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Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in
architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate
in the case where the states and measurement operators used to interrogate the system are generated by gates that
have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography
cannot be fully corrected through oversampling or by performing a larger set of experiments. We present an
alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The
essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation
and measurement. In order to make the resulting optimization tractable, we linearize about the target, a reasonable
approximation when benchmarking a quantum computer as opposed to probing a black-box function.
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I. INTRODUCTION

The design and control of scalable quantum architectures at
the level of precision necessary for fault-tolerant computation
remains a considerable challenge. There has been remarkable
progress in numerous physical systems (e.g., superconducting
circuits [1–3], atomic systems [4,5], etc.) to improve metrics
such as the gate fidelity [6], and incrementally these values
are approaching the fault-tolerant threshold. Diagnosing errors
and improving designs of gates and architectures, however, of-
ten requires much more information than a single scalar value.
Instead we need a full characterization of a quantum process,
and that necessitates quantum process tomography (QPT) [7].

The essential idea of QPT is as follows: prepare an
initial quantum state, apply the operation we would like to
reconstruct, measure the expectation value of some observable,
and then repeat for different initial states and observables until
it is possible to retrodict the process through some form of
matrix inversion. This scales exponentially poorly with the
number of qubits n, since the parameters necessary to specify
a general map are O(24n), but generally we only need to
perform QPT on small subsystems (one or two qubits) of a
larger architecture and can then verify that the subsystems
are isolated through other means [8]. Additionally, because
there will be errors on the measurement outcomes, if for no
reason other than finite measurement statistics, the resulting
process may not be physical (i.e., a completely positive
trace preserving map). When this nonphysicality arises from
Gaussian noise on the measurement outcomes, it can be
corrected using maximum likelihood estimation or through
Bayesian inference techniques [9–16].

In addition to stochastic measurement noise, quantum
process tomography should be consistent with respect to
systematic noise. Most quantum computing architectures
allow only for fixed initial states and measurement operators so
that the state preparation and measurement (SPAM) described
for tomography involves the application of gates that may have
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the same degree of error as the process being interrogated.
These errors in QPT cannot be corrected by gathering more
measurement statistics or enforcing physicality alone and
are known to be problematic in quantum state tomography
[17]. Here we show that with standard maximum likelihood
techniques, these errors, and in particular, coherent errors,
lead to fidelity estimates from QPT that can be very poor.
Even more problematic is that the ratio of the QPT to
SPAM errors actually can grow as the SPAM error decreases,
implying that as the gate fidelities approach the threshold
it can be even harder to estimate them correctly. SPAM
errors can be accounted for in fidelity estimation by using
randomized benchmarking [5,18–21], but this does not provide
full tomographic information about the gates in order to
diagnose and correct errors. We observe a disagreement
between benchmarking [21] and tomography [1] experiments
on similar samples, which suggests that SPAM errors are a
current limitation that needs to be addressed.

In this manuscript we explore techniques to compensate
for SPAM errors while still obtaining a full characterization
of our quantum gates. One simple technique is to oversample,
not by increasing the repetitions of a given experiment, but
by increasing the number of gates used for SPAM. We show
that this technique shows no improvement for general unitary
errors; however, it does yield an improvement for a uniform
error such as a global frame transformation. The primary
subject of this work is an alternative approach to tomography
that places the SPAM gates on the same footing as the gate
under investigation, and then retrodicts an entire library of
unitary gates in a self-consistent manner. The “cost” of this
method in terms of the number of independent measurements
and postprocessing is polynomially equivalent to performing
standard QPT on each gate in the library being reconstructed.
Our approach assumes very little about the gate error model,
in contrast to the self-correcting state tomography proposed
in [22] or the bootstrap method in [23], which otherwise
compensate for the same SPAM issues.

The remainder of the manuscript proceeds as follows. In
Sec. II we give a detailed description of QPT and simulate
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the effects of SPAM errors for a range of error models
and system parameters. In Sec. III we show the effects of
oversampling using unitary 2-designs, and in Sec. IV we
develop self-consistent gate-set tomography. Finally, in Sec. V
we apply our self-consistent tomography to experimental data
obtained from two independent experiments on a system
consisting of a single superconducting qubit.

