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Based on the quantum Zeno effect [B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977)], we
propose a scheme to achieve three-dimensional (3D) entanglement between two distant five-level atoms. In our
scheme, the two atoms are trapped individually in two spatially-separated double-mode cavities connected by an
optical fiber. It is found that the effective quantum Zeno dynamics of the composite cavity-fiber-cavity coupled
system gives rise to the deterministic creation of the 3D entangled state with high fidelity. Moreover, only one
step operation is required to complete the generation of the 3D entangled state. The numerical simulations clearly
show that the proposed scheme is robust against the deviation of the system parameters and insensitive to various
decoherence factors, including atomic spontaneous emissions, cavity decays and fiber photon leakages. We justify
our scheme by considering the experimental feasibility within the currently available technology.
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I. INTRODUCTION

Quantum entanglement introduced in physics originally by
Schrödinger [1] is one of the most interesting characteristics
in quantum mechanics and plays an important role in many
quantum information processes (QIP) [2–5]. Various different
schemes have been put forward to prepare entangled states
in a controlled way in numerous quantum systems [6–15]. In
particular, cavity quantum electrodynamics (QED) system pro-
vides one of the most promising and qualified candidates be-
cause of its low decoherent rate [12] and offers an almost ideal
platform to realize this strong-coupling regime even on exper-
iments [16], which is beneficial to create the entanglement.
In the context of cavity QED, the entangled states have been
experimentally demonstrated in two-state systems [17,18].

In the last few decades, the high-dimensional entanglement
has attracted a lot of attention since quantum key distribution
and quantum cryptography based on qutrit systems is more
secure than those based on qubit systems [19–21]. Besides,
high-dimensional entanglement can enhance the violation of
local realism [22]. Plenty of theoretical and experimental
schemes have been devoted to the preparation of high-
dimensional entangled states of atoms [23–29] and photons
[30–33] by selective absorption and emission of photons,
adiabatic passages, and dispersive interactions between the
atoms and optical cavities, and so on. For example, based
on selective photon emission and absorption, Zheng et al.
[28] proposed a scheme to generate three-dimensional (3D)
entanglement with two nitrogen-vacancy (NV) centers coupled
strongly to a bimodal microsphere cavity. Chen et al. [29]
presented a robust scheme to prepare 3D entangled state
between a single atom and a Bose-Einstein condensate (BEC)
via stimulated Raman adiabatic passage (STIRAP) technique.
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Their numerical simulation shows that the proposed scheme
is good enough to demonstrate the creation of this entangled
state with high fidelity. Mair et al. [30] reported controllable
preparations of the high-dimensional photonic entangled states
based on the spatial modes of the electromagnetic field carry-
ing orbital angular momentum. It is clearly shown that their
proposed schemes can be used to define an infinitely dimen-
sional discrete Hilbert space. Subsequently, two cavity QED
schemes were put forward for producing high-dimensional
entangled states of atoms with a nonresonant optical cavity by
means of cavity-assisted collisions [23] and an external strong
classical driving laser field [24], respectively. Nevertheless, the
collisions of the atoms were experienced in one nonresonant
cavity, which requires high experimental techniques and has a
limited application in practical QIP.

On the other hand, the quantum Zeno effect (QZE) intro-
duced in quantum physics originally by Misra and Sudarshan
[34] is one of the specific quantum effects and is usually
understood as the hindrance of the dynamics out of the initial
state due to frequent or continuous von Neumann measure-
ments [35–38]. For possible applications, the system may
evolve away from its initial state and remain in the so-called
Zeno subspace [39,40] through frequent projections onto a
multidimensional subspace. This evolution is called a quantum
Zeno dynamics (QZD) [41]. In addition, the “continuous
coupling” [42] can reformulate the QZE and achieve the
same physical effects between the system and detector without
making use of projection operators and nonunitary dynamics.
The QZE may open a novel route to study the possibility of
tailoring the interaction so as to obtain robust subspaces against
decoherence, useful for practical applications in quantum
computation, quantum communication, and QIP [43–48].

