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Complete analysis for three-qubit mixed-state discrimination
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In this article, by treating minimum error state discrimination as a complementarity problem, we obtain the
geometric optimality conditions. These can be used as the necessary and sufficient conditions to determine
whether every optimal measurement operator can be nonzero. Using these conditions and an inductive approach,
we demonstrate a geometric method and the intrinsic polytope for N -qubit mixed-state discrimination. When
the intrinsic polytope becomes a point, a line segment, or a triangle, the guessing probability, the necessary and
sufficient condition for the exact solution, and the optimal measurement are analytically obtained. We apply this
result to the problem of discrimination to arbitrary three-qubit mixed states with given a priori probabilities and
obtain the complete analytic solution to the guessing probability and optimal measurement.
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The goal of quantum-state discrimination is to distinguish
between states of a given set as well as possible. In other words,
it can be regarded as a problem to find the optimal measurement
for discriminating among the given quantum states. In fact,
every state in classical physics can be orthogonal to each other
and therefore distinguished perfectly [1]. However, in quantum
physics, a state cannot be perfectly discriminated because of
the existence of nonorthogonal states [2–4]. Quantum-state
discrimination [5] is classified into minimum error discrim-
ination, originally introduced by Helstrom [2], unambiguous
discrimination [6–8], and maximum confidence discrimination
[9]. The purpose of minimum error strategy is to find the
optimal measurement and the minimum error probability (or
guessing probability) for arbitrary N -qudit mixed quantum
states with arbitrary a priori probabilities. In the N = 2 case,
regardless of the dimension, the Helstrom bound [2] gives an
analytic solution to the problem. In the N = 3 case the analytic
solution for pure qubit states is provided by [10,11]. In [12] the
analytic solution for mixed qubit states is considered without
the necessary and sufficient conditions for the solution. In other
words, the full understanding for discrimination of three-qubit
mixed quantum states is not provided yet.

The optimal measurement for linearly independent quan-
tum states is the von Neumann measurement [13]. But if
the given quantum states are linearly dependent, the von
Neumann measurement may not be optimal. Therefore, the
positive-operator-valued-measure (POVM) should be used for
arbitrary quantum states. From the point where POVM can
be used as a measurement and the probability to guess the
quantum states correctly becomes convex, the minimum error
discrimination problem may be solved by convex optimization
[14]. Other efforts to solve it have been made using a dual
problem [15] or complementarity problem [16]. By applying
qubit-state geometry to the optimality conditions for the
measurement operators and complementary states, Bae [17]
obtained a geometric method to find the guessing probability
and the optimal measurement for some special cases. However,
they did not include the case where the optimal measurement
cannot be POVM, whose every element is nonzero. In this
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article, we show that the case where the optimal measurement
cannot be POVM, whose every element is nonzero, can be
understood through the existence of parameters satisfying
the geometric optimality conditions [16]. We also clarify
the meaning of these geometric conditions. Through the
conditions and an inductive approach, we propose a method
to discriminate arbitrary N -qubit mixed quantum states with
arbitrary a priori probabilities. In this method, we define
the intrinsic polytope for discrimination problems. When the
polytope becomes a point, line segment, or triangle, we find the
guessing probability, the necessary and sufficient condition for
the exact solution, and the optimal measurement analytically.
By the number of extreme points for the intrinsic polytope
and the geometric optimality conditions, we can provide a
complete analysis for discrimination of the three-qubit mixed
state. We also obtain its guessing probability and optimal
measurement.

Let qi and ρi (i = 1, . . . ,N) be the a priori probability and
d × d the density matrix, where d and N denote the dimension
and number of states to be discriminated. Hereafter, qi is
ordered by qi � qi+1. When {Mi}Ni=1 is used for measurement
to {qi,ρi}Ni=1, the probability to guess the quantum states
correctly becomes Pcorr = ∑N

i=1 qi trρiMi . The goal of the
minimum error state discrimination is to obtain the maximum
of Pcorr, called the guessing probability Pguess, using POVM.
Therefore the minimum error state discrimination can be
described as

max
N∑

i=1

qi trρiMi,

subject to Mi � 0 ∀i ∈ {1, · · · ,N}, (1)
N∑

i=1

Mi = Id .

