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The standard method of quantum state tomography (QST) relies on the measurement of a set of noncommuting
observables, realized in a series of independent experiments. Ancilla-assisted QST (AAQST) proposed by
Nieuwenhuizen and co-workers [Phys. Rev. Lett. 92, 120402 (2004)] greatly reduces the number of independent
measurements by exploiting an ancilla register in a known initial state. In suitable conditions AAQST allows
mapping out density matrix of an input register in a single experiment. Here we describe methods for explicit
construction of AAQST experiments in multiqubit registers. We also report nuclear magnetic resonance studies
on AAQST of (i) a two-qubit input register using a one-qubit ancilla in an isotropic liquid-state system and
(ii) a three-qubit input register using a two-qubit ancilla register in a partially oriented system. The experimental
results confirm the effectiveness of AAQST in such multiqubit registers.
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I. INTRODUCTION

Quantum computers have the potential to carry out cer-
tain computational tasks with an efficiency that is beyond
the reach of their classical counterparts [1]. In practice,
however, harnessing the computational power of a quantum
system has been an enormously challenging task [2]. The
difficulties include imperfect control on the quantum dy-
namics and omnipresent interactions between the quantum
system and its environment leading to an irreversible loss of
quantum coherence. In order to optimize the control fields
and to understand the effects of environmental noise, it
is often necessary to completely characterize the quantum
state. In experimental quantum information studies, quantum
state tomography (QST) is an important tool that is rou-
tinely used to characterize an instantaneous quantum state
[1].

QST on an initial state is usually carried out to confirm
the efficiency of the initialization process. Although QST of
the final state is usually not part of a quantum algorithm, it
allows one to measure the fidelity of the output state. QSTs in
intermediate stages often help experimentalists to tune up the
control fields better.

QST can be performed by a series of measurements of
noncommuting observables which together enables one to
reconstruct the complete complex density matrix. In the stan-
dard method, the required number of independent experiments
grows exponentially with the number of input qubits [3,4].
Anil Kumar and co-workers have illustrated QST using a
single two-dimensional nuclear magnetic resonance (NMR)
spectrum [5]. They showed that a two-dimensional NMR
experiment consisting of a series of identical measurements
with systematic increments in evolution time, can be used to
quantitatively estimate all the elements of the density matrix.
Later Nieuwenhuizen and co-workers have shown that it is
possible to reduce the number of independent experiments in
the presence of an ancilla register initialized to a known state
[6]. They pointed out that in suitable situations, it is possible to
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carry out QST with a single measurement of a set of factorized
observables. We refer to this method as ancilla-assisted QST
(AAQST). This method was experimentally illustrated by
Suter and co-workers using a single input qubit and a single
ancilla qubit [7]. Recently, Peng and co-workers studied the
effectiveness of the method for qutrit-like systems using
numerical simulations [8]. Ancilla-assisted quantum process
tomography has also been demonstrated by Altepeter et al. [9].

Single shot mapping of density matrix by the AAQST
method not only reduces the experimental time, but also
alleviates the need to prepare the target state several times.
Often slow variations in system Hamiltonian may result in
systematic errors in repeating the state preparation. Further,
environmental noises lead to random errors in multiple
preparations. These errors play important roles in the quality
of the reconstruction of the target state. Therefore AAQST has
the potential to provide a more reliable way of tomography.

In this article we first revisit the theory of QST and AAQST
and provide methods for explicit construction of the constraint
matrices, which will allow extending the tomography proce-
dure for large registers. An important feature of the method
described here is that it requires only global rotations and
short evolutions under the collective internal Hamiltonian.
We also describe NMR demonstrations of AAQST on two
different types of systems: (i) a two-qubit input register using
a one-qubit ancilla in an isotropic liquid-state system and (ii) a
three-qubit input register using a two-qubit ancilla register in
a partially oriented system.

In the following section we briefly describe the theory
of QST and AAQST. In Sec. III we describe experimental
demonstrations, and finally we conclude in Sec. IV.