For the purpose of clarity, now we give a concise review
of the QZE in terms of continuous coupling. Assume that
the evolution of the total system is governed by a generic
Hamiltonian of the type HK = H + KHc [38]. Here H is
the Hamiltonian of the quantum system under study, Hc is
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regarded as an additional interaction Hamiltonian carrying out
the measurement, and K is a coupling constant. Under the limit
that K → ∞, one can consider the limiting evolution operator
U (t) = limK→∞ exp(iKHct)UK (t). In this case, the above
result can be reexpressed as the form U (t) = exp(−iHZt) =
exp(−i

∑
n PnHPnt), where Pn is the eigenprojection of Hc

belonging to the eigenvalue λn. As a result, the overall system
is dominated by the limiting evolution operator UK (t) ∼
exp[−i

∑
n(KλnPn + PnHPn)t], which is the main result

based by our present work.
In this paper, by means of the above-mentioned QZD, we

put forward an alternative scheme for generating 3D entangled
state for two five-level atoms trapped individually in two
spatially separated double-mode cavities. Two cavities are
connected by an optical fiber. Compared with previous pro-
tocols [25–27], first, the 3D entanglement with this composite
cavity-fiber-cavity QED system can be established with only
one-step operation, which is useful in real experiments because
the scheme effectively reduces the number of operations for
experimental implementation. Second, our numerical results
show that the proposed scheme is robust against the deviation
of the system parameters and insensitive to spontaneous
emission of the excited state and dissipation of the fibers. Third,
the cavity fields are not excited really and thus is insensitive to
the decays of the cavities (or the photon leakage of the cavity)
owing to the evolution of the system in the null-excitation
subspace under quantum Zeno conditions. Additionally, our
scheme loosens the requirement of strong cavity-fiber cou-
pling. By discussing the experimental feasibility within the
currently available technology, we believe that our scheme is a
promising way to realize the 3D maximally atomic entangled
state in this composite cavity-fiber-cavity QED system.

The paper is organized as follows. In Sec. II, we establish
physical model under investigation and derive the effective
Hamiltonian of the coupled system and the evolution equations
of the state vector under quantum Zeno conditions. In
Sec. III, we are devoted to illustrating the generation of 3D
atomic entangled state. In Sec. IV, we explore in detail the
influences of atomic spontaneous decay, photon leakage out
of the cavities, and optical fiber on the generation of atomic
entangled states. In Sec. V, we provide a possible experimental
realization of our scheme. Finally, our main conclusions are
summarized in Sec. VI.

II. MODEL AND EQUATION

As illustrated in Fig. 1, we consider a composite cavity-
fiber-cavity QED system in which tripod-type and M-type
five-level atoms are individually trapped in two frequency-
degenerate but polarization-nondegenerate two-mode cavities
(cavities 1 and 2) connected by an optical fiber. In the
cavity 1, the transition |g0〉1 ⇔ |e〉1 of the tripod-type atom
with transition frequency ωeg0 is driven by a classical laser
field from free space with angular frequency ω1 and Rabi
frequency �1. The transitions |e〉1 ⇔ |l〉1 and |e〉1 ⇔ |r〉1

of the tripod-type atom with the same transition frequencies
ωel = ωer are coupled to the cavity modes a1l and a1r

(l and r denote the left and right circularly polarization)
with degenerate frequencies ω

c1
l = ωc1

r = ωc1 and coupling
strengths g1l , g1r . In the cavity 2, the transitions |el〉2 ⇔
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FIG. 1. (Color online) Schematic structure of optical composite
system, which is composed of tripod-type and M-type five-level
atoms, two frequency-degenerate but polarization-nondegenerate
two-mode cavities, and an optical fiber. Tripod-type and M-type
atoms (atom 1 and atom 2) are trapped in two spatially separated
double-mode cavities 1 and 2, respectively. Two cavities are con-
nected by an optical fiber.

|l〉2 and |er〉2 ⇔ |r〉2 of the M-type atom with the same
transition frequencies ωell = ωerr are simultaneously driven
by an external classical laser field with angular frequency ω2

and Rabi frequencies �2l , �2r . The transitions |el〉2 ⇔ |g〉2

and |er〉2 ⇔ |g〉2 of the M-type atom with the same transition
frequencies ωelg = ωerg are coupled by the cavity modes a2l

and a2r with degenerate frequencies ω
c2
l = ωc2

r = ωc2 and
coupling strengths g2l , g2r . �1, and �2 are the single photon
frequency detunings and satisfy the relationship ωeg0 − ω1 =
ωek − ω

c1
k = �1 and ωekk − ω2 = ωekg − ω

c2
k = �2 (k = l,r),

respectively. It should be emphasized that, in the short fiber
limit, (2Lv)/(2πc) � 1, where L is the length of the fiber and
v is the decay rate of the cavity field into a continuum of fiber
modes [49], only the resonant mode of the fiber interacts with
the cavity modes.