II. THE TROUBLE WITH TOMOGRAPHY

A general quantum process on a finite d-dimensional
Hilbert space Hd (d = 2n for qubit systems) is a completely
positive trace-preserving (CPTP) map. There are many ways
to represent such a map �, but in this manuscript we will pri-
marily use two of them: the Choi matrix [24], which is given by

ρ� = 1

d

∑
ij

Eij ⊗ �(Eij ), (1)

where Eij = |i〉〈j |, and the Pauli transfer matrix (PTM) [1],
which is

(R�)ij = 1

d
Tr[Pi�(Pj )], (2)

where Pj denotes the set of Pauli matrices, {I,X,Y,Z}⊗n,
though one could extend this to qudit systems by considering
any Hermitian basis for the Pj values. The transformation
between these two representations is the linear mapping,

(R�)ij = Tr
(
ρ�P T

j ⊗ Pk

)
,

(3)

ρ� = 1

d2

∑
ij

(R�)ijP
T
j ⊗ Pk,

and each representation has useful properties. The Choi matrix
is positive semidefinite if and only if � is completely positive.
If we define P0 = Id , then the map is trace preserving if and
only if the first row ofR� is the vector (1,0,0, . . .) and is unital
if the first column has the same structure. Furthermore, in
the PTM picture, composition becomes matrix multiplication,
R�1◦�2 = R�1R�2 , since the PTM is the standard superoper-
ator group representation defined over the Pauli basis.

Let us define an experiment by the triple {ρj ,Mj ,mj }, which
describes preparing the system in state ρj , measuring the op-
erator Mj and obtaining an expectation value mj according to

mj = Tr[Mj�(ρj )]. (4)

We can define a vector |ρ〉〉 whose elements are
〈〈j |ρ〉〉 = Tr(Pjρ)/d as well as 〈〈M|j 〉〉 = Tr(MPj )
(the omission of the dimensional factor in the measurement
is intentional and is a consequence of bounding the values of
the R matrix between ±1). In this form,

mj = 〈〈Mj |R�|ρj 〉〉 = Tr(|Mj 〉〉〈〈ρj |TR�). (5)

This final expression is simply another inner product of
the matrix R� with the super-operator |Mj 〉〉〈〈ρj |. For the
vectorization of the superoperator R� we use the notation r�

as the column major, vectorized R� and sj as the vectorized
|Mj 〉〉〈〈ρj |, so that

mj = sT
j r�. (6)

We can now express the entire set of experiments as

m = ST r�, (7)

where the columns of the rectangular matrix S are the
vectors sj .

The first estimate for our quantum process rbare arises from
linear inversion. While S is typically not square, we can invert
SST or, in the case of an incomplete set of measurements,
find its pseudoinverse (in order to be invertible the columns
of S must be linearly independent, necessitating at least d2

measurements, d2 − 1 if we assume the trace is preserved).
This leads to the bare estimate

rbare = (SST )−1Sm. (8)

The astute reader may have noticed that at no point have we
enforced that our estimate rbare corresponds to a physical map,
and we will find that for many error models it does not.

The dominant source of error, in the tomography literature
at least [9–16], is statistical error due to finite measurement
statistics. Instead of direct access to mj we measure

mj = sT
j r� + √

NjWj , (9)

where Wj is a Gaussian random variable with mean zero and
unit variance and Nj is the noise power. Due to the central
limit theorem we can always approximate the error model
as Gaussian if we repeat the measurement sufficiently many
times, in which case Nj scales as 1/(no. of repetitions of
experiment j ). The transformation m′

j = mj/
√

Nj and s′
j =

sj /
√

Nj simplifies the Gaussian likelihood function to

L(m′|r) = exp

⎛
⎝−1

2

∑
j

∣∣m′
j − s′T

j r
∣∣2

⎞
⎠ . (10)

For this error model the most rigorous estimate of the gate
would be to perform some sort of Bayesian estimation where
rBayes = ∫

rL(m′|r)dr/
∫
L(m′|r)dr, but these integrals are

often extremely hard to calculate, especially since there is no
uniquely good measure over quantum channels dr. A much
simpler technique is to report the maximum of the likelihood
function. If the global maximum lies inside the space of
physical maps, then it is simply the rbare from Eq. (8), and
if most of the support of L(m′|r) is also physical, then the
Bayesian estimate and the maximum likelihood estimate will
be be approximately the same. In the case where the bare
estimate is unphysical, maximizing L(m′|r) over the space
of physical r is a semidefinite program (SDP) [25] and can
be solved for small instances easily with optimizers such as
SeDuMi [26]. This is because the likelihood function is of the
form of a 2-norm distance between vectors m′ and S ′T r, and
the constraints are that the Choi matrix is positive semidefinite.
We use the approach outlined in the supplement of [1], which
is an extension of the state tomography techniques in [27,28]
as well as [12].