II. THEORY

A. Quantum state tomography

We consider an n-qubit register formed by a system of n

mutually interacting spin-1/2 nuclei with distinct resonance
frequencies ωi and mutual interaction frequencies 2πJij . The
Hamiltonian under weak-interaction limit (2πJij � |ωi −
ωj |) consists of a Zeeman part and a spin-spin interaction
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zσ
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respectively, where σ i
z and σ

j
z are the z components of Pauli

operators of ith and j th qubits [10]. The set of N = 2n

eigenvectors {|m1m2 · · · mn〉} of the Zeeman Hamiltonian form
a complete orthonormal computational basis. We can order the
eigenvectors based on the decimal value m of the binary string
(m1 · · · mn), i.e., m = m12n−1 + · · · + mn20.

The general density matrix can be decomposed as 1N/N +
ερ where the identity part is known as the background, the
traceless part ρ is known as the deviation density matrix,
and the dimensionless constant ε is the purity factor [11].
In this context, QST refers to complete characterization of the
deviation density matrix, which can be expanded in terms of
N2 − 1 real unknowns:

ρ =
N−2∑
m=0

ρmm(|m〉〈m| − |N − 1〉〈N − 1|)

+
N−2∑
m=0

N−1∑
m′=m+1

{Rmm′(|m〉〈m′| + |m′〉〈m|)

+ iSmm′ (|m〉〈m′| − |m′〉〈m|)}. (2)

Here the first part consists of N − 1 diagonal unknowns ρmm

with the last diagonal element ρN−1,N−1 being constrained by
the traceless condition. R and S, each consisting of (N2 −
N )/2 unknowns, correspond to the real and imaginary parts of
the off-diagonal elements, respectively. Thus a total of N2 − 1
real unknowns needs to be determined.

Usually an experimental technique allows a particular
set of observables to be measured directly. To explain
the NMR case, we introduce n-bit binary strings jν =
ν1ν2 · · · νj−10νj · · · νn−1 and j ′

ν = ν1ν2 · · · νj−11νj · · · νn−1,
differing only by the flip of the j th bit. Here ν = ν12n−2 +
ν22n−3 + · · · + νn−120 is the value of the n − 1 bit binary
string (ν1,ν2, . . . ,νn−1) and ν can take a value between 0 and
γ = N/2 − 1. The real and imaginary parts of an NMR signal
recorded in a quadrature mode correspond to the expectation
values of transverse magnetization observables

∑n
j=1 σjx and∑n

j=1 σjy , respectively [10].
The background part of the density matrix neither evolves

under unitaries nor gives rise to any signal, and therefore we
ignore it. Under suitable conditions (when all the transitions
are resolved), a single spectrum directly yields nN matrix
elements {Rjν,j ′

ν
,Sjν ,j ′

ν
} as complex intensities of spectral lines.

These matrix elements are often referred to as single quantum
elements since they connect eigenvectors related by the flip
of a single qubit. We refer to the single-quantum terms Rjν,j ′

ν

and Sjν,j ′
ν
, respectively, as the real and imaginary parts of the

νth spectral line of the j th qubit. Thus a single spectrum of
an n-qubit system in an arbitrary density matrix can yield nN

real unknowns.
In order to quantify the remaining elements, one relies

on multiple experiments all starting from the same initial
state ρ. The kth experiment consists of applying a unitary
Uk to the state ρ, leading to ρ(k) = UkρU

†
k , and measuring

the single-quantum spectrum {R(k)
jν ,j ′

ν
,S

(k)
jν ,j ′

ν
}. These single-

quantum elements of the final density matrix can be expressed
as a linear combination of various elements of the initial
density matrix. From Eq. (2) we obtain