Under the rotating-wave approximation (RWA), the result-
ing Hamiltonian describing the atom-cavity interaction can be
written in the interaction picture as (setting h̄ = 1) [50,51]

H = H1 + H2, (1)

H1 = �1|e〉1〈e| + �1(|g0〉1〈e| + |e〉1〈g0|)
+

∑
k=l,r

x[�2|ek〉2〈ek| + (�2k|k〉2〈ek| + H.c.)], (2)

H2 =
∑
k=l,r

(g1k|e〉1〈k|a1k + g2k|ek〉2〈g|a2k + H.c.)

+
∑
k=l,r

[ηkbk(a†
1k + a

†
2k) + H.c.], (3)

where the symbol H.c. means Hermitian conjugate. al , ar and
a
†
l , a

†
r are the annihilation and creation operators associating

with the corresponding quantized cavity modes. It should be
pointed out that the last term in H2 describes the interaction
between the cavity modes and fiber modes with coupling
strengths ηk(k = l,r), where bk and b

†
k are the annihilation and

creation operators of the fiber modes. �1, �2k , g1k , g2k , and
ηk are assumed to be real numbers and �2k = �2, g1k = g1,
g2k = g2, and ηk = η, respectively.

For an initial state |g0〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 , the whole
system evolution remains in the subspace spanned by

|1〉 = |g0〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 ,

|2〉 = |e〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 ,
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|3〉 = |l〉1|g〉2|1l0r〉c1 |0〉f |0l0r〉c2 ,

|4〉 = |r〉1|g〉2|0l1r〉c1 |0〉f |0l0r〉c2 ,

|5〉 = |l〉1|g〉2|0l0r〉c1 |1l〉f |0l0r〉c2 ,

|6〉 = |r〉1|g〉2|0l0r〉c1 |1r〉f |0l0r〉c2 ,

|7〉 = |l〉1|g〉2|0l0r〉c1 |0〉f |1l0r〉c2 ,

|8〉 = |r〉1|g〉2|0l0r〉c1 |0〉f |0l1r〉c2 ,

|9〉 = |l〉1|el〉2|0l0r〉c1 |0〉f |0l0r〉c2 ,

|10〉 = |r〉1|er〉2|0l0r〉c1 |0〉f |0l0r〉c2 ,

|11〉 = |l〉1|l〉2|0l0r〉c1 |0〉f |0l0r〉c2 ,

|12〉 = |r〉1|r〉2|0l0r〉c1 |0〉f |0l0r〉c2 , (4)

where in |x〉1|y〉2|nlnr〉c1 |q〉f |mlmr〉c2 , |x〉1 denotes the state
of the tripod-type atom in the first cavity, |y〉2 denotes the
state of the M-type atom in the second cavity, |nlnr〉c1 ≡
|nl〉c1

⊗ |nr〉c1 denotes the Fock state in the two modes of the
first cavity, |k〉f denotes the Fock state in the fiber mode, and
|mlmr〉c2 ≡ |ml〉c2

⊗ |mr〉c2 denotes the Fock state in the two

modes of the second cavity. nl , nr denote the photon numbers
of the two modes for the first cavity, ml , mr denote the photon
numbers of the two modes for the second cavity, and q denotes
the photon numbers of the fiber modes.