While there are issues regarding maximum likelihood
estimations for QPT, there is a deeper problem that affects
any reconstruction method that utilizes the likelihood function.
To calculate the likelihood function we require sj , which in
turn implies we have a complete characterization of ρj and
Mj . In any experimental implementation of tomography there
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will be SPAM errors, and in many situations the magnitude
of the SPAM errors is the same order as the size of the
gate errors we are trying to estimate. If the SPAM errors are
completely uncorrelated with the preparation and measure-
ment gates, the situation is reducible to the previous case by
effectively treating the SPAM errors as additional sampling
noise on the measurement. When the errors are systematic, we
may write |ρj 〉〉 → REj

|ρj 〉, |Mj 〉〉 → RFj
|Mj 〉 and therefore

sj → REj
⊗ RT

Fj
sj .

For the remainder of this manuscript we will consider a
slightly less general form of tomography that is applicable
to many experimental implementations: a fixed initial state
|ρ0〉〉, measurement operator 〈〈M0|, and a library of gates
G = {R1,R2, . . .RN }. In this picture we describe experiments
according to the convention

mij = 〈〈M0|RjR�Ri |ρ0〉〉 = 〈〈Mj |R�|ρi〉〉. (11)

Systematic errors are described G(err) =
{RE1R1,RE2R2, . . .REN

RN }, under the assumption that
the initial gate set was composed of unitary maps.

In Fig. 1 we simulate the effects of both systematic and
stochastic measurement noise in the case where the measured
gate is a perfect identity gate. This test is a good primitive for
both theory and experiment, since the identity is the one gate
that should be perfectly implementable in any experiment by
immediately performing measurement after state preparation
(i.e., doing nothing for no time). In this figure the systematic
SPAM error comes from a depolarizing channel of varying
strengths Edep. We do not impose the CPTP constraint on
the outcome and therefore measure the difference between
the reconstructed gate and the identity by a diamond norm
distance [29], which is calculated through the semidefinite
programming technique in [30]. In this simulation the gates
map the |0〉 state to the four points on a tetrahedron, which
is essentially the most symmetric, minimal set of gates. We
observe that for large noise powers the error in the estimate
decreases exponentially with respect to decreasing noise power
(and thus increasing repetitions) until it hits a floor determined
by the systematic error in the interrogating gates.

In Fig. 1(b) we look at a similar plot for different libraries
of unitary SPAM gates. The first two gate sets are defined in
terms of the set of states to which they map the qubit ground
state |0〉: a tetrahedron or the six cardinal directions on the
Bloch sphere. The second two groups are unitary 2-designs:
a 12-element subgroup of the Clifford group and the entire
24-element Clifford group. Both of these groups correspond
to the solid rotations of a cube, with the 12-element subgroup
consisting of 180◦ rotations about the faces and 120◦ rotations
about the corners of the cube. Generically, increasing the
number of gates and maximizing the entropy of SST speeds
convergence to the estimation floor, but the actual limit remains
unchanged.

By introducing systematic errors into our interrogating gate
set, the maximum of the original estimator Eq. (4) does not
yield a faithful reconstruction of the unidentified gate. In
fact, the resulting estimate can be highly nonphysical in the
absence of any stochastic measurement noise. Semidefinite
programming techniques constrain the estimator to the space
of physical maps using the covariance matrix of the Gaussian
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FIG. 1. (Color online) Reconstructing a perfect identity gate with
imperfect tomography due to depolarizing errors on the SPAM gates
as well as Gaussian random noise on the measurement outcomes. We
plot the diamond norm distance between the bare estimate Eq. (8)
and the identity versus the noise power. In (a) we vary the strength
of the depolarizing error for a fixed gate set, with four elements
corresponding to mapping the ground state to the four corners of a
tetrahedron. The experimental noise power is obtained from [1]. In
(b) we fix the depolarizing strength at Edep = 10−3 and vary the set of
gates used for SPAM over four sets of gates of differing order.

likelihood function as a metric which we use to minimize the
distance between a physical state and the unphysical estimate.
However, if this likelihood estimator is incorrect in the absence
of any stochastic measurement noise, then there is no reason to
trust the covariance matrix metric over any other metric on the
operator space (e.g., the flat metric). Minimizing the distance
over the flat metric can be performed using the methods in [15],
which was proven to be optimal. Since there is no gain in using
the covariance method for our problem, we use a flat metric in
the following simulations due to its ease of calculation.

