 • π

2n−5
π

2n−5
−π

2n−5 • • π
2n−5

−π
2n−5

−π
2n−5 •

an−2 • π
2

π
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2 • π

2
π
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π
2n−3
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−π
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π
2

π
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π
8

π
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π
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−π
8

−π
4

−π
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C1 C2 C3 C4 C5 C6

FIG. 2. Circuit structure for an n-qubit Toffoli gate. The proposed construction is divided into six parts, C1,C2, . . . ,C6.
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a1 • • • • • • • • • •
a2 • • • • • π • −π • • •
a3 • • • π • • • •
a4 • • π • • •

· · · · · · · · ·
an−3 • • • −π • •
an−2 • • π • −π •
an−1 • π • −π

an
π
2

π
4

π
8

π
2n−2

π
2n−2

−π
2n−2

−π
2n−3

−π
4

−π
2

FIG. 3. The circuit in Fig. 2 is restructured to use 2-, 3-, . . ., (n − 1)-qubit Toffoli gates to construct an n-qubit Toffoli gate.

represented by S(a1,a2). We use the term “local” for gates that
use neighbor qubits in a given architecture.

Theorem 3. Circuit depth for an n-qubit Toffoli in the
proposed construction is linear in architectures with finite-
distance interactions between qubits.

Proof. To prove this theorem, we consider one-dimensional
(1D) architectures. One can execute a 1D quantum circuit
on architectures with interactions in a higher dimension.
Working with C1 + C2, consider a chain of n − 1 serial SWAP

gates S(an,an−1), S(an−1,an−2), S(an−2,an−3), . . . , S(a2,a1)
in sequence. For an initial qubit ordering 1,2, . . . ,n, the
resulting ordering is n,1,2, . . . ,n − 1 (i.e., a one-bit rotation).
Immediately after each SWAP gate, one can apply a local
controlled-rotation gate with the target on qubit n. Now,
apply a chain of n − 2 SWAP gates S(an,an−1), S(an−1,an−2),
S(an−2,an−3), . . . , S(a3,a2) in sequence. Among these n − 2
gates, n − 3 gates can be executed in parallel with the previous
gates. After the second SWAP chain, the resulting qubit ordering
is n,n − 1,1,2, . . . ,n − 2, i.e., a two-bit rotation. Accordingly,
we can apply n − 2 local controlled-rotation gates with targets
on n − 1. Following this path results in 2n − 3 time steps
for SWAP gates, and 2n − 3 time steps for controlled-rotation
gates, 4n − 6 two-qubit time steps in total. Circuit size is
increased by 2n − 3 for SWAP gates. The final qubit ordering
is n,n − 1,n − 2, . . . ,2,1.

To construct a local circuit for C3 starting from qubit order-
ing n,n − 1,n − 2, . . . ,2,1, we can apply the same structure
discussed. It leads to depth 4n − 10 for C3. The resulting
qubit ordering is 2,3, . . . ,n − 1,n,1. At this time, applying
the next C4 + C5 circuit is tricky because qubit ordering has
been changed from the initial one 1,2, . . . ,n − 1,n. Actually,

a1 • • a1

a2 • π • • −π • a2

a3 • π
2

π
2

−π
2

• π
2

−π
2

−π
2

a3

a4
π
2

π
4

π
4

−π
4

−π
2

a1a2a3 ⊕ a4

FIG. 4. Circuit structure for a four-qubit Toffoli gate. The last
three gates are applied to restore values of the control lines.

the first qubit is far from other qubits 2,3, . . .. For this case, we
apply a linear-depth circuit with depth n + 5 and size 4n − 6
[24], Theorem 4.1] to restore the ordering 1,2, . . . ,n − 1,n.
Accordingly, C4 + C5 and C6 can be implemented in depths
4n − 10 and 4n − 14, respectively. We recover the final qubit
ordering to the initial ordering 1,2, . . . ,n − 1,n with another
linear-depth circuit.

Altogether, circuit depth for an n-qubit Toffoli gate with
only 1D interactions can be calculated as 18n − 31. Circuit
size remains 2n2 + O(n). �

In summary, circuit depth in the proposed structure is only
increased by a constant factor, e.g., 2.25 in 1D architectures.
Figure 7 illustrates the circuit in Fig. 6 with only local gates.

IV. COMPARISON WITH PRIOR WORK

The current widely used decomposition [17], Corollary 7.6]
for an n-qubit Toffoli gate uses a quadratic-size construction

a1 • •

a2 • π • • −π •

a3 • π
2

π
2

−π
2

• • π
2
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2

−π
2

•
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2
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4
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π
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a1 • • • • • • •

a2 • • • π • −π • •

a3 • • π • −π •

a4 • π • −π

a5
π
2

π
4

π
8

π
8

−π
8
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4
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FIG. 5. Circuit structure for a five-qubit Toffoli gate. Tge circuit
in (a) is the proposed structure. This circuit is restructured in (b) based
on the circuits in Figs. 1 and 4. Note that direct decomposition of the
gates in (b) does not result in the proposed construction in (a); such
decomposition results in many redundant gates. In other words, the
construction in (a) reuses gates of a k-qubit Toffoli gate to construct
a (k + 1)-qubit Toffoli gate.
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a1 • • • •
a2 • • • π

a3 • • π
2

π
2

a4 • π
2

π
4

π
4

a5
π
2

π
4

π
8

π
8

1 2 3 4 3 4 5 5 6 7

FIG. 6. A part of the circuit shown in Fig. 5(a) restructured to
show parallel circuits. Numbers are the time slots that gates can be
executed.