Under the condition �1(2), �1(2) � η, g1(2), the Hilbert
subspace is split into nine invariant Zeno subspaces [38,41,47,
48] as follows:

HP1 = {|1〉,|11〉,|12〉,|φ1〉}, HP2 = {|φ2〉}, HP3 = {|φ3〉},
HP4 = {|φ4〉}, HP5 = {|φ5〉}, HP6 = {|φ6〉}, (5)

HP7 = {|φ7〉}, HP8 = {|φ8〉}, HP9 = {|φ9〉},
where the corresponding eigenvalues are given by λ1 =
0, λ2 = −a1, λ3 = a1, λ4 = −a2, λ5 = a2, λ6 = −b1,
λ7 = b1, λ8 = −b2, and λ9 = b2 with the projection
P

μ

i = |μ〉〈μ|(|μ〉 ∈ HPi
). Here a1 =

√
(2η2 + g2

2 − d1)/2,
a2 =

√
(2η2 + g2

2 + d1)/2, b1 =
√

(2η2 + 2g2
1 + g2

2 − d2)/2,
b2 =

√
(2η2 + 2g2

1 + g2
2 + d2)/2, d1 =

√
4η4 + g4

2 , d2 =√
4η4 + (2g2

1 − g2
2)2 , and

|φ1〉 = A1

(
g2

g1
|2〉 − g2

η
|5〉 − g2

η
|6〉 + |9〉 + |10〉

)
,

|φ2〉 = A2

(
−ε1|3〉 + θ1|4〉 + ε1a1

η
|5〉 + χ1|6〉 + a1

g2
|7〉 − a1

g2
|8〉 − |9〉 + |10〉

)
,

|φ3〉 = A3

(
ε1|3〉 − θ1|4〉 + ε1a1

η
|5〉 + χ1|6〉 − a1

g2
|7〉 + a1

g2
|8〉 − |9〉 + |10〉

)
,

|φ4〉 = A4

(
−ε2|3〉 − θ2|4〉 − ε2a2

η
|5〉 + χ2|6〉 + a2

g2
|7〉 − a2

g2
|8〉 − |9〉 + |10〉

)
,

|φ5〉 = A5

(
ε2|3〉 + θ2|4〉 − ε2a2

η
|5〉 + χ2|6〉 − a2

g2
|7〉 + a2

g2
|8〉 − |9〉 + |10〉

)
,

|φ6〉 = A6

(
2δ1g1

b1
|2〉 − δ1|3〉 − δ1|4〉 − ξ1|5〉 + ζ1|6〉 − b1

g2
|7〉 − b1

g2
|8〉 + |9〉 + |10〉

)
,

|φ7〉 = A7

(
2δ1g1

b1
|2〉 + δ1|3〉 + δ1|4〉 − ξ1|5〉 + ζ1|6〉 + b1

g2
|7〉 + b1

g2
|8〉 + |9〉 + |10〉

)
,

|φ8〉 = A8

(
2δ2g1

b1
|2〉 − δ2|3〉 − δ2|4〉 + ξ2|5〉 + ζ2|6〉 − b2

g2
|7〉 − b2

g2
|8〉 + |9〉 + |10〉

)
,

|φ9〉 = A9

(
2δ2g1

b1
|2〉 + δ2|3〉 + δ2|4〉 + ξ2|5〉 + ζ2|6〉 + b2

g2
|7〉 + b2

g2
|8〉 + |9〉 + |10〉

)
, (6)

with ε1 = (d1−η2)(d1+g2
2 )−2η4

g2a1(d1+g2
2 )

, θ1 = a1(d1+g2
2 )

2η2g2
, χ1 = 2η2−g2

2−d1

2ηg2
, ε2 = (d1+η2)(d1−g2

2 )−2η4

g2a2(d1−g2
2 )

, θ2 = a2(d1−g2
2 )

2η2g2
, χ2 = 2η2−g2

2+d1

2ηg2
, δ1 =

b1(2g2
1−g2

2−d2)
2η2g2

, ξ1 = (d2−η2)(2g2
1−g2

2−d2)+2η4

ηg2(2g2
1−g2

2−d2)
, ζ1 = b2

1−g2
2

ηg2
, δ2 = b2(2g2

1−g2
2+d2)

2η2g2
, ξ2 = (d2+η2)(2g2

1−g2
2+d2)−2η4

ηg2(2g2
1−g2

2+d2)
, ζ2 = b2

2−g2
2

ηg2
, and Ai(i =

1,2, . . . ,9) being the normalization factor for the eigenstate |φi〉, respectively.
So the Hamiltonian of the system can be approximately written as [38]

Happ
∼=

∑
i,μ,ν

(
λiP

μ

i + P
μ

i H1P
ν
i

)

=
∑

i

λiPi +
9∑

i=2

2A2
i �2|φi〉〈φi | + A2

1(s2�1 + 2�2)|φ1〉〈φ1| + A1 [s�1|1〉〈φ1| + �2 (|11〉〈φ1| + |12〉〈φ1|) + H.c.] .