R
(k)
jν ,j ′

ν
=

∑
m

a
(k)
jν (m)ρmm +

∑
m,m′>m

{
c

(k)
jν (m,m′)Rmm′

+ e
(k)
jν (m,m′)Smm′

}
,

S
(k)
jν ,j ′

ν
=

∑
m

b
(k)
jν (m)ρmm +

∑
m,m′>m

{
d

(k)
jν (m,m′)Rmm′

+ f
(k)
jν (m,m′)Smm′

}
, (3)

in terms of the unknowns ρmm′ and the known real constants
{a, . . . ,f }:

a
(k)
jν (m,m) + ib

(k)
jν (m,m) = 〈jν |Uk|m〉〈m|U †

k |j ′
ν〉

− 〈jν |Uk|N − 1〉〈N − 1|U †
k |j ′

ν〉,
c

(k)
jν (m,m′) + id

(k)
jν (m,m′) = 〈jν |Uk|m〉〈m′|U †

k |j ′
ν〉

+ 〈jν |Uk|m′〉〈m|U †
k |j ′

ν〉,
e

(k)
jν (m,m′) + if

(k)
jν (m,m′) = i〈jν |Uk|m〉〈m′|U †

k |j ′
ν〉

− i〈jν |Uk|m′〉〈m|U †
k |j ′

ν〉 (4)

[12]. After K experiments, we can set up the matrix equation

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0,0

· · ·
ρN−2,N−2

− − − − − − −−
R0,1

· · ·
R0,N−1

· · ·
Rm,m′>m

· · ·
RN−2,N−1

− − − − − − −−
S0,1

· · ·
S0,N−1

· · ·
Sm,m′>m

· · ·
SN−2,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
(1)
10,1′

0· · ·
R

(1)
1γ ,1′

γ

R
(1)
20,2′

0· · ·
· · ·

R
(K)
nγ ,n′

γ

− − − − − − −
S

(1)
10,1′

0· · ·
S

(1)
1γ ,1′

γ

S
(1)
20,2′

0· · ·
· · ·

S
(K)
nγ ,n′

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here the left column vector is formed by the N2 − 1 unknowns
of ρ: diagonal elements in the top, real off-diagonals in
the middle, and imaginary off-diagonals in the bottom. The
right column vector is formed by KnN numbers: the real
and imaginary parts of the experimentally obtained spectral
intensities ordered according to the value of the binary string
ν, the qubit number j , and the experiment number k. The
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FIG. 1. (Color online) Minimum number of independent experi-
ments required for QST (with zero ancilla) and AAQST.

KnN × (N2 − 1)-dimensional constraint matrix is of the form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
1,0(0,0) · · · c

(1)
1,0(m,m′) · · · e

(1)
1,0(m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
a

(1)
1,γ (0,0) · · · c

(1)
1,γ (m,m′) · · · e

(1)
1,γ (m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
a

(1)
n,0(0,0) · · · c

(1)
n,0(m,m′) · · · e

(1)
n,0(m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a(K)
nγ (0,0) · · · c(K)

nγ (m,m′) · · · e(K)
nγ (m,m′) · · ·

b
(1)
1,0(0,0) · · · d

(1)
1,0(m,m′) · · · f

(1)
1,0 (m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
b

(1)
1,γ (0,0) · · · d

(1)
1,γ (m,m′) · · · f

(1)
1,γ (m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
b

(1)
n,0(0,0) · · · d

(1)
n,0(m,m′) · · · f

(1)
n,0(m,m′) · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

b(K)
nγ (0,0) · · · d (K)

nγ (m,m′) · · · f (K)
nγ (m,m′) · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Note that each column of the constraint matrix corresponds to
the contribution of a particular unknown element of ρ to the
various spectral intensities.

By choosing the unitaries {Uk} such that rank(M) � N2 − 1
(the number of unknowns), Eq. (5) can be solved either by
singular value decomposition or by the Gaussian elimination
method [12].

