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Experimental adaptive Bayesian tomography

K. S. Kravtsov,1 S. S. Straupe,2,* I. V. Radchenko,1 N. M. T. Houlsby,3 F. Huszár,3 and S. P. Kulik2

1A. M. Prokhorov General Physics Institute RAS, Moscow, Russia
2Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia

3Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
(Received 26 March 2013; published 28 June 2013)

We report an experimental realization of an adaptive quantum state tomography protocol. Our method takes
advantage of a Bayesian approach to statistical inference and is naturally tailored for adaptive strategies. For
pure states, we observe close to N−1 scaling of infidelity with overall number of registered events, while the best
nonadaptive protocols allow for N−1/2 scaling only. Experiments are performed for polarization qubits, but the
approach is readily adapted to any dimension.
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Introduction. The main goal of quantum state tomography
is to provide an estimate ρ̂ for an unknown quantum state ρ

based on the data collected in a series of measurements [1].
The estimator is supposed to be close to the real state in some
reasonable sense, therefore various notions of statistical dis-
tance between quantum states are used [2,3]. One of the most
widely used measures of statistical distance is infidelity [4],

defined as 1 − F (ρ,ρ̂) = 1 − Tr(
√√

ρρ̂
√

ρ)
2
. The ultimate

goal of any tomographic protocol is to minimize this quantity
for a fixed overall number N of measurements made. Usually
a protocol makes use of some fixed number of measurement
settings determined before the actual experiment. For such a
protocol, the infidelity scales as 1 − F ∼ N−1/2 for the set
of almost-pure states, which is the most interesting case for
applications. Although one can significantly alter the prefactor
by a clever choice of measurements [5–7], the scaling law
for large N is unaffected. A natural question is whether it is
possible to beat this limit. The answer turns out to be positive
if one allows for adaptivity—the measurement performed at
some step of the protocol should be dependent upon the data
obtained in the previous ones [8,9].

Here we report an experimental approach to adaptive
quantum state tomography based on a recently proposed
adaptive Bayesian estimation algorithm [10]. We achieve
almost 1/N scaling of infidelity for pure states of polarization
qubits and demonstrate a clear advantage over ordinary
nonadaptive protocols. Our approach is completely different
from that of another recent experimental realization [11],
where adaptive measurements were used to estimate a single
unknown parameter of a quantum state.

Bayesian tomography. Let us start with describing a general
framework for quantum state estimation and, in particular,
the Bayesian approach. A tomographic protocol is a set of
positive operator valued measures (POVMs), M = {Mα},
with index α ∈ A numbering the different configurations of
the experimental apparatus. In a given configuration, the
probabilistic outcome of each measurement γ being observed
is determined according to the Born’s rule,

p(γ |ρ,α) = Tr[Mαγ ρ], (1)
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where Mαγ are POVM elements, obeying
∑�−1

γ=0 Mαγ = I , and
ρ is the density matrix of the state to be determined. The set
D of all outcomes observed in an experiment forms the data
set used to estimate density matrix elements. The Bayesian
approach to statistical inference dictates the following rules:

(i) A prior distribution over the space of density matrices
p(ρ) is specified.

(ii) The collected data are used to obtain the poste-
rior distribution p(ρ|D) ∝ L(ρ;D)p(ρ), where L(ρ;D) =∏N

n=1 p(γn|ρ,αn) is the likelihood function, and it contains
our statistical model that encodes probabilistic mapping from
the state to the observed data.

(iii) Quantities of interest are estimated using expected
values under the posterior distribution: for example, we
may obtain the Bayesian mean estimate of the state as
ρ̂ = Ep(ρ|D) [ρ]. Variance, infidelity, or any other statistical
quantity of interest may be obtained similarly.

The Bayesian approach has many advantages over the
maximum-likelihood estimation (MLE) [12], which is more
standard in the quantum information community. It offers,
in a natural way, a distribution over the space of density
matrices, which provides the most complete description of
our knowledge about the quantum state, inferred from data
D [13].

