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Multislit interferometry and commuting functions of position and momentum
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In a recent, modified double-pinhole diffraction experiment the existence of an interference pattern was
established indirectly along with a near-perfect imaging of the double pinhole. Our theoretical analysis shows
that the experiment constitutes a preparation of a quantum state that is, to a good approximation, a joint eigenstate
of commuting functions of position and momentum. Gaining information about the momentum distribution by
means of the particular experimental setup is thus possible with negligible impact on the position distribution.
Furthermore, we construct explicitly a class of states simultaneously localized on periodic sets in position
and momentum space, which are therefore eigenstates of the observables being measured jointly (to a good
approximation) in multislit interferometry. Finally, we show that with an appropriate change of settings the
experiment demonstrates the mutual disturbance of position and momentum measurements.
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I. INTRODUCTION

Still at the heart of quantum mechanics, the double-slit
experiment remains the subject of ongoing investigation with
surprising results that attract wide attention. For example,
a recent interference experiment [1] exhibited “average tra-
jectories” via weak measurements. Here, we revisit another
experiment, reported in 2007 [2], which investigates the
influence of a wire grating placed at the nodes of the
interference pattern on the image of the double pinhole.
While the authors’ own theoretical account has been criticized,
the experiment itself remains interesting. As we argue here,
in this experiment a quantum state is prepared that is
approximately a joint eigenstate of position and momentum
on periodic sets, and verified with negligible disturbance.

Multislit interference experiments, such as Young’s double-
slit experiment, consist of a coherent source, an aperture
mask, and a detection screen (placed in the far field). Within
the framework of quantum mechanics, such an experiment
is viewed as follows: While the aperture mask prepares a
particle in a quantum state with a certain position distribution,
the observed interference pattern is a measurement of the
associated momentum distribution.

Traditionally, the momentum distribution is captured on a
detection screen, but this clearly destroys the quantum state.
Establishing the existence of an interference pattern indirectly,
i.e., without destroying the quantum state, is possible by re-
moving the screen and replacing it by a wire grating, each wire
carefully placed at the location of a node in the interference
pattern [2]. The existence of an interference pattern may be
deduced from the practically undiminished intensity passing
the wire grating. Using a lens, a geometric image of the
aperture is produced, which allows detection of the quantum
particle on the very set of positions it was prepared on—
after it was subjected to a momentum measurement. While
indirectly observing an interference pattern without changing
the localization properties of a system may not be surprising
from the point of view of classical physics, it is rather curious
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when considered in terms of quantum mechanics: Information
about a quantum state was obtained, but apparently without
changing the properties of that quantum state. In particular,
information about a pair of incompatible observables was
obtained; in this context, the measurement seems “classical,”
revealing already existing information without changing the
system properties.

This observation indicates that the experiment should be
described in terms of two commuting observables which
yield information about position and momentum, respectively.
While position and momentum do not commute, functions of
position may commute with functions of momentum. Indeed,
as will be shown here, the experiment can be considered
an approximate realization of a joint eigenstate of mutually
commuting functions of position and momentum. In the next
two sections, the experimental setup and joint eigenstates of
periodic sets of position and momentum are discussed. This is
followed by a description of multislit experiments in terms of
joint eigenstates.

The experiment reported in [2] was performed with pho-
tons; its analysis would require a treatment in terms of photons
as massless spin-1 particles, which are known to be only
unsharply localizable. (A review of the problem of photon
localization and relevant literature where unsharp localization
observables for the photon are introduced can be found in [3].)
For simplicity, the treatment here is nonrelativistic and strictly
only applies to matter waves. There is nevertheless good
qualitative and quantitative agreement between our theoretical
analysis and the experiment, suggesting that an analog of the
nonrelativistic argument applicable to photons should exist,
and showing that the experiment demonstrates a simultaneous
determination of compatible, coarse-grained versions of the
complementary position and momentum observables.

II. ON THE EXPERIMENTAL SETUP

The setup illustrated in Fig. 1 depicts a simplified version
of the experiment reported in [2]. While the experiment was
performed using a double pinhole, here a double-slit setup is
considered. A particle propagates through the device along
the z axis (from left to right). We model its wave function
as a product, �(x,y,z) = φ(x)η(y)ζ (z), and focus on the
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FIG. 1. Simplified illustration of the setup used to indirectly
establish the existence of an interference pattern of a coherently
illuminated double-slit aperture.

component φ(x), where the x axis is along the transversal
(vertical) direction. The state ζ (z) is a means of keeping track
of the times of passage through the experimental setup. As is
detailed in Appendix A and used later on, in the appropriate
limit this problem can be simplified so that only φ(x) needs
to be considered, removing any explicit time dependence but
retaining an identification of the quantum state at different
times with distinct locations in the setup.