The minimum number of experiments is

K =
⌈

N2 − 1

nN

⌋
, (7)

where �� represents the smallest integer larger than the
argument. The top array of Fig. 1 illustrates the values of K

for different sizes of input register. As anticipated, K increases
rapidly as O(N/n) with the number of input qubits. In the
following we describe how it is possible to speed up QST, in
the presence of an ancilla register, with fewer experiments.

B. AAQST

Suppose the input register of n qubits is associated with
an ancilla register consisting of n̂ qubits. The dimension of
the combined system of ñ = n + n̂ qubits is Ñ = NN̂ , where
N̂ = 2n̂. For simplicity we assume that each qubit interacts
sufficiently with all other qubits so as to obtain a completely
resolved spectrum yielding ñÑ real parameters. The following
method is applicable even if there are spectral overlaps,
albeit with lower efficiency [i.e., with higher number (K) of
minimum experiments]. Further, for simplicity, we assume
that the ancilla register begins with the maximally mixed
state, so that it does not contribute to the spectral intensities.
Otherwise, we need to add the contribution of the ancilla to
the final spectrum and Eq. (5) will become inhomogeneous.
As explained later in the experimental section, initialization of
a maximally mixed state can be achieved with high precision.
Thus the deviation density matrix of the combined system
is ρ̃ = ρ ⊗ 1N̂ /N̂ . Now applying only local unitaries neither
leads to ancilla coherences nor transfers any of the input
coherences to ancilla. Therefore we consider applying a
nonlocal unitary exploiting the input-ancilla interaction,

Ũk = V

⎛
⎝N̂−1∑

a=0

Uka ⊗ |a〉〈a|
⎞
⎠ , (8)

where Uka is the kth unitary on the input register dependent
on the ancilla state |a〉 and V represents the detection pulse
on the composite system. Thus the final state of the composite
system is

ρ̃(k) = Ũkρ̃Ũ
†
k

= V

(
1

N̂

∑
m,m′,a

ρmm′Uka|m〉〈m′|U †
ka ⊗ |a〉〈a|

)
V †. (9)

We now record the spectrum of the combined system corre-
sponding to the observable

∑ñ
j=1 σjx + iσjy . Each spectral

line can again be expressed in terms of the unknown elements
of the ancilla matrix in the form given in Eq. (3). The spectrum
of the combined system yields ñÑ linear equations. The
minimum number of independent experiments needed now is

K =
⌈

N2 − 1

ñÑ

⌋
. (10)

Compared to Eq. (7), the numerator has not changed since we
started with a known state of the ancilla, but the denominator
has increased according to the size of the composite system.
Since we can choose Ñ 	 N , AAQST needs fewer than
O(N/n) experiments required in the standard QST. In
particular, when ñÑ � (N2 − 1), a single optimized unitary
suffices for QST. Figure 1 illustrates the minimum number
(K) of experiments required for various sizes of input and
ancilla registers. As illustrated, AAQST can be achieved with
only one experiment, if an ancilla of sufficient size is provided.

C. Building the constraint matrix

The major numerical procedure in AAQST is obtaining the
constraint matrix M . For calculating the constraint coefficients
c

(k)
rj , one may utilize an elaborate decomposition of Uk using

062317-3



SHUKLA, RAO, AND MAHESH PHYSICAL REVIEW A 87, 062317 (2013)

numerical or analytical methods. Alternatively, as described
below, we can use a simple algorithmic approach to construct
the constraint matrix.

First imagine a diagonal state ρ for the ancilla register
[Eq. (2)] with ρ00 = 1 and ρmm = 0 for all others with 1 �
m � N − 2, Rmm′ = Smm′ = 0. Applying the unitary Uk on
the composite deviation density matrix ρ̃ = ρ ⊗ 1N̂ /N̂ , we
obtain all the spectral intensities [using Eq. (3)]

ak
jν(0,0) = R

(k)
jν,jν ′ , bk

jν(0,0) = S
(k)
jν,jν ′ . (11)

Thus the spectral lines indicate the contributions only from ρ00

(and ρN−1,N−1). Repeating the process with all the unitaries
{Uk} yields the first column in the M matrix [Eq. (6)]
corresponding to the unknown ρ00. The same procedure can be
used for all the diagonal elements ρmm with 0 � m � N − 2.