Adaptive approach. Bayesian tomography is a natural
framework for construction of adaptive estimation protocols.
Indeed, the posterior distribution may be updated as soon
as one observes some data—in the extreme case, after each
measurement—and the new knowledge about the state may
be used to select the next measurement setting α in the most
optimal way. Choosing the criterion for “optimality” is a task
of optimal experiment design and may be solved in various
ways. In the Bayesian framework, a natural strategy is to
choose a measurement that reduces the Shannon entropy of
the posterior maximally, H [p(ρ|D)], which means that our
knowledge about the state, obtained after such measurement,
is maximized [10]. This may be formulated as choosing a
measurement configuration α as a solution to the following
optimization procedure:

α = arg max
α∈A

{H[p(ρ|D)] − Ep(γ |α,D)H[p(ρ|γ,α,D)]}, (2)

with p(ρ|γ,α,D) being the new posterior after the outcome γ is
observed. Note that because we do not know which outcome γ
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will be observed, we use the expected information gain (under
the posterior) as our objective.

Approximate inference. One of the principal reasons that
Bayesian methods enjoy less popularity in quantum tomog-
raphy than MLE is the fact that posterior normalization
requires computing an (in general, high-dimensional) integral
of likelihood function, which is computationally hard. Usually,
when faced with intractable Bayesian inference, the posterior
is approximated via sampling [13] or by approximating the
posterior with a simpler distribution, such as a Gaussian [14].

This computational difficulty is further compounded when
one is performing adaptive quantum tomography, in which
one must keep track of the current posterior after making n

measurements in order to calculate the optimal (n + 1)’st mea-
surement. To perform inference based on all of the observed
data is at best an O(n) operation, which becomes increasingly
problematic as the experiment progresses. Fortunately, fast
algorithms for solving online Bayesian inference problems
exist; they update the posterior after inclusion of each new data
point without revisiting all previous data. We briefly review the
core idea behind this approach, and refer the reader to [15] for
details.

The algorithm is a variant of the sequential importance
sampling (SIS) algorithm with resampling. The idea is to
construct a particle filter, approximating the posterior with a
set of weighted samples, i.e., p(ρ|Dn) ≈ ∑S

s=1 w(n)
s δ(ρ − ρs).

After each observation, one updates the weights w(n)
s ; this

can be done incrementally, using the current set of particles
and weights, and the likelihood corresponding to the new
observation. Integration of the likelihood has O(1) cost, which
means that it can be applied online at every step of the adaptive
protocol, irrespective of the current amount of data collected.
If too many particles get almost zero weight, then the particles
are resampled and the weights are equalized.

We now return to computation of the objective function for
adaptive tomography (2); although this objective is theoreti-
cally attractive, it is computationally expensive. It is highly
beneficial to work with the following equivalent formulation:

α = arg max
α∈A

{H[p(γ |α,D)] − Ep(ρ|D)H[p(γ |ρ,α)]}. (3)

Here, p(γ |α,D) = ∑
s w(n)

s p(γ |ρ,α) is the average predictive
probability of outcome γ . In (3), only predictive entropies
are required rather than state-space entropies, which is much
easier because output space typically has a much lower di-
mensionality. Furthermore, only the current posterior p(ρ|D)
is needed.

Simulations. We performed numerical simulations to em-
pirically evaluate the performance of Bayesian adaptive
tomography. For our performance metric, we use the mean
infidelity as measured against the true state, ρ̄: 1 − F̂ (ρ,ρ̄) =
Ep(ρ|Dn)[1 − F (ρ,ρ̄)]. Note that Bayesian mean 1 − F̂ (ρ,ρ̄)
is a “fairer” score than the fidelity of a point estimate, e.g.,
the posterior mean (i.e., [1 − F (Ep(ρ|Dn)[ρ],ρ̄)]), because the
posterior mean can happen to be correct even if we have no
knowledge about the system, e.g., for a completely mixed state.
The Bayesian estimator rewards posterior distributions that are
both centered in the correct location and have low variance.

To achieve statistically significant results, we perform
multiple runs within each simulation, each with a different
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FIG. 1. (Color online) Simulated tomography using three mea-
surement selection methods: randomly sampled (red continuous line),
MUBs (blue ×), and fully adaptive Bayesian tomography (black ◦).
For these methods, the true state is random and pure, and the results
presented here are the average of 20 independent runs. Overlaid
dashed lines indicate the power-law fit. The functions 1 − F = N−1/2

(magenta, dash-dotted line) and 1 − F = N−1 (cyan, dashed line)
are shown for comparison. To account for the state dependence of
MUB tomography, we also present its performance for the “worst”
and “best” (see text) true states (dark green + and light green •,
respectively).

random pure “true state.” We compare this to random uniform
measurements and mutually unbiased bases (MUBs), which
are the optimal fixed measurements (in terms of information
gain) [16]. The random and adaptive schemes are independent
of the true state (the algorithms are agnostic to rotations of
the Stokes coordinates), but fixed MUBs are not. Drawing
intuition from the fact that the adaptive scheme predominantly
selects measurements that align with the true state, we find
that the “best case” for MUB tomography is when the state
is aligned with one of the MUB measurements, and the worst
case is when the state is equally biased to all measurements,
i.e., {σx = σy = σz = 1/

√
3}.