The wave function φ(x) is diffracted at location (i), where
the double-slit aperture mask is depicted. A wire grating is
placed at location (ii), where the interference pattern would
be expected. The separation of the wires depends on the
spacing of the slits in the aperture mask via the indicated
reciprocal correspondence T ↔ 2π/T , although in general
the wavelength of the source must be taken into account. A
lens is placed immediately behind the wire grating for the
purpose of producing the geometrical image of the original
aperture at location (iii), where the detectors are placed. As is
argued below, the sequential character of the setup, with the
aperture at (i) and the grating at (ii), actually constitutes a joint
preparation and measurement.

The action of the aperture mask at (i) is modeled by the
following transmission function that gives the wave function
ψ (up to normalization) after passage through the aperture:

φ(x) → χA(x) φ(x) ≡ Cψ(x). (1)

Here C is a normalization constant and χA(x) is the indicator
function of set A, with value 1 for x ∈ A and 0 otherwise, A

being the set that describes the effective aperture. Incidentally,
Eq. (1) defines the action of an operator that is defined as a
function χA(Q) of the position operator Q:

[χA(Q) φ] (x) := χA(x)φ(x).

This operator has eigenvalues 1 and 0 with associated
eigenfunctions given by functions φ(x) either localized within
A or within the complement of A. Thus, the state vector φ is
projected onto an eigenvector of the spectral projector χA(Q)
of Q associated with the set A. For coherent illumination
of both slits, a wave function with two isolated peaks is
prepared. Such a superposition state is henceforth denoted ψ2.

A single-slit wave function, denoted ψ1, is used to describe a
single-slit state.

The aperture mask at location (i) prepares the quantum state
represented by the wave function ψ , which then propagates
freely until it arrives at (ii). In the Fraunhofer limit, upon
arriving at (ii) the wave function has evolved so as to have a
profile approximately identical (up to scaling) to that of the
Fourier transform ψ̃ of the wave function at (i). For more
details, the reader is referred to Appendix A.

The effect of the wire grating is modeled by a transmission
function similar to the one specified in (1), but with a set B

of intervals complementing the regions occupied by the wire
grating:

ψ̃(k) = (Fψ)(k) → χB(k) ψ̃(k) ≡ [χB(P ) ψ̃](k),

where the arrow indicates passage through the wire grating
and χB(P ) denotes the spectral projector of momentum P

associated with the set B and F denotes the unitary operator
effecting the Fourier transform,

f̃ (k) = (Ff )(k) = 1√
2π

∫ ∞

−∞
f (x) eikx dx.

In the experimental setup of [2], a total of six wires is
used, each with a diameter of 0.127 mm and a separation of
1.3 mm. It should be noted that for a single-slit interference
pattern the wire grating would not be in the exact center, but
shifted sideways by a small amount. (In the experimental setup
reported in [2], the wire grating is shifted by 0.250 mm while
the single-slit interference pattern is of the order of tens of
millimeters.)

Finally, the action of the lens located at (ii) is modeled
as spatial inversion, expressed by mappings Q �→ −Q and
P �→ −P , for the position and momentum, respectively. This
corresponds to the unitary parity transformation P , which
coincides with the square of the Fourier transformation F .
As a result, the divergent wave rays emerging, say, from the
double pinhole and arriving at the wire grating and lens are
inverted so as to be refocused into an image of the original
double slit.

III. COMMUTING FUNCTIONS OF POSITION
AND MOMENTUM

While the canonical commutation relation [Q,P ] = i (we
will put h̄ = 1 throughout) represents the fact that the position
and momentum observables are incompatible in a strong
sense, a function of position may commute with a function of
momentum. A first characterization of commuting functions
of position and momentum was given in [4] in the context
of an analysis of interference experiments, with the aim of
explaining nonlocal momentum transfers in the Aharonov-
Bohm effect. A first full proof of necessary and sufficient
conditions for the commutativity of functions of position and
momentum was was reported in [5], who were unaware of the
work of [4]. A first construction of a set of joint eigenstates was
given in [6]. Here, we present a construction of joint eigenstates
that is readily identified with multislit interferometry. In
Appendix C an alternative, rigorous construction is included
that generalizes [6].
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Considering the commutation relation in a form due to
Weyl,

eipQeiqP = e−ipqeiqP eipQ,

the existence of commuting functions of Q and P is suggested
since the operators eipQ and eiqP commute for pq = 2πn

with n ∈ N. Though Q and P do not commute, the spectral
projections χX(Q) and χY (P ) for periodic sets X and Y

commute if the sets have periods T and 2π/(nT ), respectively,
where n ∈ N:

[χX(Q),χY (P )] = 0.