To determine the M matrix column corresponding to a real
off-diagonal unknown Rmm′ , we start with an input-register
density matrix Rmm′ = 1 and all other elements set to zero.
Again by applying the unitary Uk on the composite density
matrix, and using Eq. (3) we obtain

ck
jν(m,m′) = R

(k)
jν,jν ′ , dk

jν(m,m′) = S
(k)
jν,jν ′ . (12)

Repeating the process with all unitaries {Uk} determines the
column of M corresponding to the unknown Rmm′ .

To determine the M matrix column corresponding to an
imaginary off-diagonal unknown Smm′ , we set Smm′ = 1 and
all other elements to zero, and apply Uk on the composite state
to obtain

ek
jν(m,m′) = R

(k)
jν,jν ′ , f k

jν(m,m′) = S
(k)
jν,jν ′ . (13)

Proceeding this way, by selectively setting the unknowns one
by one, the complete constraint matrix can be built easily.

D. Optimization of unitaries

Solving the matrix equation (5) requires that rank(M) �
N2 − 1, the number of unknowns. But having the correct rank
is not sufficient. The matrix M must be well conditioned in
order to ensure that small errors in the observed intensities
{R(k)

jν,jν ′ ,S
(k)
jν,jν ′ } do not contribute to large errors in the values

of the elements ρmm′ . The quality of the constraint matrix
can be measured by a scalar quantity called condition number
C(M) defined as the ratio of the largest singular value of
M to the smallest [13]. The smaller the value of C(M), the
better conditioned is the constraint matrix M for solving the
unknowns. Thus the condition number provides a convenient
scalar quantity to optimize the set {Uk} of unitaries to be chosen
for QST.

The selection of unitaries {Uk} is not unique. In practice
each unitary can be modeled as a sequence of alternating pulses
and free evolutions. For example, Uk can be modeled as

Uk =
∏
q

exp
(−iθ (k)

q σ̃α

)
exp

(−iH̃intτ
(k)
q

)
,

where σ̃α = ∑ñ
j σ

j

x/y corresponds to the x or y ñ-qubit Pauli
operator and H̃int is the internal Hamiltonian of the composite
system. The control parameters {θ (k)

q ,τ (k)
q } are determined by

minimizing the condition number of the constraint matrix. The
unitary operators {Uk} leading to a minimum condition number

is independent of the target state to be tomographed and is
robust against experimental errors. The necessary number (K)
of independent experiments is decided by the rank of the
constraint matrix and the desired precision. Introducing addi-
tional experiments renders the problem overdetermined, thus
reducing the condition number and increasing the precision.

As explained in the experimental section, we used a simple
unitary model U1(τ1,τ2) as an initial guess and used a genetic
algorithm to minimize the condition number and optimize the
parameters (τ1,τ2). We describe the experimental results of
AAQST for registers with (i) n = 2, n̂ = 1, ñ = 3 and (ii) n =
3, n̂ = 2, ñ = 5, respectively.

III. EXPERIMENTS

We report experimental demonstrations of AAQST on two
spin systems of different sizes and environments. In each case,
we have chosen two density matrices for tomography. All
the experiments described below are carried out on a Bruker
500 MHz spectrometer at an ambient temperature of 300 K
using high-resolution NMR techniques. All the pulses used
in the following AAQST experiments were robust against rf
inhomogeneity and had an average Hilbert-Schmidt fidelity
better than 0.99.

A. Two-qubit input, one-qubit ancilla

Here we use three spin-1/2 19F nuclei of iodotrifluo-
roethylene (C2F3I) dissolved in acetone-D6 as a three-qubit
system. The molecular structure, Hamiltonian parameters, and
relaxation time constants are shown in Fig. 2. The equilibrium
spectra of all the spins displayed in the top trace of Fig. 3 show
all 12 resolved transitions.