The results are presented in Fig. 1. We fit a power law,
1 − F̂ ∝ Na , to the data. Random tomography yields a =
−0.66 ± 0.03, which is in reasonable correspondence with
the expected asymptotic scaling N−1/2. However, adaptive
tomography performs close to the N−1 level with average
a = −0.90 ± 0.03. In its most favorable scenario, MUBs also
perform close to the N−1 rate (with a small multiplicative
constant improvement over the adaptive scheme). In practice,
the optimal MUBs are unknown a priori. In the case of
arbitrarily chosen MUBs, we observe that on average the rate
is near N−1/2: a = −0.64 ± 0.05.

Experimental imperfections. In practice, quantum tomogra-
phy is subject to experimental noise. This noise is not modeled
in the likelihood function given by Born’s rule (1). In our
experiment, we have identified two major additional sources
of noise: detector dark counts with detector-specific rates and
attenuation in both channels due to detector inefficiency and
losses or reflections at the optical elements.
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FIG. 2. (Color online) Experimental setup. An attenuated laser
is used as a source. The polarization state is prepared by a custom
wave plate and analyzed by a sequence of quarter- and half-wave
plates, followed by a polarizing beam splitter and two single-photon
counters. Wave plates are rotated by electronically controlled step-
motor drivers to allow for adaptivity.

A popular approach to modeling dark counts is to model
the observed state as a linear mixture of the true state and the
maximally mixed state [17]. Although with this assumption
one can describe certain simple noise sources, such as equal
dark counts arriving with equal rates at each detector, we
address the problem more directly. We assume that the
production of photons by the laser source and the generation of
dark counts by the detectors can be modeled using independent
homogeneous Poisson processes with rate parameters λs for
the source and λ

γ

d for each detector. These rates are estimated
a priori in a preliminary experiment. From these assumptions,
one can derive the new likelihood function,

P
(
γ |ρ,α,λs,λ

1
d , . . . ,λ

γ

d

) = Tr[Mαγ ρ]λs + λ
γ

d

λs + ∑
γ λ

γ

d

. (4)

To deal with channel inefficiency, we assume a fixed
probability of a photon being “lost” from each channel,
denoted by 1 − ηγ . These probabilities are also estimated a
priori. The likelihood now becomes

P (γ |ρ,α,η1, . . . ,ηγ ) = Tr[Mαγ ρ]ηγ∑
γ Tr[Mαγ ρ]ηγ

. (5)

Note that in both cases, both the numerator and denominator
contain only linear terms in the additional parameters (λ,η).
Therefore, one only requires estimates of the ratio of the dark
count rates to the source rate λ

γ

d /λs , and, for single-qubit
tomography, the ratio of the efficiencies of the two channels
η1/η2.

Experiment. Figure 2 depicts our experimental setup. We
use a CW 850 nm vertical-cavity surface-emitting laser
(VCSEL) coupled to a single-mode fiber as a laser source.
The radiation is attenuated to the single-photon level by a set
of neutral density filters (F) and additionally spatially filtered
with small iris apertures. The input polarization state is defined
by a Glan-Taylor prism (GP) with high extinction ratio (more
than 6000:1); the prism transmits horizontally polarized light,
which may be transformed to some arbitrary state with a proper
choice of a quartz wave plate (WP).

The measurement scheme consists of an effective zero-
order quarter-wave plate (QWP) and a half-wave plate (HWP).
The plates are rotated by step-motor-driven stages, with a

No.

FIG. 3. (Color online) Experimental results: mean infidelity
1 − F̂ (ρ,ρ̂) with current Bayesian mean estimate ρ̂ for random
measurements (red, upper line), adaptive measurements (black, lower
line), and measurements in MUBs [blue (dark gray) points]. Data
points are averages over 10 experimental runs; shaded areas and error
bars show the standard deviation of the mean. Dashed straight lines
are power-law fits.

minimal angular step of 0.1◦. The zero position is controlled
by a Hall sensor providing uncertainty of 0.2◦. We clean up
the polarization states in the output channels of a polarization
beam-splitting (PBS) cube with two additional Glan-Taylor
prisms to ensure a high extinction ratio. Effectively, this
is equivalent to introducing some losses in the ideal PBS
cube without altering the output polarization states. In each
channel, photons are coupled to multimode fibers and detected
by single-photon counting modules (SPCMs), D1 and D2
(Perkin-Elmer). Electronic pulses from SPCMs are sent to
in-house built counters, which may operate in two regimes:
count for a fixed period of time or count until the specified
number of counts is reached.