By semidefinite programming [14], the dual problem of Eq. (1)
is obtained as follows:

min trK, subject to K − qiρi � 0 ∀i ∈ {1, · · · ,N}, (2)

where K is the d × d Hermitian matrix. In fact, using a non-
negative number ri and the density matrix ρ̃i , the constraints
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of the dual problem can be written as

K = qiρi + ri ρ̃i ∀i ∈ {1, · · · ,N}. (3)

Since the above operator K is equal for all i, the following
relation holds:

qiρi − qjρj = rj ρ̃j − ri ρ̃i ∀i, j ∈ {1, · · · ,N}. (4)

In the optimization problem, the dual problem in general has
weak duality and may not be identical to the original one.
However, if the optimization problem is convex and satisfies
Slater’s condition, the dual one has strong duality and is
equivalent to the primal one. This condition is to check whether
every POVM element is nonzero. Therefore our problem is
equivalent to the following:

min q1 + r1, subject to ri ρ̃i − rj ρ̃j = qjρj − qiρi ∀i,j.

(5)

The objective function can be qi + ri(i = 2, · · · ,N ) instead
of q1 + r1. By considering the Karush-Kuhn-Tucker (KKT)
conditions, let us investigate the necessary conditions of
{Mi,ri,ρ̃i}Ni=1, which satisfy Pcorr = q1 + r1. These conditions
contain the constraints of the primal and dual problems as well
as the complementary slackness one. The final condition can
be found by connecting the measurement operators {Mi}Ni=1
and {ri,ρ̃i}Ni=1, which are complementary to the constraints of
the primal and dual problems:

ri tr[ρ̃iMi] = 0 ∀i ∈ {1, · · · ,N}. (6)

The KKT conditions, summarized in the following, can be
derived from the POVM constraints and the no-signaling ones
[18]:

(i) Mi � 0 and
N∑

i=1

Mi = Id ∀i,

(ii) ri ρ̃i − rj ρ̃j = qjρj − qiρi ∀i,j, (7)

(iii) ri tr[ρ̃iMi] = 0 ∀i.

We now obtain the guessing probability and the optimal
measurement, by only these conditions. The complementarity
problem is the one where a solution is found for the optimiza-
tion problem by using the optimality conditions which should
satisfy the parameters of the primal and dual problem. In this
article ∗ is used to denote the optimality of the parameters.

Henceforth, by confining only the case of the two-level
system (d = 2) let us obtain the geometric condition for
Eq. (7). From the Bloch representation ρi = 1

2 (I2 + �vi · �σ ) and
ρ̃i = 1

2 (I2 + �wi · �σ ) we can derive the following relations:

qi − qj = rj − ri, (8)

qi �vi − qj �vj = rj �wj − ri �wi ∀i, j ∈ {1, · · · ,N}, (9)

where �vi and �wi are the Bloch vectors and �σ represents
the Pauli matrices. Since we assume qi � qi+1, we can find
r∗
i � r∗

i+1 from Eq. (8). Therefore if r∗
1 �= 0, we have r∗

i > 0
(i = 1, . . . ,N ). Here, let us take an inductive approach to
N -qubit-state discrimination, which means that by assuming
that the way to discriminate (N − 1) states may be known, we
investigate a method to discriminate among the N -qubit states.
Therefore it is sufficient to consider only those cases where
every optimal POVM element is nonzero. (For generality,

we will later consider cases where some of the optimal
POVM elements may be zero.) First, we consider cases where
every optimal POVM element is nonzero and the guessing
probability is greater than q1. In this case, since r∗

1 is nonzero,
the condition (iii) becomes tr(ρ̃iMi) = 0, which implies that
the rank of ρ̃i and Mi should be one. This means that for each
i, we find || �wi ||2 = 1 and