In Fig. 2 we look at the error in reconstructing the identity,
in the absence of stochastic measurement errors, for different
models of the systematic errors. We find the closest physical
state to the estimate under a flat metric. Since the two gates
under comparison are physical, we can compare them with the
gate fidelity F , or more precisely, the gate error 1 − F . It is
informative to plot the ratio of the reconstruction error to the
average SPAM error on the individual gates versus the average
SPAM errors. There is a stark difference between coherent
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FIG. 2. (Color online) The ratio of the error in reconstructing
the identity to the average gate error plotted versus the average gate
error for a single qubit using a tetrahedral gate set and no stochastic
measurement noise. The estimated operation is the “closest” physical
map to the bare reconstruction in a flat metric. Seven different error
models are compared, four coherent errors (different random unitary
maps applied to each gate, a single random unitary map applied to
each gate, a detuning error applied i.i.d. to each gate sampled from a
Gaussian distribution, and an over-rotation error applied i.i.d. to each
gate sampled from a Gaussian distribution) as well three incoherent
processes (amplitude damping, dephasing, and depolarizing errors).

errors (over-rotation, detuning errors, etc.)and incoherent error
models (T1 or T2 processes, for example). In the incoherent
case, the error in estimating the identity is proportional to the
error on the individual gates, while for the coherent model the
ratio of the errors grows exponentially poorly as the gate error
decreases.

The dependence of the tomography error on the gate errors
has dramatic implications for benchmarking quantum gates
with QPT. A quantum computing architecture viable for fault-
tolerant error correction will require gates with error rates in
the range of 10−3 to 10−5. From Fig. 2 we see that the measured
error rates for a fault-tolerant gate set will be more like 10−2

to 10−3 if the dominant source of errors is coherent. In fact,
measured error rates of 10−5 are not even present in Fig. 2
and correspond to physical gate error rates smaller than 10−8.
In many cases the dominant source of error is T1- or T2-type
errors, in which case this effect will be minimal; however,
as coherence times increase, coherent errors will very likely
become a bottleneck. From Fig. 1 we see that for the typical
noise power in current experiments we expect SPAM errors
to dominate the estimate if the gate error is less than about a
percent, which is well above the error due solely to T1 or T2.

III. QPT WITH OVERSAMPLING

From the previous section one can observe that to elim-
inate fully stochastic measurement errors it is sufficient to
oversample, repeating experiments many times in order to
accurately measure expectation values. Oversampling is also
an intuitive approach to dealing with SPAM errors if instead
of increasing repetitions we alternatively increase the number
of independent experiments (e.g., by increasing the size of the
gate library G). In this section we show that this method does
not compensate for general SPAM errors; however, when the

gate library is a unitary 2-design some uniform SPAM errors
are removed.

Starting from Eq. (5), we can derive the bare estimate in a
slightly different manner that will be more conducive to the
following discussion. First, note that we can multiply both
sides by |Mj 〉〉〈〈ρi | and sum over i and j to obtain

∑
ij

mij |Mj 〉〉〈〈ρi | =
⎛
⎝∑

j

|Mj 〉〉〈〈Mj |
⎞
⎠R�

(∑
i

|ρi〉〉〈〈ρi |
)

.

(12)

In this case the bare estimate is

R(est)
� =

⎛
⎝∑

j ′
|Mj ′ 〉〉〈〈Mj ′ |

⎞
⎠

−1 ∑
ij

mij |Mj 〉〉〈〈ρi |

×
(∑

i ′
|ρi ′ 〉〉〈〈ρi ′ |

)−1

. (13)

If there are SPAM errors the term mij has the form

mij = 〈〈M0|REj
RjR�REi

Ri |ρ0〉〉, (14)

which leads to

R(est)
� =

⎛
⎝∑

j ′
|Mj ′ 〉〉〈〈Mj ′ |

⎞
⎠

−1 ∑
j

RT
j |M0〉〉〈〈M0|REj

Rj

×R�

∑
i

REi
Ri |ρ0〉〉〈〈ρ0|RT

i

(∑
i ′

|ρi ′ 〉〉〈〈ρi ′ |
)−1

.

(15)

There are some very interesting consequences of the final
expression, which we shall examine in a few special cases. If
the SPAM error is independent of the gate, then due to our
error conventions we get a cancellation of the final term in
Eq. (15), yielding

R(est)
� =

⎛
⎝∑

j

|Mj 〉〉〈〈Mj |
⎞
⎠

−1 ⎛
⎝∑

j ′
|Mj ′ 〉〉〈〈M0|RERj ′

⎞
⎠

×R�RE . (16)

We could derive similar expressions if the constant error
occurred before the gate or in some combination of pre- and
postgate error. If in addition the error commutes with all of the
gates in the library (as is the case with depolarizing errors) the
result is, for example,

R(est)
� = RdepR�Rdep, (17)

independent of the set of gates used for tomography. This
form of the reconstructed map lends some intuition to Fig. 2,
where the depolarizing error and other incoherent errors led to
a tomography error that had polynomial scaling with respect
to the error on the gate set. Qualitatively, errors of this form
“commute” with the reconstruction procedure.