[A set X is called periodic with (positive minimal) period
T , if T is the smallest positive number by which X can be
shifted such that the shifted set X + T = X, or equivalently,
if its indicator function is a periodic function with minimal
period T .]

Physical systems exhibiting such doubly periodic behavior
occur naturally. A well known example is found in solid state
physics: The wave function of an electron in a crystal is not
only periodically localized in accordance with the periodic
potential that is due to a crystal lattice; the wave function
is also periodically localized in momentum space (this is
encapsulated in the notion of the reciprocal lattice). While
solid state physics often deals with systems containing a
very large (essentially infinite) number of lattice points, even
finite multislit experiments can be regarded as an approximate
realization of joint eigenstates of χX(Q) and χY (P ) over
periodic sets as is argued below.

The following construction of a class of joint eigenvectors
is carried out using the Dirac comb 	T , defined as

	T (x) =
∞∑

n=−∞
δ(x − nT ),

where δ denotes the delta distribution. This has heuristic value
and also makes the identification with multislit experiments
more intuitive. We note that under a Fourier transformation
the Dirac comb 	T with period T becomes a Dirac comb with
period 2π/T :

F (	T ) (k) = 1

T
	2π/T (k). (2)

The sought joint eigenstates of χX(Q) and χY (P ) must have
position and momentum representations that are localized in
the periodic sets X and Y , respectively. Their construction
makes use of the following identity involving functions W and
M which will be suitably chosen:

F (W ∗ (	T M)) (k) =
[
W̃

(
1

T
	 2π

T
∗ M̃

)]
(k). (3)

The order of the two operations in (3), convolution (∗) and
multiplication, may be chosen freely, though the result is
different in general. Here, both orders appear naturally because
of the Fourier transformation present. (A special case of (3) is
applied in [7] for the construction of functions invariant under
Fourier transformation.)

We now choose W and M̃ to be square-integrable functions
that are localized on (that is, vanish exactly outside) intervals of
lengths strictly less than T , resp. 2π/T . [It will be convenient

to use the mathematical term support (of a function) when
speaking of the smallest closed set on which the function is
localized.] This ensures that the function ψ defined via (3) is
indeed square integrable (see Appendix B):

ψ(x) = [W ∗ (	T M)] (x), (4)

ψ̃(k) =
[
W̃

(
1

T
	2π/T ∗ M̃

)]
(k). (5)

The wave function ψ is now localized on a periodic set X

with period T , and its Fourier transform ψ̃ is localized on
a periodic set Y with period 2π/T . These sets are indeed
obtained by placing equidistant copies of the supports of
W and M̃ , respectively. It follows in line with the result
of [5] that ψ is a joint eigenstate of the associated spectral
projections of position and momentum. A mathematically
rigorous construction of such joint eigenstates without the use
of Dirac combs is included in the Appendix B.

The vector ψ thus does not change under the action of
these spectral projections χX(Q) and χY (P ). In general, for
any wave function φ, the projected wave function

χY (P )χX(Q) φ

is a joint eigenstate of the two projectors. In fact, all eigenstates
with eigenvalue 1 may be obtained as the projection onto the
intersection of the ranges of χX(Q) and χY (P ), which is given
by the product χX(Q)χY (P ) = χY (P )χX(Q). In the analysis
below we model the action of the slits and wires as projections
in this sense.

IV. MULTISLIT EXPERIMENTS IN TERMS OF JOINT
EIGENSTATES OF Q AND P ON PERIODIC SETS

As reported in [2], an initial superposition state ψ2

propagates through the experimental setup nearly undisturbed.
By contrast, there is an effect on the image of the single-slit
state ψ1 detected at (iii): In addition to the expected intensity
peak many smaller peaks are found, such that each peak is
separated by a distance T from its immediate neighbors. An
illustration can be found in [2], Figs. 1(c) and 1(d) therein.