Mi = pi(I2 − �wi · �σ ), pi > 0. (10)

Since {M∗
i }Ni=1 is POVM, {pi, �wi}Ni=1 should satisfy

N∑
i=1

pi �wi = 0,

N∑
i=1

pi = 1. (11)

Therefore {ri, �wi}Ni=1 is necessary to satisfy the following
conditions (which we will call the geometric KKT conditions):

(i) ri �wi − rj �wj = qj �vj − qi �vi ∀i,j,

(ii) ∃ {pi}Ni=1 s.t. pi > 0 ∀i,

N∑
i=1

pi �wi = 0,

N∑
i=1

pi = 1,

(12)
(iii) ‖ �wi ‖2= 1 ∀i,

(iv) ri − rj = qj − qi ∀i,j.

Next, we will show that even when every optimal POVM
element is nonzero and the guessing probability becomes q1,
{ri, �wi}Ni=1 is necessary to satisfy the above condition Eq. (12).
We will prove this by considering both cases q1 = q2 and
q1 > q2. The case of q1 = q2 implies ρ1 = ρ2 by the KKT
condition (ii), which turns out to be the case of discriminating
among the same quantum states. However, we may exclude
this case since we are interested in discriminating entirely
different quantum states. In the case of q1 > q2, we can see that
since r∗

2 > 0, {q1 − qi,(q1�v1 − qi �vi)/(q1 − qi)}Ni=2 satisfies the
geometric KKT conditions (i), (iii), and (iv). If r1 = 0, the
geometric conditions (i) and (iv) do not put any restriction
on �w1. In addition, �w1 satisfies ‖ �w1 ‖2= 1 and the geometric
KKT condition (ii). From these facts we can see that {ri, �wi}Ni=1
should satisfy every geometric KKT condition.

Until now we showed that if every optimal POVM element
is nonzero, we can find {ri, �wi}Ni=1 by satisfying the geometric
KKT conditions. Now we will prove the reverse. That is,
we will prove that if {ri, �wi}Ni=1 satisfies the geometric KKT
conditions, every optimal POVM element can be nonzero.
For this let us assume that {ri, �wi}Ni=1 satisfies the geometric
KKT conditions. When �R ≡ qi �vi + ri �wi(i = 1, . . . ,N), the
following relation holds:

N∑
i=1

qipi(1 − �vi · �wi)

=
N∑

i=1

(q1 + r1 − ri)pi −
N∑

i=1

qipi �vi · �wi

= (q1 + r1) −
N∑

i=1

ripi‖ �wi‖2
2 −

N∑
i=1

qipi �vi · �wi

= (q1 + r1) −
N∑

i=1

pi �wi · �R = q1 + r1. (13)
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Then by {Mi}Ni=1 given in Eq. (10), we can see that Pcorr of the
primal problem is equal to q1 + r1:

Pcorr =
N∑

i=1

qi trρiMi =
N∑

i=1

qipi(1 − �vi · �wi) = q1 + r1. (14)

Therefore {Mi,ri, �wi}Ni=1 become the optimal parameters of
our primal and dual problems. Since every pi is positive we
can see that all the POVM elements are nonzero. From this,
the following lemma can be obtained.

Lemma 1—Geometric KKT conditions. The fact that every
optimal POVM element can be nonzero is equivalent to the
fact that {ri, �wi}Ni=1 satisfying the geometric KKT conditions
exists.

Let us denote P {�xi}Ni=1 as the polytope formed
by {�xi}Ni=1. When the number of extreme points of
P {qi,ρi}Ni=1(≡P {qi �vi}Ni=1) is the same as the number of
quantum states to be discriminated, the geometric meaning of
Eq. (12) can be easily expressed. Then the geometric condition
(i) indicates that P {qi,ρi}Ni=1 is congruent to P {ri �wi}Ni=1. The
geometric condition (ii) implies that the origin of the Bloch
sphere lies in the relative interior of P {ri �wi}Ni=1. The geometric
condition (iii) ensures that the distances from the origin to
the extreme points of P {ri �wi}Ni=1 become {ri}Ni=1. The final
condition (iv) shows that the difference between the distances
should be the same as that between the a priori probabilities.
Since {ri, �wi}Ni=1 satisfying the geometric KKT conditions
(i)–(iii) certainly exists, the crucial element for obtaining the
guessing probability is condition (iv).