If the error does not commute with all of the gates but the
library forms a unitary 2-design [31], we can also simplify
equation Eq. (16). We start by independently analyzing the
two quantities in parenthesis in Eq. (16). These sums are both
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FIG. 3. (Color online) Simulated error in reconstructing the identity versus average SPAM error in terms of the gate fidelity (left) and the
diamond norm distance (right). We look at four gate sets and three types of SPAM error.

twirls over a unitary 2-design W , which has the following
generic form:

W(A) = |I 〉〉〈〈I |〈〈I |A|I 〉〉
+ (I − |I 〉〉〈〈I |)Tr(A) − 〈〈I |A|I 〉〉

d2 − 1
, (18)

[8]. Therefore the first factor is given by

W(|M0〉〉〈〈M0|) = |I 〉〉〈〈I |〈〈I |M0〉〉2

+ (I − |I 〉〉〈〈I |) 〈〈M0|M0〉〉 − 〈〈I |M0〉〉2

d2 − 1
(19)

and the second by

W(|M0〉〉〈〈M0|RE )

= |I 〉〉〈〈I |〈〈I |M0〉〉〈〈M0|RE |I 〉〉 + (I − |I 〉〉〈〈I |)
× 〈〈M0|RE |M0〉〉 − 〈〈I |M0〉〉〈〈M0|RE |I 〉〉

d2 − 1
. (20)

Both of these are proportional to depolarizing channels,
which generically have the form |I 〉〉〈〈I | + ε(I − |I 〉〉〈〈I |).
The productW(|M0〉〉〈〈M0|)−1W(|M0〉〉〈〈M0RE |) is therefore
proportional to a depolarizing channel with a strength

ε =
〈〈M0|RE |M0〉〉

〈〈M0|RE |I 〉〉〈〈I |M0〉〉 − 1
〈〈M0|M0〉〉
〈〈I |M0〉〉2 − 1

(21)

and proportionality constant

α = 〈〈M0|RE |I 〉〉
〈〈I |M0〉〉 . (22)

The bare estimate for a constant error on a gate set composed
of a unitary 2-design is thus given by

R(est)
� = αR(dep)

ε R�RE . (23)

The previous theoretical analysis suggests that there may
be a fundamental difference when the gate library is a unitary
2-design, and this is confirmed in Fig. 3. When we measure the
errors in terms of the gate fidelity, we see a clear difference with

respect to the unitary 2-designs. In that case a global unitary
error has the same effect on the fidelity as a depolarizing
error, as expected from the previous argument. QPT errors
resulting from independent unitaries on each of the gates
remains qualitatively the same for all four sets. What we
describe as a global unitary error is a strange object and should
not be confused for control errors such as over rotation or
detuning errors, but is instead more akin to a global frame
misalignment.

Interestingly, the errors look very different when measured
by the diamond norm (the right and left plots of Fig. 3).
The diamond norm distance of the reconstruction scales
polynomially with the gate-set diamond norm error for all
forms of the SPAM error and gate sets. The fact that the rate
of the depolarizing error spans twice as large a domain as the
coherent errors in the diamond norm is also curious. These
two metrics clearly yield very different results, and it is an
important question as to which is appropriate for an experiment
to report. For this reason, we consider both for the remainder
of this manuscript.

IV. SELF-CONSISTENT TOMOGRAPHY

We have thus far failed at tomography in this manuscript
for the simple reason that our methodology is based on the
likelihood function, and we have used the wrong one. A proper
likelihood function should incorporate the SPAM errors, but
characterizing the SPAM errors themselves requires QPT and
therefore a likelihood function. This is an impasse for standard
QPT methods. The alternative we present in this section is to
assume nothing about the SPAM errors (though later we will
bound their magnitude) and instead estimate an entire library
of gates in a self-consistent manner.

Let us write the set of experimental gates as G(exp) =
{RE1R1,RE2R2, . . .REN

RN }, which is a faulty version of the
library G(ideal) = {R1,R2, . . .RN }. The free parameters of this
model are the error terms REi

, while the ideal gates are fixed.
We begin by performing a series of N3 experiments (at least
d6) of the form

mijk = 〈〈M0|REk
RkREj

RjREi
Ri |ρ0〉〉, (24)
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which in essence consists of the tomography data necessary to
reconstruct each element of G(exp).

The likelihood of a trial set of gates G̃ =
{R̃E1R1,R̃E2R2, . . . R̃EN

RN } is now given by

L(G̃) = exp

⎛
⎝−

∑
i,j,k

∣∣mijk

− 〈〈M0|R̃Ek
RkR̃Ej

RjR̃Ei
Ri |ρ0〉〉

∣∣2

⎞
⎠ . (25)

The constraint such that the gate library is physical is that each
of the maps R̃Ej

are completely positive and trace preserving.
Maximizing the likelihood function (25) is equivalent to
minimizing the least-squares estimator

LSQ(G) =
∑
i,j,k

∣∣mijk − 〈〈M0|R̃Ek
RkR̃Ej

RjR̃Ei
Ri |ρ0〉〉

∣∣2

(26)

but is highly nontrivial due to the fact that this function is 6th
order in the gate set.