(7)
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If the initial state is |�(0)〉 = |1〉 = |g0〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 , under the conditions �1(2), �1(2) � η, g1(2), then Happ can be
reduced to the form

Heff = A2
1(s2�1 + 2�2)|φ1〉〈φ1| + A1[s�1|1〉〈φ1| + �2(|11〉〈φ1| + |12〉〈φ1|) + H.c.]. (8)

After time t, the system state can be expressed as |�(t)〉 = C1|1〉 + C2|11〉 + C3|12〉 + C4|φ1〉 and evolve in the domination
of the Schrödinger equation

i
∂

∂t
|�(t)〉 = Heff|�(t)〉. (9)

Associating with Eqs. (8) and (9), we can obtain the analytical expressions of the coefficients Ci (i = 1, . . . ,4), with the results

C1(t) = 1

β(s2 + 2α2)

{
2α2β + e−i

A2
1�

2 t s2

[
β cos

(
A1β

2
t

)
+ iA1� sin

(
A1β

2
t

)]}
,

C2(t) = C3(t) = sα

β(s2 + 2α2)

{
β − e−i

A2
1�

2 t

[
β cos

(
A1β

2
t

)
+ iA1� sin

(
A1β

2
t

)]}
, (10)

C4(t) = 2i
s�1

β
e−i

A2
1�

2 t sin

(
A1β

2
t

)
,

where � = A2
1(s2�1 + 2�2), g2 = sg1 = sg, α = �2/�1,

and β =
√
A2

1�
2 + 4�2

1(s2 + 2α2), respectively.
From the above equations, we notice that when

A1β

2 τ = nπ , namely, τ = nπ 2
A1β

(n = 1, 3, 5,. . .) and

e−i
A2

1�

2 τ = 2α2

s2 = 1, namely, s = √
2α (corresponding to

C2 = C3 = 1√
2
, C1 = C4 = 0), the system can evolve

into the state |�(τ )〉 = 1√
2
(|11〉 + |12〉) = 1√

2
(|l〉1|l〉2〉 +

|r〉1|r〉2〉)|0l0r〉c1 |0〉f |0l0r〉c2 if the initial state is |�(0)〉 =
|g0〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 .

On the other hand, if the initial state is
|�(0)〉 = |g〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 , the system state
remains unchanged during the process of evolution
since it is a dark state of the Hamiltonian (1)
with zero eigenvalue. To sum up, when the initial
state is |�(0)〉 = 1√

3
(
√

2|g0〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 +
|g〉1|g〉2|0l0r〉c1 |0〉f |0l0r〉c2 ), the system state evolves
into the state |�(t)〉 = 1√

3
(|l〉1|l〉2 + |r〉1|r〉2 + |g〉1|g〉2)

|0l0r〉c1 |0〉f |0l0r〉c2 = |�3D〉|0l0r〉c1 |0〉f |0l0r〉c2 under appro-
priate conditions. As a result, one can obtain the 3D maximally
entangled state of two spatially separated atoms in normal form
|�3D〉 = 1√

3
(|l〉1|l〉2 + |r〉1|r〉2 + |g〉1|g〉2) which is com-

pletely separated from the cavity fields and the fiber modes.

III. GENERATION OF 3D ENTANGLEMENT BETWEEN
TWO SPATIALLY SEPARATED FIVE-LEVEL ATOMS

In the above derivation, the 3D maximally entangled state
|�3D〉 can be deterministically generated in an ideal situation,
which includes s = √

2α at a proper time. However, there
are usually some deviations of the system parameters. To this
end, we should consider the influence of this deviation on the
fidelity F3D of the 3D entangled state, which can be defined as
F3D = |c2〈0l0r |f 〈0|c1〈0r0l|〈�3D|�(t)〉|2.

First of all, we consider the influence of the coupling
strength η on the fidelity F3D of the 3D entangled state. In
Fig. 2, we find that the coupling strength η can not change
the maximum value of the fidelity, but larger η means shorter

operation time. For simplicity, we can chose the ratio η/g = 1
in the following discussion.