Let us explain how to discover the guessing probability
when {ri, �wi}Ni=1 cannot satisfy the geometric KKT conditions.
In this case at least one of the optimal POVM elements is
zero. Therefore, if we denote P (N)

guess({qi,ρi}Ni=1) the guessing
probability function for N -qubit states, we may write it
as

Pguess = max
S

(∑
j∈S qj

)
P (|S|)

guess

({
qi/

∑
j∈S qj ,ρi

}
i∈S

)
, (15)

where S is the proper subset of {1, · · · ,N}. For now, using
S and lemma 1, we will obtain the guessing probability
and the optimal measurement when P {qi,ρi}Ni=1 becomes a
special case. First, let us consider when P {qi,ρi}Ni=1 becomes
a point. For this purpose, suppose that {ri, �wi}Ni=1 satisfies the
geometric KKT conditions. Then the conditions (i) and (iii)
imply the equality of �wi(i = 1, . . . ,N). Applying this result
to condition (ii), we find that

∑N
i=1 pi = 0 and

∑N
i=1 pi = 1,

which contradicts each other. Therefore we can see that when
P {qi,ρi}Ni=1 forms a point, every optimal POVM element
cannot be nonzero. Since for any proper subset S of {1, . . . ,N},
P {qi/

∑
j∈S qj ,ρi}i∈S becomes a point, the nonzero element

of the optimal POVM is only one. Therefore, we find
corollary 1.

Corollary 1. If the number of the extreme points to
P {qi,ρi}Ni=1 is one, every optimal POVM element except M1

is zero, and the guessing probability is q1.
The second case is when P {qi,ρi}Ni=1 forms a line segment.

Let us denote the two indices corresponding to the extreme
points as α and β(> α). Then the geometric KKT condition
(i) indicates that P {ri �wi}i=α,β should be a line segment with
the same length to P {qi,ρi}i=α,β . Condition (ii) requires that

P {ri �wi}i=α,β contain the origin O. This implies that the length
of the line segment becomes

rα‖ �wα‖2 + rβ‖ �wβ‖2 = ‖qα �vα − qβ �vβ‖2 = rα + rβ. (16)

The equality in the second line comes from the condition (iii).
Also, by applying condition (iv) to Eq. (16) we have

rα = 1

2
[‖qα �vα − qβ �vβ‖2 − (qα − qβ)],

rβ = 1

2
[‖qα �vα − qβ �vβ‖2 + (qα − qβ)], (17)

�wα = qα �vα − qβ �vβ

‖qα �vα − qβ �vβ‖2
, �wβ = qβ �vβ − qα �vα

‖qα �vα − qβ �vβ‖2
.

Since rα, rβ should be non-negative, we find ‖qα �vα −
qβ �vβ‖2 � qα − qβ . It supplies the necessary and sufficient
condition for {ri, �wi}i=α,β to satisfy the geometric KKT
conditions. If {qi,ρi}i=α,β satisfies the condition, the guessing
probability becomes

Pguess = 1

2
[(qα + rα) + (qβ + rβ)]

= 1

2
(qα + qβ + ‖qα �vα − qβ �vβ‖2)

= qα + qβ

2

[
1 +

∥∥∥∥ qα �vα

qα + qβ

− qβ �vβ

qα + qβ

∥∥∥∥
2

]
. (18)

From this result, our problem can be thought as one of
discriminating {qi/(qα + qβ),ρi}i=α,β , with the probability
(qα + qβ). However, if the condition does not hold, we have
to find the index set S which provides the guessing probability
given by Eq. (15). However, by this assumption, since for any
S P {qi/

∑
j∈S qj ,ρi}i∈S forms a point or a line segment, the

problem becomes how to discriminate two quantum states.
From the Helstrom bound, we can obtain corollary 2.