We can reduce the order of the estimator by linearizing
the evolution about the ideal set of gates. This is a reasonable
assumption if we are testing components of a faulty quantum
computer as opposed to probing some unknown physics
or interaction. In this situation we allow R̃Ej

= RI + Ẽj ,
where Ẽj is not necessarily physical but is small, ‖Ẽj‖ 	 1.
Expanding the evolution to first order in Ẽj we have

m̃ijk = 〈〈M0|RkRjRi + ẼkRkRjRi

+RkẼjRjRi + RkRj ẼiRi |ρ0〉〉, (27)

or by transforming back to the physical R̃Ej
,

m̃ijk = 〈〈M0| − 2RkRjRi + R̃Ek
RkRjRi

+RkR̃Ej
RjRi + RkRjR̃Ei

Ri |ρ0〉〉. (28)

Therefore self-consistent reconstruction of a set of gates can
be described as the following least-squares estimation:

min
R̃E1 ,R̃E2 ,...

∑
ijk

∣∣mijk + 〈〈M0|2RkRjRi − R̃Ek
RkRjRi

−RkR̃Ej
RjRi − RkRjR̃Ei

Ri |ρ0〉〉
∣∣2

, (29)

subject to the constraint that the error maps R̃Ej
are all physical.

Minimizing this linearized least-squares fit under the physi-
cality constraint is another example of a semidefinite program.
In fact, it is isomorphic to the original QPT problem on a larger
space where R� → RE1 ⊕ RE2 ⊕ · · · REN

. There is, however,
one major difference, which is that the optimal fit is no longer
unique, which implies that the matrix corresponding to SST

in this space is not full rank. As an example, take any unitary
transformation G(ideal) = {R1,R2, . . .RN } → G(err) =
{RT

UR1RU ,RT
UR2RU , . . .RT

URNRU } where RU |ρ0〉〉
〈〈M0|RT

U = |ρ0〉〉〈〈M0|. The measurement outcomes are
invariant to such a transformation, since

mijk = Tr(|ρ0〉〉〈〈M0|RiRjRk)

→ Tr
(|ρ0〉〉〈〈M0|RT

URiRURT
URjRURT

URkRU

)
= Tr

(
RU |ρ0〉〉〈〈M0|RT

URiRjRRk

) = mijk. (30)

When we prepare and measure in the computational basis, this
is equivalent to a frame invariance with respect to a diagonal
unitary transformation. This is not analogous to moving to the
interaction picture since the resulting frame is stationary, and
does not generate an inertial correction to the Hamiltonian. It
is more akin to an energy rescaling. Such a frame is physically
irrelevant, and in the following simulations we calculate
distance between gate sets by optimizing to find the most
generous frame.

In Fig. 4 we compare the results of standard QPT and
our self-consistent approach. The error model is that of
individual random unitary errors, the uncorrectable error from
the previous section, and the gate library is the six-element
gate set that maps |0〉 to the cardinal directions on the Bloch
sphere. We plot the errors from both the fidelity and the
diamond norm of the estimates versus the error of the physical
gate set with respect to the ideal target. For each we show
the average result for the six gates. Additionally, we also
plot the ratio of the error in the estimate to the ideal for both
measures.

In both cases there appears to be an exponential
improvement in accuracy over standard QPT with respect
to decreasing gate error. This is fundamentally different
from the results of the previous section, where the fidelity
error changed substantially but the diamond norm remained
qualitatively the same, and so this method is not an effective
depolarization of the error.

FIG. 4. (Color online) A comparison of standard QPT and the self-consistent method presented in this manuscript for individual random
unitary errors for the set of gates mapping to the six cardinal directions. We plot both the diamond norm and fidelity error between the estimates
and the actual gates (averaged over the set of gates) plotted versus the equivalent distance of the actual set from the ideal gates. We show the
magnitude of the tomography error and the ratio of the error with respect to the actual gate error for both cases.
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FIG. 5. (Color online) A comparison of least-squares estimator
(negative log-likelihood function) for standard QPT and the linearized
likelihood estimation method with SPAM errors is generated by
random unitary maps of each gate. On the x axis is the estimator
of the ideal gate set in the absence of errors with respect to the
measurement outcomes and on the y axis the ratio of the estimated
gate set’s log likelihood to the ideal.