These two observations can be understood in terms of joint
eigenstates of Q and P on periodic sets. First, the superposition
state ψ2 remains unchanged to a good approximation, because
ψ2 is already prepared at (i) as a good approximation to a
joint eigenstate of periodic characteristic functions of position
and momentum with appropriate periodic sets X,Y . This
makes ψ2 an approximation to an eigenstate of the momentum
projector associated with the opening left by the wire grating,
and hence leaves it virtually undisturbed in the presence
of the grating. This can be described symbolically by the
approximate equations

ψ2 = χX(Q)ψ2 → χB(P )ψ2 ≈ χY (P )ψ2 = ψ ′
2 ≈ ψ2.

Here ψ ≈ φ is taken to mean ‖ψ − φ‖  1 for
(sub)normalized vectors; the arrow denotes passage through
the wire grating.

Second, the single-slit state ψ1 does not remain unchanged,
but instead is detected on a set of locations expected of a joint
eigenstate defined on a periodic set, as described above. It
follows that the wire grating imposes nodes in a manner that

062116-3



JOHANNES C. G. BINIOK AND PAUL BUSCH PHYSICAL REVIEW A 87, 062116 (2013)
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FIG. 2. Illustration of a state localized on periodic sets in position
and momentum space. For this particular choice of W , M̃ , the tails
of |ψ |2 are negligible outside the two central slits, so that X is well
approximated by a double slit, and the negative-outcome testing of
the localization of |ψ̃ |2 within Y does not require many more than
ten wires.

approximates the action of χY (P ) to a high degree, because
ψ1 remains an eigenstate of χX(Q) after this action:

ψ1 = χX(Q)ψ1 → χY (P )ψ1 = ψ ′
1 = χX(Q)ψ ′

1 �≈ ψ1.

Considering that the experimental setup in [2] involves merely
six wires, this may seem surprising. Without further analysis
of the experimental details, this suggests that the part of the
wave function not penetrating the wire grating must have
comparatively small amplitude. This is elaborated below.

While all quantum states that pass the aperture mask are
eigenstates of χX(Q), the combined effect of aperture and
wire grating represents a preparation procedure for approxi-
mate joint eigenstates of χX(Q) and χY (P ): All quantum states
are projected into the range of χX(Q)χY (P ) = χY (P )χX(Q)
to a good approximation. The superposition state ψ2 is thus
already an approximate eigenstate of both projections, and the
effect of the wire grating is much smaller than on the single-slit
state ψ1, and even negligible to a good accuracy.

Using (4) and (5), we now proceed to the construction of an
example of a joint eigenstate of commuting periodic functions
of Q and P that describes the double-slit setup. For this, the
two localized functions W,M̃ need to be chosen appropriately
(Fig. 2). The function W describes the quantum amplitude
contained in a single slit. We consider the function that is
constant on a single slit (a rectangular shape):

W (x) = χ[−a/2,a/2](x) =
{

1 for x ∈ [−a/2,a/2],

0 for x /∈ [−a/2,a/2].
(6)

Here, a is the width of the slit. This is illustrated in Fig. 2(a).
The expression for the Fourier transform of W is

W̃ (k) ∝ sinc(ak/2).

The function W̃ accounts for the modulation of the interference
pattern I (k). In the case of a double slit interference experiment
with slit separation T > a, the known interference pattern
Ids(k) is of the form

Ids(k) ∝ sinc2(ak/2) cos2(T k/2).

The cosine describes a repeated pattern, and it suggests that
we choose M̃ to correspond to a single instance of this pattern

(in practice, this choice would be made based on experimental
data):

M̃(k) = cos(T ′k/2) χ[−π/T ′,π/T ′](k)

=
{

cos(T ′k/2) for k ∈ [−π/T ′,π/T ′],

0 for k /∈ [−π/T ′,π/T ′].
(7)

This is illustrated in Fig. 2(b). For the 2π/T -periodic set

Y =
∞⋃

n=−∞
[2πn/T − π/T ′,2πn/T + π/T ′]

to be different from the whole real line, it is required that
T ′ > T , so that the interval [−π/T ′,π/T ′] is strictly contained
in the interval [−π/T ,π/T ].