Corollary 2. If the number of the extreme points to
P {qi,ρi}Ni=1 is two, the guessing probability becomes

Pguess = max
i �=j

1
2 (qi + qj + ‖qiρi − qjρj‖1). (19)

When a and b(>a) are the indices giving the optimal value,
if ‖qa �va − qb�vb‖2 < qa − qb, every optimal POVM element
except M1 is zero. However, if ‖qa �va − qb�vb‖2 � qa − qb, the
optimal POVM elements are given as

Ma = 1

2

[
I2 +

(
qa �va − qb�vb

‖qa �va − qb�vb‖2

)
· �σ

]
,

Mb = 1

2

[
I2 +

(
qb�vb − qa �va

‖qa �va − qb�vb‖2

)
· �σ

]
, (20)

Mi = 0 ∀i �= a,b.

Now let us consider the case when N = 3, and the intrinsic
polytope forms a triangle. We define two sides of the triangle
as

l1 ≡ ‖ q2�v2 − q1�v1 ‖2 , l2 ≡‖ q3�v3 − q1�v1 ‖2 , (21)

and the difference between the a priori probabilities as

e1 ≡ q1 − q2, e2 ≡ q1 − q3. (22)
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Now suppose that {ri, �wi}Ni=1 satisfies the geometric KKT
conditions. In this case the number of extreme points is equal to
that of the quantum states to be discriminated. Then P {ri �wi}3

i=1
is congruent to P {qi,ρi}3

i=1, and the origin O exists inside the
relative interior. When Ti represents the vertex ri �wi of the
triangle P {ri �wi}3

i=1 and ri(i = 1,2,3) is the distance from O

to the vertex Ti , we have the following relations:

r2 − r1 = e1, r3 − r1 = e2. (23)

The necessary and sufficient condition that {ri, �wi}3
i=1, satis-

fying that the geometric KKT conditions can exist, can be

obtained by the property of hyperbola, as follows:

(i) l1 > e1, l2 > e2,

(ii)
l1 cos θ1 + e1

l1 + e1
<

l1 − e1

l2 − e2
,

l2 cos θ1 + e2

l2 + e2
<

l2 − e2

l1 − e1
,

(iii)
l2
1 − e2

1

2(l1 cos χ + e1)
<

l1 sin θ2

sin(χ + θ2)
, (24)

where θi denotes the inside angle of vertex Ti , and the angle χ

which is � OT1T2, is given as

χ = χ2 − χ1, χ1 = cos−1

⎛
⎝ l1

(
l2
2 − e2

2

) − l2
(
l2
1 − e2

1

)
cos θ1√

l2
1

(
l2
2 − e2

2

)2 + l2
2

(
l2
1 − e2

1

)2 − 2l1l2
(
l2
1 − e2

1

)(
l2
2 − e2

2

)
cos θ1

⎞
⎠ ,

χ2 = cos−1

⎛
⎝ e2

(
l2
1 − e2

1

) − e1
(
l2
2 − e2

2

)
√

l2
1

(
l2
2 − e2

2

)2 + l2
2

(
l2
1 − e2

1

)2 − 2l1l2
(
l2
1 − e2

1

)(
l2
2 − e2

2

)
cos θ1

⎞
⎠ . (25)

Therefore, if {qi,ρi}3
i=1 satisfies the conditions, r∗

1 becomes
l2
1−e2

1
2(l1 cos χ+e1) and the guessing probability Pguess is given by

Pguess = q1 + l2
1 − e2

1

2(l1 cos χ + e1)
. (26)