Next, we discuss the influence of two proportional coeffi-
cients s (s = g2/g1) and α (α = �2/�1) on the fidelity F3D

of the 3D entangled state. In Fig. 3(a), we plot the fidelity
F3D of the 3D entangled state versus the dimensionless time
parameter �1t for two different proportional coefficients of
s. It is clearly shown from Fig. 3(a) that when the condition
s = √

2α is strictly satisfied, the 3D maximally entanglement
of two atoms can be deterministically generated at proper time,
which has nothing to do with the value of s. But smaller s

means longer operation time, as can be seen from the analytical
expressions of the coefficients C2(t) and C3(t) in Eq. (10). In
Fig. 3(b), we plot the fidelity F3D of the 3D entangled state
as a function of proportional coefficient s. It is easy to see
from Fig. 3(b), if s �= √

2α, the fidelity F3D is still higher than
98% with respect to the fluctuation of the parameter s from
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FIG. 2. (Color online) The fidelity F3D of the 3D entangled state
versus the dimensionless time parameter �1t for three different
coupling strengths of η. Other system parameters are chosen as
�1 = �2 = 0 and s = √

2α, respectively.
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FIG. 3. (Color online) (a) The fidelity F3D of the 3D entangled
state versus the dimensionless time parameter �1t for two different
proportional coefficients of s. The blue solid line denotes s = 1 and
the red dashed line denotes s = 0.8, respectively; (b) The fidelity F3D

of the 3D entangled state as a function of proportional coefficient s.
Other system parameters are chosen as (a) �1 = �2 = 0, s = √

2α;
and (b) �1 = �2 = 0, α = 1, �1t = 2π/(A1β), respectively.

1.2 to 1.6. This suggests that the deviation of the proportional
coefficient s has little influence on our results. On the other
hand, we also plot the time evolution of the fidelity F3D for
three different proportional coefficients of α with s = 1 in
Fig. 4. It is obviously indicated that the fidelity F3D of the 3D
entangled state can reach 96.79% even when α is fluctuated
20% around 1/

√
2 ∼ 0.707. To summarize, the deviation of

the proportional coefficients s and α around s = √
2α has

little influence on the generation of the 3D entangled state. In
other words, our scheme is robust against the fluctuation of the
proportional coefficients s and α.
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FIG. 4. (Color online) The fidelity F3D of the 3D entangled state
versus the dimensionless time parameter �1t for three different
proportional coefficients of α. Other system parameters are chosen
as �1 = �2 = 0 and s = 1, respectively.
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FIG. 5. (Color online) The fidelity F3D of the 3D entangled state
versus the dimensionless time parameter �1t for four different atom-
cavity detunings of �. Other system parameters are chosen as s = 1
and α = 1/

√
2, respectively.

Now, we consider the influence of the atom-cavity de-
tunings �1 and �2 on the fidelity F3D of the 3D entangled
state. For convenience, we have assumed �1 = �2 = �. The
fidelity F3D of the 3D entangled state between the two atoms as
a function of the dimensionless time parameter �1t is plotted
in Fig. 5 for four different detunings of �. It can been found
from Fig. 5 that the 3D maximal entanglement of two atoms
can be deterministically generated for different atom-cavity
detunings under the condition s = 1 and α = 1/

√
2, which is

useful in real experiments. Furthermore, the operation time
becomes longer with increasing the detunings �.

In the above discussion, the restriction �1(2), � � g1(2),
which is called as the Zeno condition, is necessary. So we
should consider the influence of the ratio g1/�1 = g/�1 on
the fidelity F3D of the 3D entangled state. In Fig. 6, we plot
the evolution of the fidelity F3D versus the dimensionless time
parameter �1t for three different ratios of g/�1. It is easy to
find that the maximum value of the fidelity F3D is above 98%
even when g/�1 = 5. We can get better behavior with larger
g/�1. In the following, we adopt the ratio g/�1 = 10.

There are a few assumptions and approximations in the
derivation of the effective Hamiltonian. We should check the
validity of these assumptions and the accuracy of our results.
In Fig. 7, we plot the fidelity F3D of the 3D entangled state as a
function of the dimensionless time parameter �1t by directly
solving the Schrödinger equation i ∂

∂t
|�(t)〉 = H |�(t)〉 where

H is original total Hamiltonian in Eq. (1) (see red dashed line
in Fig. 7) and by using the effective Hamiltonian in Eq. (8)
(see blue solid line in Fig. 7) based on QZE. We find that
two curves agree with each other reasonably well, thus our
effective model is valid.