Combining the expressions obtained for W̃ ,M̃ the interfer-
ence pattern is described by

|ψ̃2(k)|2 ∝ 1

T 2
sinc2(ak/2)

∞∑
n=−∞

cos2

[
T ′

2

(
k + 2πn

T

)]
×χ[−π/T ′,π/T ′]

(
k + 2πn

T

)
. (8)

This is a sum of non-overlapping terms, and the support of this
function is the periodic set Y that is made up of equidistant
copies of the interval [−π/T ′,π/T ′]. For the quantum state in
position space, W is as defined in (6), and M follows from M̃

as defined in (7):

ψ2(x) ∝ {W ∗ [	T (( · ) − T/2) M]}(x)

=
∞∑

n=−∞
M((n − 1/2)T ) χ[(n−1/2)T −a/2,(n−1/2)T +a/2](x).

(9)

The Dirac comb is shifted by T/2, in correspondence with
the experimental setup. (This shift becomes a phase factor
in momentum space and does not affect the momentum
distribution.) Figures 2(c) and 2(d) illustrate ψ and ψ̃ as
constructed in (9) and (8), respectively.

There are two important limiting cases. The spectral
projection χY (P ) is over a strictly periodic set Y . In contrast,
the dimensions of any experiment are necessarily finite, and, in
particular, the experiment reported in [2] was performed with
a total of six wires only, preparing the state χB(P )ψ , where
B is the complement to the region occupied by the wires. A
model calculation shows that the difference between the states
χB(P )ψ and χY (P )ψ is undetectable given the accuracy of
the experiment at hand.

Finally we may consider the limiting case where T ′ → T .
This corresponds to the wires becoming negligibly thin. When
T ′ = T the function M is zero at every delta peak of the
periodic Dirac comb, except for two locations: x = −T/2 and
x = +T/2. Hence it follows that for this particular choice of
W,M̃ , the quantum state ψ2 exists solely in the two slits and
is an approximation to a joint eigenstate defined on periodic
sets, where the wires must be assumed to have a very small
thickness. The experimental setup considered prepares this
quantum state at the aperture at location (i) as an eigenstate
of χX(Q) for the periodic set X. Passage through a periodic
wire set Y will cause a projection of the state onto one that is
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a proper joint eigenstate of periodic position and momentum
sets. This projective measurement action causes a disturbance
of the incoming 2-slit wave function, which manifests itself
in the observed position distribution at (iii): In an ideal setup
with dimensions identical to those reported in [2], 1% of the
total probability would not be found in the two detectors at
(iii) where it would otherwise be expected. Instead, this one
percent of probability would be distributed over the remainder
of the periodic set X. According to [2], for the double-pinhole
setup about 2% probability were found outside of the main
peaks.

V. DISCUSSION AND OUTLOOK

A description of multislit experiments was presented, and
in particular of the modified double-slit experiment in [2], in
terms of quantum states that are defined on periodic intervals
of position and momentum. These quantum states, themselves
not periodic, represent a class of joint eigenstates of periodic
functions of position and momentum. Using a description in
terms of such joint eigenstates it was possible to account for
the two observations reported in [2] concerning the behavior
of a double-slit input state ψ2 and a single-slit input state ψ1.

First, an incoming double-slit superposition state is virtu-
ally unaffected by the indirect measurement of the interference
pattern performed by the wire grating, with each of the wires
placed at a node. This is, of course, because the superposition
state shows an interference pattern. An explanation in terms
of joint eigenstates over periodic sets, though, goes further
and makes it possible to explain why a superposition state
can be localized on essentially the same set of positions
after it was subjected to such a measurement—after all,
measuring the interference pattern corresponds to measuring
the momentum distribution. The information about position
and momentum of the superposition state is approximately
represented by commuting observables. It follows that there
is no conflict with the principle of complementarity. The
experimental setup constitutes a good approximation to a joint
determination of compatible coarse grainings of position and
momentum.

Second, an incoming single-slit state does not remain
unchanged on passage through the wire system, but is instead
detected on a set of locations expected of a joint eigenstate
of projectors onto periodic sets in position and momentum
space. The additional intensity peaks are found, such that each
peak is separated by the same distance from its immediate
neighbors as the two slits in the aperture. This is compatible
with the interpretation that the single-slit state was projected
onto an approximate joint eigenstate of spectral projections of
position and momentum on periodic sets. Indeed, the original
single-slit state, being already localized on a periodic set, has
been changed into a state that is a good approximation to
a joint eigenstate through the projective action of the wire
grating.