We have chosen F1 as the ancilla qubit and F2 and F3

as the input qubits. QST was performed for two different
density matrices: (i) the thermal equilibrium state, i.e., ρ1 =
1
2 (σ 2

z + σ 3
z ), and (ii) the state after a (π/4)π/4 pulse applied

to the thermal equilibrium state, i.e., ρ2 = 1
2 (σ 2

x + σ 3
x ) −

1
2 (σ 2

y + σ 3
y ) + 1√

2
(σ 2

z + σ 3
z ). In both cases, the first qubit was

initialized into a maximally mixed state by applying a selective
(π/2)y pulse on F1 and followed by a strong pulsed-field
gradient (PFG) in the z direction. The selective pulse was
realized by GRAPE technique [14].

1 2 3 T1(s) T2*(s)

11860.8 69.9 47.4 1 6.9 0.8

0 -128.3 2 7.5 0.8

-17379.1 3 6.2 0.6

BrBr

FF

F

2

1

3

I

FIG. 2. (Color online) Molecular structure of iodotrifluoroethy-
lene and the table of Hamiltonian parameters and relaxation constants.
Chemical shifts (diagonal elements) and J -coupling constants (off-
diagonal elements) are shown in Hz. The longitudinal relaxation time
constants (T1) and effective transverse relaxation time constants (T ∗

2 )
for each of the three spins are shown in seconds.
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0.1 -0.1 0.1 -0.1
Frequency (Hz) Frequency (Hz)
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ns
ity

FIG. 3. (Color online) AAQST results for thermal equilibrium state ρ1 (left column), and that of state ρ2 (right column), described in the
text. The reference spectra is in the top trace. The spectra corresponding to the real part (R(1)

jν,jν′ , middle trace) and the imaginary part (S(1)
jν,jν′ ,

bottom trace) of the 19F signal are obtained in a single shot AAQST experiment. The bar plots correspond to theoretically expected states (top
row) and those obtained from AAQST experiments (bottom row). Fidelities of the states are 0.997 and 0.99, respectively, for the two density
matrices.

AAQST of each of the above density matrices required
just one unitary evolution followed by measurement of the
complex NMR signal. We modeled the AAQST unitary
as follows: U1 = (π

2 )yUint(τ2)(π
2 )xUint(τ1), where Uint(τ ) =

exp(−iH̃intτ ) is the unitary operator for evolution under the
internal Hamiltonian H̃int [see Eq. (1)] for a time τ , and
(π

2 ) rotations are realized by nonselective radio frequency
pulses applied to all the spins along the directions indicated
by the subscripts. The constraint matrix M had 15 columns
corresponding to the unknowns and 24 rows corresponding to
the real and imaginary parts of the 12 spectral lines. Only
the durations {τ1,τ2} needed to be optimized to minimize
the condition number C(M). We used a genetic algorithm
for the optimization and obtained C(M) = 17.3 for τ1 =
6.7783 ms and τ2 = 8.0182 ms. The real and imaginary parts
of the single shot experimental AAQST spectrum, along with
the reference spectrum, are shown in the top part of Fig. 3. The
intensities {R(1)

jν,jν ′ ,S
(1)
jν,jν ′ } were obtained by simple curve-fit

routines, and the matrix equation (5) was solved to obtain all
the unknowns. The reconstructed density matrices along with
the theoretically expected ones are shown below the spectra
in Fig. 3. The fidelity of an experimental state ρexp with the

theoretically expected state ρth is given by

F = Tr[ρthρexp]√
Tr

[
ρ2

th

]
Tr

[
ρ2

exp

]
[15]. We obtained fidelities 0.998 and 0.990, respectively, for
the states ρ1 and ρ2. The high fidelities indicated successful
AAQST of the prepared states.