IV. EFFECTS OF ATOMIC SPONTANEOUS DECAY AND
PHOTON LEAKAGE OF THE CAVITIES AND FIBER

Until now, we ignored various decoherence effects in-
cluding the spontaneous decay of the excited states of two
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atoms and photon leakage out of the cavities and fiber.
Experimentally, the spontaneous decay of the atoms is one
of the major obstacles for generating 3D entanglement. In this
section, we take into account the effect of the photon leakage
and the excited state spontaneous emission of the two atoms.
Using the density-matrix formalism, the master equation for
the density matrix of the whole system can be written as

ρ̇(t) = −i [Htotal,ρ(t)] −
∑
i=1,2

∑
k=l,r

�ik

2

× (a†
ikaikρ − 2aikρa

†
ik + ρa

†
ikaik)
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FIG. 7. (Color online) The fidelity F3D of the 3D entangled state
versus the dimensionless time parameter �1t , calculated by using the
total Hamiltonian (1) (red dashed line) and the effective Hamiltonian
(8) under the Zeno condition (blue solid line). The system parameters
are chosen as g = 10�1,s = 1,α = 1/

√
2, and � = 0, respectively.
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versus the dimensionless time parameter �1t for three different decay
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� = 0, respectively.

−
∑
k=l,r

�f k

2
(b†kbkρ − 2bkρb

†
k + ρb

†
kbk)

−
∑
i=1,2

∑
k=l,r

γik

2
(σ+

ik σ
−
ik ρ + ρσ+

ik σ
−
ik − 2σ−

ik ρσ+
ik ),

(11)

where σ−
1k = |k〉1〈e| (σ−

2k = |k〉2〈ek|) is the atomic transition
or projection operator between the states |k〉1 (|k〉2) and |e〉1

(|ek〉2). �jk and �f k (j = 1,2; k = l,r) represent the cavity
decay rate and the fiber decay rate, respectively. γ1k denotes
the spontaneous decay rate from |e〉1 → |k〉1 of the first atom
and γ2k denotes the spontaneous decay rate from |ek〉2 → |k〉2

of the second atom. Without loss of generality, we set �1k =
�2k = �, �f k = �f , and γ1k = γ2k = γ . From Fig. 8, we note
that the maximum value of the fidelity F3D can reach higher
98.9% for the case of γ = � = �f = 0.01�1. Even for γ =
� = �f = 0.1�1 the maximum fidelity is also more than 92%.

In order to show the effect of γ , �, and �f more clearly
on the generation of the 3D entangled state, in Fig. 9 we plot
the fidelity F3D versus three different decay rates γ (blue solid
line), � (red dashed line), and �f (black dot-dashed line). It is
clearly seen from Fig. 9 that the fidelity F3D of the 3D entangled
state is mainly affected by the spontaneous decay of atoms and
almost unaffected by cavity decay owing to the evolution of
the whole system in the subspace without excitation of the
cavity mode fields. In short, our protocol is robust against the
spontaneous decay and photon leakage.

V. POSSIBLE EXPERIMENTAL REALIZATION

Before ending this paper, let us briefly discuss the possible
experimental realization of our proposed scheme of Fig. 1,
which are given as follows.

(i) The level structure of the tripod-type and M-type
atoms trapped in two spatially separated double-mode
cavities 1 and 2 can be realized in cold alkali-metal atoms
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133Cs (nuclear spin I = 7/2) using the 6S1/2 − 6P1/2