The optimal POVM can be found by substituting {pi, �wi}3
i=1

into Eq. (10). Through a lengthy calculation, we find
{pi, �wi}3

i=1, such as

p1 = l1l2 sin θ1 − r1l1 sin χ − r1l2 sin(θ1 − χ )

l1l2 sin θ1 + e2l1 sin χ + e1l2 sin(θ1 − χ )
,

p2 = r2l2 sin(θ1 − χ )

l1l2 sin θ1 + e2l1 sin χ + e1l2 sin(θ1 − χ )
, (27)

p3 = r3l1 sin χ

l1l2 sin θ1 + e2l1 sin χ + e1l2 sin(θ1 − χ )
,

and

�w1 = sin(θ1 − χ )

l1 sin θ1
(q2�v2 − q1�v1) + sin χ

l2 sin θ1
(q3�v3 − q1�v1),

�w2 = r1 �w1 − (q2�v2 − q1�v1)

r1 + e1
, �w3 = r1 �w1 − (q3�v3 − q1�v1)

r1 + e2
.

(28)

However, the case where this condition is not satisfied turns
out to be a problem of discriminating two quantum states.
Therefore the guessing probability to the case can be given by
corollary 2. Now we can have lemma 2.

Lemma 2—Three-quantum-state discrimination. When ar-
bitrary three quantum states {qi,ρi}3

i=1 are given with given a
priori probabilities, the guessing probability can be classified
into the following three cases: (i) When the number of the
extreme points to P {qi,ρi}3

i=1 is one, the guessing probability
becomes q1 by the corollary 1. (ii) When the number of the

extreme points is two or three and the condition of Eq. (24)
cannot be satisfied, the guessing probability can be found by
the corollary 2. (iii) When the number of the extreme points
is three and the condition of Eq. (24) is satisfied, the guessing
probability can be given by Eq. (26).

Here as an example let us consider the quantum discrim-
ination of three symmetric quantum states. The symmetric
property implies that for ρ1, ρ2, and ρ3, trρ1ρ2 = trρ2ρ3 =
trρ3ρ1. Their purity is assumed to be the same as trρ2

1 =
trρ2

2 = trρ2
3 � 1. This symmetric condition can be expressed

by

�vi · �vj =
{

r (i = j ),

γ (i �= j ),
(29)

where �vi is the Bloch vector of ρi . If their a priori probabilities
are the same as 1

3 (q1 = q2 = q3 = 1
3 ), the guessing probability

Pguess becomes 1
3 + r∗

1 . Since P {qi �vi}3
i=1 = P {�vi/3}3

i=1 is
the equilateral triangle whose side is given by

√
2(t − s)/3

(t ≡ 1 − γ and s ≡ 1 − r), {ri, �wi}3
i=1, satisfying that the

geometric KKT conditions naturally exist. The circumradius

of the triangle P {ri �wi}3
i=1 becomes 1

3

√
2(t−s)

3 . Therefore we
find

r1 = r2 = r3 = 1

3

√
2(t − s)

3
. (30)

The guessing probability Pguess turns out to be

Pguess = 1

3

(
1 +

√
2(t − s)

3

)
, (31)

which agrees with the result in [19].
In conclusion, by considering the minimum-error quantum-

state discrimination as the complementarity problem, we ob-
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tained four geometric optimality conditions in the case of qubit
geometry. We clearly showed that there is a relation between
these conditions and the optimal measurement. By these
conditions and the intrinsic polytope for the discrimination
problem, we can provide a method to discriminate N -qubit
mixed quantum states. We are also able to obtain the guessing
probability and the optimal measurements. We applied these
results to discriminating three-qubit mixed quantum states to
show that discrimination for the three-qubit mixed quantum
states can be classified by the geometric KKT conditions
and the number of extreme points for the intrinsic polytope.
The analytic expression of the guessing probability and the
optimal measurement for three-qubit mixed quantum states
was obtained. Furthermore, we have shown that for the
special case of three symmetric quantum states, our result is
consistent.
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APPENDIX

Suppose that two points T and T
′
, whose distance is l,

are given in a two-dimensional plane. The points where the
difference in distances between two points T and T