We now describe the robustness of the AAQST procedure to
random noises. In order to study the robustness, we generated
a random vector whose elements are in the range [−η,η] and
added it to the normalized spectral intensities obtained from
experiment. Here the scalar parameter η controls the noise
level. We performed AAQST with the noisy data to reconstruct
the density matrix and calculated fidelity as before. For each
value of η, the above procedure was repeated several times
with different random vectors and an average fidelity was
determined. Now by changing the value of η, we monitored
the dependence of the average fidelity on the noise level. The
resulting profiles of the average fidelity for the two target states
ρ1 and ρ2 are shown, respectively, by solid and dashed lines in
Fig. 4. It is evident that the AAQST procedure is very robust
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FIG. 4. (Color online) Average fidelity versus noise level.

in both of these cases, and the average fidelity remained above
0.9 for η < 0.2.

B. Three-qubit input, two-qubit ancilla

We use three 19F nuclei and two 1H nuclei of 1-bromo-
2,4,5-trifluorobenzene partially oriented in a liquid crystal,
namely, N -(4-methoxybenzaldehyde)-4-butylaniline. Due to
the partial orientational order, the direct spin-spin interaction
(dipolar interaction) does not get fully averaged out, but gets
scaled down by the order parameter [16]. The chemical shifts,
the strengths of the effective couplings, and relaxation time
constants are shown in Fig. 5. As is evident, the partially
oriented system can display a stronger and longer-range
coupling network leading to a larger register. Here we choose
the three 19F nuclei forming the input register and two
1H nuclei forming the ancilla register. The Hamiltonian for
the heteronuclear dipolar interaction (between 1H and 19F)
has a form identical to that of the J interaction [16]. The
homonuclear dipolar couplings (among 19F, as well as among
1H nuclei) were small compared to their chemical shift
differences enabling us to approximate the Hamiltonian in
the form of Eq. (1).

The partially oriented spin system yields all 80 transitions
sufficiently resolved. Again we use just one experiment for
the complete AAQST of the three-qubit input register. We
modeled the AAQST unitary in a similar way as before:

1 2 3 4 5 T1(s) T2*(ms)

6047 276 115 54 1545 1 0.72 65-125

-3680 -25 105 1261 2 0.43 45-65

-6744 1522 55 3 0.51 45-65

50 -7.6 4 1.44 150

29 5 1.30 150

H

H

FF

F
Br

2

4

1
5

3

FIG. 5. (Color online) Molecular structure of 1-bromo-2,4,5-
trifluorobenzene, and the table of Hamiltonian parameters in Hz:
chemical shifts (diagonal elements) and effective coupling constants
(J + 2D) (off-diagonal elements). The longitudinal relaxation time
constant (T1) and effective transverse relaxation time constant (T ∗

2 )
for each spin are also shown.
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FIG. 6. (Color online) AAQST results for thermal equilibrium
state, i.e., (σ 1

z + σ 2
z + σ 3

z )/2. The reference spectrum is in the top
trace. The spectra corresponding to the real part (R(1)

jν,jν′ , middle

trace) and the imaginary part (R(1)
jν,jν′ , bottom trace) of the 19F

signal are obtained in a single shot AAQST experiment. The bar
plots correspond to theoretically expected states (top row) and those
obtained from AAQST experiments (bottom row). Fidelity of the
AAQST state is 0.98.

U1 = (π
2 )xUint(τ2)(π

2 )xUint(τ1) where Uint(τ ) = exp(−iH̃intτ )
is the unitary operator for evolution under the internal
Hamiltonian H̃int [see Eq. (1)] for a time τ , and (π

2 )x are
global x rotations. The constraint matrix M had 63 columns
corresponding to the unknowns and 160 rows corresponding
to the real and imaginary parts of 80 spectral lines. After
optimizing the durations by minimizing the condition number
using a genetic algorithm, we obtained C(M) = 14.6 for
τ1 = 431.2 μs and τ2 = 511.5 μs. Again we study AAQST
on two states: (i) thermal equilibrium of the 19F spins:
ρ1 = (σ 1

z + σ 2
z + σ 3

z )/2, and (ii) a random density matrix ρ2

obtained by applying unitary U0 = (π
2 )Fx τ0(π )Hx τ0(π

2 )F1
y , with

τ0 = 2.5 ms, on thermal equilibrium state, i.e., ρ2 = U0ρ1U
†
0 .