To clarify the differences between the two approaches, we
plot the least-squares estimator Eq. (25) for the two estimates
in Fig. 5. Again, we look at the ratio of the value of the
least-squares fit for the estimated value divided by the fit of
the ideal gates to the data. The estimate from QPT is flat with
respect to lowering gate error, which corresponds to the fact
that QPT is minimizing the wrong quantity. Our estimator does
not properly minimize this quantity either, due to the linear
approximation, but the scaling is dramatically more favorable.

There are some obvious shortcomings of this method. We
have increased the number of experiments and the complexity
of the reconstruction algorithm. These increases are both
polynomial in the dimension of the system, but since the
dimension is already exponential in the number of qubits
the resulting overhead is nontrivial. In principle, we can
apply these techniques to two- or maybe three-qubit systems,
but even by three quits we are minimizing a d6 = 262 144
dimensional function.

Additionally, it is numerically hard to reach much smaller
errors in our simulation with the default precision of our SDP

solvers (though in this paper we have essentially covered the
error range from current to fault tolerant). If we extended
the plot in Fig. 5 to the left, we would very quickly see the
self-consistent method flatten from the numerical tolerance.
The routines for solving semidefinite programs are known to be
finicky, and switching solvers from sedum to SDP3 can lead to
slightly different answers. This is true not just of self-consistent
topography, but of our SDPs to calculate the diamond norm.
In fact, calculating the norms, and fitting optimal frames,
generally takes longer than the optimization itself.

V. EXPERIMENT

We apply our self-consistent tomography method to data
generated from two independent experiments with single-
junction transmon (SJT) qubits. Sample A is an SJT capac-
itively coupled to a coplanar waveguide resonator (used also
in Ref. [8] as sample b), while sample B is mounted in a cavity
machined from bulk copper. In both cases the qubits are driven
by resonant microwaves that are shaped in order to perform
optimal qubit gates. For these experiments we use the gate set
{I,Xπ,Xπ/2,Yπ/2}, where the notation Rθ denotes a rotation
about the axis R of angle θ , and we prepare and measure in
the energy eigen-basis (denoted Z). See Refs. [1,32] for the
design and construction of these systems.

In sample A(B) the qubit frequency was ωq/2π =
4.7610(4.473 8) GHz and was coupled to a resonator of
frequency ωr/2π = 7.4269(12.118) GHz. In sample A there
was a second qubit coupled to the resonator with frequency
ωq/2π = 5.3401 GHz that played no role in the follow-
ing experiment since the two qubits were only weakly
coupled. The coherence times of the two samples were
T1 = 8.1(44.0) μs and T ∗

2 = 16.2(7.2) μs. The samples are
radiation shielded and cooled to 15 mK in a dilution
refrigerator.

In Table I we show the results of both estimation methods
as compared to the desired gate. We repeat all measurement
≈5000 times in order to have low, but non-negligible, stochas-
tic measurement errors. We can do a similar bootstrapping
calculation as in the appendix of [1] to estimate that our
statistical errors lead to an uncertainty on the order of 10−4

in the fidelity. In both cases we find that QPT overestimates

TABLE I. The gate error from QPT and self-consistent tomography for (A) an SJT capacitively coupled to a coplanar waveguide and (B) an
SJT suspended in a copper cavity. We report the fidelity error and diamond norm for both approaches (QPT and self-consistent tomography),
and for each gate in the set. The last row in each sample, labeled 〈U〉, is the average of the previous four as well as the average error obtained
from randomized benchmarking.

Sample Gate 1 − Fg(�QPT,�ideal) 1 − Fg(�SC,�ideal) 1 − Fg (RB) ‖�QPT − �ideal‖♦ ‖�SC − �ideal‖♦

A I 0.0010 0.0013 – 0.020 0.024
A Xπ 0.0083 0.0048 – 0.062 0.044
A Xπ/2 0.0030 0.00023 – 0.038 0.026
A Yπ/2 0.0050 0.0047 – 0.051 0.069
A 〈U〉 0.0043 0.0015 0.0029 0.043 0.041

B I 0.11 0.0237 – 0.50 0.081
B Xπ 0.0276 0.0013 – 0.26 0.035
B Xπ/2 0.0266 0.016 – 0.31 0.096
B Yπ/2 0.0181 0.023 – 0.20 0.078
B 〈U〉 0.045 0.016 0.0016 0.31 0.072
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FIG. 6. (Color online) The R matrices for the ideal gates and the reconstruction from QPT and self-consistent tomography for each of the
four measured gates on sample B.

the error in both the diamond norm and the gate fidelity
as compared to the self-consistent method, well outside of
this uncertainty bound. For sample A the error on the QPT was
roughly 1.5 times the self-consistent error, while for sample
B it was roughly 3 times as large. We show plots of the Pauli
transfer matrices for both estimates and the ideal maps in
Fig. 6 for sample B.