The fact that a single-slit input state is affected by the
wire grating in such a way that the detected output state is
found to be localized in many periodically spaced intervals is
a demonstration of the mutual disturbance of measurements
of incompatible observables. The projector χA(Q) onto a state
localized in the single-slit region A is not compatible with the

projector χB(P ) onto a state localized in the set B of intervals
in momentum space defined by the gaps in the wire grating
or its idealized substitution by a periodic set. Consequently, a
state originally prepared to be localized in A is changed by the
projective action of the wires so as to be less well localized in
A and instead localized in a periodic set.

In this way the present experiment serves as a beautiful,
new demonstration of complementarity that complements
the existing illustrations. Usually one considers a perfect
interference setup and then shows how the interference pattern
is degraded by the introduction of a path-marking interaction
with a probe system storing (partial) path information. Here
one starts with a perfect path-marking setup which then,
by introducing the wires, is changed into an interference
experiment, degrading the accuracy of path determination.

Finally, we used a construction of a specific class of joint
eigenstates of periodic sets of position and momentum, which
showed that in an idealized experiment with periodically
placed slits and wires one can input such states that would
propagate entirely unchanged through the setup, so that the
presence of the interference pattern would be established
without disturbing the quantum state at all. The work of
Corcoran and Pasch [7] suggests that the construction of
realistic approximations to such quantum states is possible
experimentally as well.

It is interesting to note that the work of [4] has been devel-
oped further in [8] and [9]. Modular (periodic) momentum
variables are introduced there since they are found to be
sensitive to relative phase shift of spatially non-overlapping
partial wave functions and are thus indicators of the disap-
pearance of interference fringes due to a path measurement. By
comparison, here we are concerned with the diminishing path
knowledge from creating an interference pattern, for which we
found periodic characteristic functions of Q and P particularly
useful. The cited work also introduces uncertainty relations
allowing a quantitative description of the trade-off between
path knowledge and quality of interference. It seems that there
is an intimate connection between these uncertainty relations
involving modular variables and trade-off relations between
the overall width of a wave function and the fine structure of its
Fourier transform that were formulated in [10]; an application
of the latter uncertainty relation to the present experiment and a
comparison with the uncertainty relation for modular variables
are work in progress.

To summarize, we have shown that it is appropriate to
view the experiment reported in [2] as a preparation procedure
for approximate joint eigenstates on periodic sets of position
and momentum, whatever the input state. The validity of this
interpretation can be supported by numerical simulations of
the experiment and variants of it (with different numbers and
thickness of the wires) [11].
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APPENDIX A: DETERMINATION OF THE MOMENTUM
DISTRIBUTION VIA LATE-TIME POSITION

MEASUREMENT

From classical optics it is known that the interference
pattern of a wave passing through a double slit can be described
by the Fourier-transformed aperture profile. Additional anal-
ysis is necessary to justify the same application in quantum
mechanics. In particular, it is required to show that after
free evolution the position representation of the state ψt at
location (ii) is, up to scaling, approximated by the momentum
representation of ψ0, at the aperture at (i):

ψt ∝ ψ̃0 (approximately).

We give a simple “rough and ready” argument here to show
how this approximation can be obtained. The solution of the
Schrödinger equation for free time evolution is given by

ψt (x) =
√

m

2πit

∫ +∞

−∞
ψ0(x ′) exp

(
i
m(x − x ′)2

2t

)
dx ′.

With the limits of integration bounded by the apertures, the
actual integration takes place from −(T + a)/2 to (T + a)/2.
In the limit of large t then, the term depending on (x ′)2 in the
exponential can be neglected to a good approximation, because
it is bounded by the finite dimensions of the aperture:

ψt (x) ≈
√

m

2πit

∫
ψ0(x ′) exp

(
i
mx2

2t

)
exp

(
i
mx

t
x ′

)
dx ′.

After trivial rearranging, the desired expression is obtained:

ψt (x) ≈
√

m

it
ei(mx2/2t) 1√

2π

∫
ψ0(x ′) ei(mx/t)x ′

dx ′

≈
√

m

it
exp

(
i
mx2

2t

)
ψ̃0

(
m

t
x

)
.