′
becomes

e form a hyperbola. When the distance from these points to
T (T

′
) becomes r(r

′
), the hyperbola can be divided into two

curves r
′ − r = e and r − r

′ = e. Let us denote the curve
r

′ − r = e as Ce{T ,T
′ }. The distance r can be obtained from

the hyperbolic equation as follows:

r = l2 − e2

2(l cos θ + e)
, (A1)

where θ is the angle between the segment to r and the line
segment T T

′ . Now let us consider a triangle formed by three
different points T1, T2, and T3 in a two-dimensional plane. We
denote the interior of the triangle, Ce1{T1,T2}, and Ce2{T1,T3}
as �, C1, and C2. Also, let us represent the intersection of
�, C1, and C2 as 	(	 = � ∩ C1 ∩ C2). Now we will find
the necessary and sufficient condition where 	 is nonempty.
Since the condition for � ∩ Ci to be nonempty is li > ei , we
obtain the condition (i) of Eq. (24) in the main text. Here l1
and l2 are the length of T1T2 and T1T3, respectively.

If the inner angle of the vertex Ti is θi , we can classify
the triangle into four types, according to θ1: (i) − e1

l1
,− e2

l2
<

cos θ1; (ii) − e1
l1

< cos θ1 � − e2
l2

; (iii) − e2
l2

< cos θ1 � − e1
l1

;
(iv) cos θ1 � − e1

l1
, − e2

l2
. And the condition where C1 ∩ C2

becomes nonempty in each case is as follows: (i) l2 cos θ1+e2
l2+e2

<
l2−e2
l1−e1

< l1+e1
l1 cos θ1+e1

, (ii) l2−e2
l1−e1

< l1+e1
l1 cos θ1+e1

, (iii) l2 cos θ1+e2
l2+e2

<
l2−e2
l1−e1

, and (iv) no condition needed. These conditions can be
put into the two restrictive ones:

l1 cos θ1 + e1

l1 + e1
<

l1 − e1

l2 − e2
,

l2 cos θ1 + e2

l2 + e2
<

l2 − e2

l1 − e1
, (A2)

which is the condition (ii) of Eq. (24) in the main text. Indeed,
if C1 and C2 meet together, they intersect only at a single point
because the equation derived by Eq. (A1),

l2
1 − e2

1

2(l1 cos χ + e1)
= l2

2 − e2
2

2[l2 cos(θ1 − χ ) + e2]
, (A3)

can be satisfied by unique χ ∈ (0,θ1). When we denote the
intersection point as O, χ is � OT1T2, which is given as follows:

χ = χ2 − χ1, χ1 = cos−1

⎛
⎝ l1

(
l2
2 − e2

2

) − l2
(
l2
1 − e2

1

)
cos θ1√

l2
1

(
l2
2 − e2

2

)2 + l2
2

(
l2
1 − e2

1

)2 − 2l1l2
(
l2
1 − e2

1

)(
l2
2 − e2

2

)
cos θ1

⎞
⎠ ,

(A4)

χ2 = cos−1

⎛
⎝ e2

(
l2
1 − e2

1

) − e1
(
l2
2 − e2

2

)
√

l2
1

(
l2
2 − e2

2

)2 + l2
2

(
l2
1 − e2

1

)2 − 2l1l2
(
l2
1 − e2

1

)(
l2
2 − e2

2

)
cos θ1

⎞
⎠ .

FIG. 1. For the point O to be located inside the triangle, T1O

must be shorter than T1G.

Here let us find the condition for O ∈ �. This can be found
from the fact that when G is the intersection point between the
half line from the vertex T1 to the point O and the line segment
T2T3, the length of T1G becomes l1 sin θ2

sin(χ+θ2) . From Fig. 1 we can
see that the point O can be located inside the triangle if the
length of T1O becomes less than that of T1G:

l2
1 − e2

1

2(l1 cos χ + e1)
<

l1 sin θ2

sin(χ + θ2)
. (A5)

Therefore we showed that three conditions given by Eq. (24)
in the main text are the necessary and sufficient conditions for
nonempty 	.
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