Furthermore, since the gates in our library were generators
of the Clifford group, we were able to perform randomized
benchmarking on the two samples using the methods in
[19,20]. The fidelity error from randomized benchmarking
was even smaller than the error from the self-consistent
reconstruction, dramatically so in the case of sample B. We
conjecture that this is due to errors in the measurement operator
M0, since the calibration of the measurement voltage to the |0〉
and |1〉 states has been observed to shift over the course of long
experimental runs. Randomized benchmarking is insensitive
to this type of error while the methods presented in this
manuscript are not. Accounting for errors in the initial state ρ0

and the fixed observable M0 are both important future avenues
to extend this method, as well as that of dealing with slowly
time-varying errors.

VI. CONCLUSION

The methods of tomography are very powerful when using
a well-characterized system to probe a black-box operation,
but this is rarely the case when verifying quantum computing
hardware. Instead, the situation is one in which all components
are faulty, and in that scenario we have shown that process
tomography can fail dramatically. Instead of separating the
preparation and measurement phases of tomography, we

instead must view the experiment as a sequence of faulty gates,
and while we have not discussed errors on the fiducial state
and fixed measurement operator, those, too, should probably
be brought into question in the future. Without incorporating
these errors into our model, it is impossible to obtain
a more accurate reconstruction through statistical analysis
alone.

In this manuscript we have developed a protocol that
self-consistently reconstructs a library of quantum gates by
modifying the likelihood function of quantum process tomog-
raphy to incorporate our uncertainty of the state preparation
and measurement gates. In simulation, this self-consistent
method outperforms standard QPT in terms of the accuracy
of estimation, since QPT consistently underestimates gate
fidelities in the presence of SPAM errors. This method
requires the same number of experiments as QPT and
only adds polynomial overhead to the amount of classical
postprocessing. In fact, in any case where tomography has
been performed on the entire set of gates used for state
preparation and measurement, no further experiments are
needed to apply our protocol. Colloquially, we have taken
to calling this the “overkill” method of tomography, since
the number of the experiments borders on the ridiculous
for all but one- or two-qubit systems, but this will be the
case for any protocol that provides full information about a
library of maps. Self-consistently reconstructing a library of
gates, as opposed to performing tomography on the individual
members, yields more trustworthy and generally higher fidelity
estimates in both experiment and simulation, and we expect
the difference between standard QPT and the self-consistent
method presented here to grow more pronounced as we reach
lower and lower gate errors.
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Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell,
J. R. Rozen, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett.
109, 060501 (2012).

[2] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R.
Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Nature (London) 460, 240 (2009).

[3] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero,
M. Neeley, A. D. O’Connell, D. Sank, H. Wang, J. Wenner,
M. Steffen, A. N. Cleland, and J. M. Martinis, Nat. Phys. 6, 409
(2010).

[4] H. Haffner, W. Hansel, C. F. Roos, J. Benhelm, D. Chek-al kar,
M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O. Schmidt,
C. Becher, O. Guhne, W. Dur, and R. Blatt, Nature (London)
438, 643 (2005).

[5] J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin,
D. Hanneke, J. D. Jost, J. P. Home, E. Knill, D. Leibfried, and
D. J. Wineland, Phys. Rev. Lett. 108, 260503 (2012).

[6] M. A. Nielsen, Phys. Lett. A 303, 249 (2002).
[7] I. L. Chuang and M. Nielsen, J. Mod. Opt. 44, 2455

(1997).
[8] J. M. Gambetta, A. D. Corcoles, S. T. Merkel, B. R. Johnson,

J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto,
T. A. Ohki, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 109,
240504 (2012).

[9] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.
Rev. A 64, 052312 (2001).

[10] Z. Hradil, J. Rehacek, J. Fiurasek, and M. Jezek, Lect. Notes
Phys. 649, 59 (2004).

[11] A. I. Lvovsky, J. Opt. B: Quantum Semiclassical Opt. 6, S556
(2004).

[12] M. D. de Burgh, N. K. Langford, A. C. Doherty, and A. Gilchrist,
Phys. Rev. A 78, 052122 (2008).

[13] R. Blume-Kohout, Phys. Rev. Lett. 105, 200504 (2010).
[14] R. Blume-Kohout, New J. Phys. 12, 043034 (2010).
[15] J. A. Smolin, J. M. Gambetta, and G. Smith, Phys. Rev. Lett.

108, 070502 (2012).

[16] M. Christandl and R. Renner, Phys. Rev. Lett. 109, 120403
(2012).
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