transition of D1 line at 894.6 nm [26,52,53]. The designated
states can be chosen as follows: |g0〉1 = |6S1/2,F =
3,m = 0〉, |g〉1 = |6S1/2,F = 4,m = 0〉, |l〉1 = |6S1/2,F =
3,m = +1〉, |r〉1 = |6S1/2,F = 3,m = −1〉, and |e〉1 =
|6P1/2,F = 3,m = 0〉 for the first atom in cavity 1 and |l〉2 =
|6S1/2,F = 3,m = +1〉, |r〉2 = |6S1/2,F = 3,m = −1〉,
|g〉2 = |6S1/2,F = 4,m = 0〉, |el〉2 = |6P1/2,F = 4,m =
+1〉, and |er〉2 = |6P1/2,F = 4,m = −1〉 for the second atom
in cavity 2, respectively. A zero-field splitting between lower
sublevels |6S1/2,F = 3〉 and |6S1/2,F = 4〉 is ∼9.2 GHz. A
zero-field splitting between upper sublevels |6P1/2,F = 3〉
and |6P1/2,F = 4〉 is ∼ 1.2 GHz The decay rates from excited
to ground state, for the Cs D1 line, γ /2π = 4.6 MHz, i.e., the
natural linewidth of Cs D1 line.

(ii) As shown in Ref. [54], a type of frequency-degenerate
but polarization-nondegenerate two-mode cavity QED
setup can be constructed experimentally. The cavity fields
are coupled to the fiber with high efficiency [55,56].
The levels of atoms and polarizations of cavity modes
and classical fields are shown in Fig. 10. Specifically, in
Fig. 10(a), a π -polarized classical laser field, supplied
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σ +πσ −
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FIG. 10. (Color online) The energy levels of (a) atom 1 and (b)
atom 2, and polarizations of double-cavity modes and external driven
laser fields. π , σ−, and σ+ denote linearly, left-circularly, and right-
circularly polarized components, respectively.

by an external cavity diode laser (ECDL), is applied
to drive the transition |g0〉1 = |6S1/2,F = 3,m = 0〉 ⇔
|e〉1 = |6P1/2,F = 3,m = 0〉. The transitions |l〉1 =
|6S1/2,F = 3,m = 1〉 ⇔ |e〉1 = |6P1/2,F = 3,m = 0〉 and
|r〉1 = |6S1/2,F = 3,m = −1〉 ⇔ |e〉1 = |6P1/2,F = 3,m =
0〉 are independently coupled to each of the orthogonally
polarized cavity-1 modes with σ− and σ+ polarizations. In
Fig. 10(b), another π -polarized classical laser field is applied
to simultaneously couple the transitions |l〉2 =|6S1/2,F =
3,m=+1〉⇔|el〉2 = |6P1/2,F = 4,m = +1〉 and |r〉2 =
|6S1/2,F = 3,m = −1〉 ⇔ |er〉2 = |6P1/2, F = 4,m = −1〉.
The transitions |g〉2 = |6S1/2,F = 4,m = 0〉 ⇔ |el〉2 =
|6P1/2,F = 4,m = +1〉 and |g〉2 = |6S1/2,F = 4,m = 0〉 ⇔
|er〉2 = |6P1/2,F = 4,m = −1〉 are independently coupled
to each of the cavity-2 fields with σ+ and σ− polarizations.
Based on the recent experiments about realizing high-Q
cavity and strong atom-cavity coupling [54,57–61], we can
choose the experimental parameters as g1(2)/2π ∼ 5.5 GHz,
�1/2π ∼ 0.55 GHz, �2/2π ∼ 0.39 GHz, γ /2π ∼ 4.6 MHz,
and �/2π ∼ 1.5 MHz (corresponding to the cavity quality
factor Q ∼ 108). Under these achievements, we believe that
the 3D entangled state of two atoms may be created with high
fidelity based on our proposed scheme.

VI. CONCLUSION

In summary, by exploiting the QZE, we have proposed
a protocol for creating 3D entanglement between two distant
atoms trapped individually in two double-mode cavities, where
two cavities are connected by an optical fiber. The results show
that the 3D maximum entangled state with near-unity fidelity
can be deterministically generated at proper time in ideal cases.
In nonideal cases, the numerical simulations also indicate that
the fidelity of generating the 3D entanglement is highly stable
to the deviation of the system parameters from those in the
ideal cases. Alternatively, it has been found that our scheme is
robust against the photon leakage of the cavity and fiber and
atomic spontaneous decay of the excited state because of the
evolution of the whole system in a subspace without exciting
the cavity field. Moreover, only one-step operation is required
to complete the generation of the 3D entangled state. Finally,
the experimental feasibility of our protocol is discussed by
considering realistically achievable parameters. Therefore, we
believe that the protocol proposed here is a promising avenue
to realize the high-dimensional entanglement with present
experimental techniques.
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