with staircase structure where the target of gate i depends on
a control of gate i − 1. This results in a quadratic depth. The
decomposition is illustrated in Fig. 8. In Fig. 8, U is a NOT

gate which results in V and V †, where V 2 = U . The resulting
multiple-control Toffoli gates have linear cost 48n + O(1)
in [17] due to the availability of one ancilla qubit. The last gate
can be decomposed by recursively applying the decomposition
shown in Fig. 8 using U = √

NOT. Following this path results
in controlled-ith-root-of-NOT gates for i = 21,22, . . . ,2n−1.
Circuit size and depth are 48n2 + O(n) two-qubit gates.

The optimizations in [25] improve the linear-cost imple-
mentation of multiple-control Toffoli gates with one ancilla
from 48n + O(1) to 24n + O(1). The circuit depth remains
quadratic, precisely 24n2 + O(n). The method in [23], Sec. 6]
benefits from a recursive construction with quadratic-depth
2n2 + O(n). As discussed in Secs. II and III, our circuit size
and circuit depth are quadratic and linear, respectively. All
methods uses gates with similar complexity levels for physical
realization.

In Theorem 1 we assumed no ancilla qubit is available to
facilitate circuit construction. If at least one ancilla exists,
prior circuit structures in [17], Lemmas 7.2, 7.3] and the
extended versions [25] use linear-size circuits. When 1 and
n − 3 ancillae are available, we can apply the same circuit
structures in [17], Lemmas 7.2, 7.3]. Precisely, after applying
various optimizations in [25], we can construct circuits with
sizes 24n − 88 and 12n − 34 if one and n − 3 ancillae are
available; note that Peres gate has a cost of 4 in the proposed
construction, as in [25]. Reusing optimizations in [25] in the
proposed circuit structure is straightforward.

a1 • ×
a2 • × π

8 × • ×
a3 • × π

8 × • × π
4 × • ×

a4 • × π
4 × • × π

4 × • × π
2 × • ×

a5
π
2 × π

2 × π
2 × π ×

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIG. 7. Circuit in Fig. 6 with only local gates based on the proof
of Theorem 3. Numbers are time slots that gates can be executed.

a1 • • • •
a2 • • • •
a3 • • • •
a4 • • • •

· · ·
an−3 • • • •
an−2 • • • •
an−1 • • •

an U V V † V

FIG. 8. Circuit structure for an n-qubit Toffoli gate in [17],
Lemma 7.5] where V 2 = U . At the first step, U is a NOT gate. The
resulting multiple-control Toffoli gates have linear cost due to the
availability of one ancilla qubit. The last gate can be decomposed by
recursively applying the current decomposition.

V. CONCLUSION AND DISCUSSION

We proposed a linear-depth quadratic-size quantum circuit
with controlled-rotation gates around the x axis with no ancilla
qubit to implement an n-qubit Toffoli gate. Restricting qubit
interactions in finite length affects circuit depth and size by a
constant factor.

The proposed structure may or may not be a physically
realizable construction in a particular quantum computing
technology. The physical implementations of quantum gates
are imperfect due to various reasons, including decoherence
and error in experimental setups. In the proposed circuit struc-
ture, we used θ -rotation gates around the x axis for θ = π

2k and
1 � k � n − 2. Obviously, π

2n−2 can be very small for large n

values, which makes its physical implementation complicated.
Small rotation angles may be ignored in specific applica-
tions, as done for approximate quantum Fourier transform
[26]. In particular, restricting k � �log2 n� results in ε ≈ π

n

error.
For a scalable quantum physical implementation, quantum

error correction should be applied. In this case, θ -rotation gates
should be decomposed into several fault-tolerant gates [4]
where decomposition of rotation gates with small angles is
very complicated. The proposed approach is more interesting
for near-term physical experiments where small quantum
algorithms will be implemented without error correction.

Since conditional Toffoli gates are building blocks for
various quantum algorithms, in-depth characterization of their
operations and imperfections possibly based on quantum
tomography [27] can be very useful. Recently, a multiqubit
phase gate with one control qubit simultaneously controlling
n target qubits was implemented using superconducting qubits
[28]. Since we extensively benefit from such gates in the
proposed construction, applying the method in [28] to phys-
ically realize conditional Toffoli gates based on the method
presented in this paper, e.g., the small circuit in Fig. 4, may be
useful.

Finally, while we use 0̂ and 1̂ for computational basis states,
we can also use |0〉 and |1〉. To achieve this, one can transform
|0〉,|1〉 to 0̂,1̂ by applying n single-qubit gates with the same
matrix M to all qubits. This should be followed by the proposed
construction. The final quantum state can be restored from 0̂,1̂
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to |0〉,|1〉 by applying M†.

M =
[

1 0

0 i

]
, M† =

[
1 0

0 −i

]
.

Restricting to have only one type of two-qubit gate can increase
circuit depth and size by a constant given each two-qubit gate
can be implemented by a constant-size circuit [17].
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