The parameter t can be eliminated using pz

m
t = L, with

the distance to the lens L = 0.55m, where pz denotes the
longitudinal momentum component. In doing so, the limit
of large t becomes a limit of large distance L in relation to
the aperture size. Considering the dimensions of the setup
used in [2], where the center-to-center separation of the two
pinholes is 0.25 mm, this is reasonable. Furthermore, as px/pz

will be small given these dimensions, we can also substitute
pz approximately with the magnitude of the mean momentum
p0 so that for the mean wavelength λ of the packet we can use
the value λ = 2π/p0 ≈ 2π/pz, and so t ≈ mLλ/(2π ). This
gives the intensity as

|ψt (x)|2 ≈ 2π

Lλ

∣∣∣∣ψ̃0

(
2π

Lλ
x

)∣∣∣∣2

.

Hence, measuring the interference pattern at location (ii)
by determining the distribution of position Q constitutes a
measurement of a scaled momentum observable with respect
to the input state ψ0. We can express this in terms of the
spectral measures of Q and P :

〈ψt |χLλZ/(2π) (Q)ψt 〉 ≈ 〈ψ0|χZ
(P )ψ0〉,

where Z is any (Borel) subset ofR. The separation of the wires
in Fig. 1 was indicated as being proportional to 2π/T ; the
above consideration gives the separation in spatial dimensions
as Lλ/T .

APPENDIX B: SQUARE INTEGRABILITY

The relation (3) may be used to define a wave function ψ

via Eqs. (4) and (5) for square-integrable W,M if W vanishes
outside an interval of length strictly less than T , because then
the square-integrability condition is met, i.e., if the L2 norm
of ||ψ ||2 is finite:

||ψ ||2 =
∫ +∞

−∞
|W ∗ (	T M)(x)|2 dx =

∫
W ∗

[ ∞∑
n=−∞

δ((·) − nT ) M

]
(x) W ∗

[ ∞∑
n′=−∞

δ((·) − n′T ) M

]
(x) dx

=
∫

W ∗
[∑

n

δ((·) − nT )M(nT )

]
(x) W ∗

[∑
n′

δ((·) − n′T )M(n′T )

]
(x) dx

=
∫ ∑

n

W (x − nT ) M(nT )
∑
n′

W (x − n′T )M(n′T ) dx =
∑

n

|M(nT )|2
∫

|W (x − nT )|2 dx = ‖W‖2
2

∑
n

|M(nT )|2.

The last line is obtained due to the localization property of the
function W , which entails that W (x − nT )W (x − n′T ) = 0 if
n �= n′. The square integrability of the Fourier transform ψ̃ is
ensured by the Fourier-Plancherel theorem.

APPENDIX C: NO DELTA FUNCTIONS
BEYOND THIS POINT

The construction of Sec. IV involved delta functions; here a
different approach is presented that is mathematically rigorous

without going into the theory of distributions. While similar
to [6], the result here is more general.

Starting by choosing a square-integrable function W with
support strictly within the interval (−T/2,T /2), we define a
periodically supported function ψ as

ψ(x) =
∞∑

n=−∞
cn W (x − nT ).

For each x, the sum contains exactly one term; hence the series
converges pointwise. The coefficients cn are to be determined
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by further constraints below; here we note that given the square
integrability of W , ψ is square integrable if and only if the cn

are square summable. This entails that the series also converges
in norm. Note that

supp ψ =
∞⋃

n=−∞
supp (W + nT ) .

Computing the Fourier transform yields

ψ̃(k) =
∫ ∞

−∞

∞∑
n=−∞

cn W (x − nT ) eikx dx

=
∞∑

n=−∞
cn eiknT W̃ (k). (C1)

The coefficients cn represent the coefficients of a Fourier series
expansion of a periodic function M̃p with period 2π/T :

M̃p(k) =
∞∑

n=−∞
cn ei k nT .

Let M̃ be a function that is supported inside the interval [−d,d]
where 0 < d < π/T . We can then specify M̃p—and hence the
coefficients cn—so that

M̃p(k) =
∞∑

n=−∞
M̃

(
k − 2π

T
n

)
.

This function is supported in a periodic set,

supp M̃p ⊆
∞⋃

n=−∞

[
2π

T
n − d,

2π

T
n + d

]
.

We thus have that

ψ̃(k) = M̃p(k) W̃ (k).

A simple calculation shows that M̃ is square integrable if
and only if the cn are square summable. As noted above, this
condition is equivalent to ψ being square integrable. With such
a choice of M̃ we can also see directly from the last formula
that ψ̃ is square integrable, in line with the Fourier-Plancherel
theorem.
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