In both cases, we initialize the ancilla, i.e., the 1H qubits on
to a maximally mixed state by first applying a (π/2)H pulse
followed by a strong PFG in the z direction.

The real and imaginary parts of the single shot AAQST
spectra, along with the reference spectra, are shown in Figs. 6
and 7, respectively. Again the line intensities {R(1)

jν,jν ′ ,S
(1)
jν,jν ′ }

are obtained by curve fitting, and all 63 unknowns of the
three-qubit deviation density matrix are obtained by solving
the matrix equation (5). The reconstructed density matrices
along with the theoretically expected states (ρ1 and ρ2) are
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FIG. 7. (Color online) AAQST results for state ρ2 described
in the text. The reference spectrum is in the top trace. The real
(middle trace) and the imaginary spectra (bottom trace) are obtained
in a single shot AAQST experiment. The bar plots correspond to
theoretically expected states (top row) and those obtained from
AAQST experiments (bottom row). Fidelity of the AAQST state is
0.95.

shown below the spectra in Figs. 6 and 7. The fidelities
of experimental states with the theoretically expected states
(ρ1 and ρ2) are, respectively, 0.98 and 0.95. The lower
fidelity in the latter case is mainly due to imperfections in
the preparation of the target state ρ2. The overall poorer
performance in the liquid-crystal system is due to the lower
fidelities of the QST pulses, spatial and temporal variations
of solute order parameter, and stronger decoherence rates
compared to the isotropic case. In spite of these difficulties,
the three-qubit density matrix with 63 unknowns could be
estimated quantitatively through a single NMR experiment.

Again the robustness of the AAQST procedure was studied
by artificially adding random noise as described in the previous

case. We found that the average fidelity decreased with the
noise level (η) faster than the previous case, due to the
increased complexity of the density matrix. For the diagonal
state ρ1 the average fidelity remained more than 0.9 for noise
levels η < 0.1. For the state ρ2 average fidelity dropped faster
and remained above 0.9 only for η � 0.05.

IV. CONCLUSIONS

Quantum state tomography is an important part of ex-
perimental studies in quantum information processing. The
standard method involves a large number of independent mea-
surements to reconstruct a density matrix. The ancilla-assisted
quantum state tomography introduced by Nieuwenhuizen and
co-workers allows complete reconstruction of the complex
density matrix with fewer experiments by letting the unknown
state of the input register to interact with an ancilla register
initialized in a known state. Ancilla registers are essential in
many of the quantum algorithms. Usually, at the end of the
quantum algorithms, the ancilla is brought to a state which
is separable with the input register. The same ancilla register
which is used for computation can be utilized for tomography
after the computation. The ancilla register can be prepared into
a maximally mixed state by dephasing all the coherences and
equalizing the populations.

We provided methods for explicit construction of tomog-
raphy matrices in large registers. We also discussed the
optimization of tomography procedure based on minimization
of the condition number of the constraint matrix. Further, we
demonstrated the experimental ancilla-assisted quantum state
tomography in two systems: (i) a system with two input qubits
and one ancilla qubit in an isotropic medium and (ii) a system
with three input qubits and two ancilla qubits in a partially
oriented medium. In both cases, we successfully reconstructed
the target density matrices with a single quadrature detection of
transverse magnetization. Finally, we analyzed the robustness
of the tomography procedure against random noise. We believe
that the methods introduced in this work are useful for
extending the range of quantum state tomography to larger
registers.
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