We show the advantage of adaptive tomography using
a direct comparison in the Bayesian framework. In the
adaptive estimation scheme, we used two strategies, namely,
adaptation after every single detection event and adapting
after blocks of measurements increasing in size with the
amount of data collected as �N/100	, and found no statistically
significant difference. Figure 3 shows the dependence of mean
infidelity, 1 − F̂ (ρ,ρ̂) = Ep(ρ|Dn) [1 − F (ρ,ρ̂)], with current
estimate ρ̂ (for which we used the Bayesian posterior mean)
on the number of measurements performed. Note that we
intentionally did not average over many realizations at each
step of the algorithm; the data points in Fig. 3 are averaged
over several full runs of the experiment. The convergence rate
behaves regularly from run to run. The power-law fits are
a = −0.60 ± 0.05 and a = −0.62 ± 0.02 for the random and
MUB protocols, respectively, and a = −0.98 ± 0.01 for the
adaptive protocol.

In a real world application of tomography, the “true” state
is unknown, and the Bayesian estimate given above is the only
figure of merit at hand. However, in our experiments, we can
estimate the prepared state by averaging over many runs of
adaptive protocol and comparing the convergence with our
simulations. Scaling of the posterior mean infidelity to the
(estimated) true state with N is depicted in Fig. 4. Power-law
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No.

FIG. 4. (Color online) Experimental results: mean infidelity 1 −
F̂ (ρ,ρ̄) with “true” state ρ̄ for random measurements (red, middle
line), adaptive measurements (black, lower line), and measurements
in MUBs [blue, upper line]. Data points are averages over 10
experimental runs; shaded areas show the standard deviation of the
mean. Dashed straight lines indicate the power-law fits.

fits give a = −0.64 ± 0.02 and a = −0.60 ± 0.05 for the
random and MUB protocols, respectively, while the adaptive
strategy yields a = −0.92 ± 0.03.

Within the errors bands, the experimentally obtained
scaling laws agree with simulations. We observed much more
regular behavior with the adaptive protocol, i.e., trajectories of
individual runs are close to each other, while for random and
MUB measurements, the behavior resembles more of a random
walk with a much larger variance. Our model does not take into
account systematic errors caused, for example, by inaccuracies
in wave-plate rotation. However, for the reached values of
infidelities on the order of 10−4–10−3, we did not observe any
deviations from the expected behavior and we were not able to
identify the influence of systematic errors. Further investiga-
tion with much larger statistics is required to address this issue.

Finally, let us note that using an attenuated laser source is
equivalent to a true single-photon source for the purposes of
this particular single-qubit experiment.

Conclusion. Our experiments clearly demonstrate the ad-
vantages of adaptive strategies in quantum state tomography.
Besides the aforementioned favorable properties, the Bayesian
approach is convenient from a purely practical point of view.
It does not require any additional precomputation, and since
posterior updates may be easily carried out after a single de-
tection event, we expect that this approach will be particularly
useful in the case of extremely weak signals. The N−1 scaling
of infidelity in the adaptive case is the theoretical limit for
any tomographic protocol, and further improvement may only
affect prefactors in this power law. Simulation results show that
our strategy of choosing adaptively between general measure-
ments outperforms any nonadaptive protocol, especially for the
most interesting case of nearly-pure states. Our experimental
results taken for MUB and random measurements show
good agreement with simulations, while direct experimental
comparison with more sophisticated nonadaptive strategies
is underway. Although in this paper we report single-qubit
tomography experiments, the developed adaptive protocol is
general and may be used for states in Hilbert space of any
dimensions. Experimental realizations of adaptive tomography
for two-qubit polarization states and higher-dimensional sys-
tems (such as spatial modes of a biphoton field) will be reported
elsewhere.

Note added. Recently, we became aware of a highly
relevant work [18] taking a different approach to adaptive
state estimation and achieving similar performance.
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[1] M. G. A. Paris and J. Řeháček, Quantum State Estimation,
Lecture Notes in Physics, Vol. 649 (Springer-Verlag, Berlin,
Heidelberg, 2004).

[2] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439
(1994).
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