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Quantum holonomy in the Lieb-Liniger model
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We examine a parametric cycle in the N -body Lieb-Liniger model that starts from the free system and goes
through Tonks-Girardeau and super-Tonks-Girardeau regimes and comes back to the free system. We show the
existence of exotic quantum holonomy, whose detailed workings are analyzed with the specific sample of two-
and three-body systems. The classification of eigenstates based on clustering structure naturally emerges from
the analysis.
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I. INTRODUCTION

Among the solvable models of quantum mechanics, the
Lieb-Liniger system [1] belongs to the selective class of
models that are genuinely many-body. It is a system made
up of identical bosons interacting through two-body contact
force. It was later shown that the one-dimensional system of
identical fermions with two-body contact interactions can be
rigorously mapped to the Lieb-Liniger system with strong
and weak coupling regimes interchanged [2,3]. Several further
extensions of the model with anyon statistics has been found
[4–7], and they are also known to be mathematically equivalent
to the original model. The thermodynamics of the Lieb-Liniger
model has been studied extensively [8–11].

What has made the Lieb-Liniger model a focus of renewed
recent attention is its experimental realization in the form
of Tonks-Girardeau gas [12–14]. It has been shown that
the coupling strength of the Lieb-Liniger system can be
experimentally controlled through the Feshbach resonance
mechanism [15]. In recent experiments by Haller and collabo-
rators [16,17], a smooth change of the coupling strength from
large negative values to large positive values, where one finds
the super-Tonks-Girardeau system [18], has been realized.

The continuous transition from a strongly repulsive to
strongly attractive regimes of Lieb-Liniger model inspires us
to propose following parametric cycle C. We start with the
noninteracting limit, increase the coupling strength adiabati-
cally, reaching the strongly attractive regime crossing the ±∞
coupling limit, then decrease the absolute value of negative
coupling strength until it reaches the noninteracting limit
again. In this paper, we show that the initial energy eigenstates
of the cycle are different from the final eigenstates, although
the initial and the final Hamiltonians are identical.

This phenomenon, the so-called exotic quantum holonomy,
in which quantum eigenvalues and eigenstates do not come
back to the original ones after a cyclic parameter variation [19],
belongs to a wider class of quantum holonomy that comprises
both the celebrated Berry phase [20] and the Wilczek-Zee
holonomy [21] which appears in systems with degenerate
eigenvalues. The exotic quantum holonomy in the δ-function

*yonezawa@sci.osaka-cu.ac.jp
†tanaka-atushi@tmu.ac.jp
‡taksu.cheon@kochi-tech.ac.jp

potential system was considered in [22]. Here we report
a finding of the quantum holonomy in many-body systems
interacting through the δ-function potential.

The plan of this paper is as follows. In Sec. II, we derive
the spectral equation for Lieb-Liniger model in two different
forms to demonstrate the presence of quantum holonomies
with respect toC. In Sec. III, we show that the backward cycle is
not always possible due to the clustering of particles. This leads
to the concept of minimal states, which we utilize to classify
the spectrum of the system in Sec. IV. In Sec. V, we provide
another view of the quantum anholonomy by focusing on the
two-body system through the complexification the coupling
strength. Section VI contains our conclusion.

II. ADIABATIC CYCLE C FOR LIEB-LINIGER MODEL

Let us consider N bosons confined in a one-dimensional
space. The system is described by the Hamiltonian

H = −1

2

N∑

j=1

∂2

∂x2
j

+ g

N∑

j=1

j−1∑

l=1

δ(xj − xl), (1)

where the unit is chosen such that h̄ and the mass of a particle
can be set to unity. The parameter g is the interaction strength.
We impose the periodic boundary condition to the position
space. For simplicity, L = 2π is assumed, where L is the
period in the position space. It is straightforward to extend our
analysis to an arbitrary L, as long as 0 < L < ∞.

We look at the dependence of eigenenergies and eigenvec-
tors on the coupling strength g. In particular, we focus on the
cycle C, which consists of three stages C(s) (s = 1,2,3). In
the first stage C(1), g is prepared to be 0 and is adiabatically
increased to ∞. Next, in stage C(2), g is suddenly flipped from
∞ to −∞. In the final stage C(3), g is again adiabatically
increased to 0, which is the initial value of g. We denote the
initial and final points of C as g = 0 and g = 0−, respectively,
to distinguish them.

The eigenvalue problem of H , Eq. (1), can be solved by the
Bethe ansatz, where an eigenfunction is composed of N plane
waves specified by a set of quasimomenta, also called rapidity
kj , which satisfy

exp(i2πkj ) =
∏

l �=j

kjl + ig

kjl − ig
, (2)
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where kjl = kj − kl [1]. We examine how kj (g)’s, which are
chosen to be smooth as g is varied, are changed by the cycle
C. The function kj (g) completely characterizes the parametric
evolution of eigenenergies, as well as the “adiabatic” evolution
of eigenvectors along C. The analysis is decomposed into the
three stages C(s) (s = 1,2,3).

At the initial point g = 0 of the first stage C(1), kj (0) takes
an integer value. Without loss of generality, we can choose the
order of kj (g)’s so as to satisfy k1(g) < k2(g) < · · · < kN (g)
for small positive g [23]. This ensures k1(0) � k2(0) � · · · �
kN (0).

We introduce two quantized quantities which is conserved
during the parametric evolution of kj (g) along C(1). Such
“topological invariants” provide a way to evaluate the change
of kj (g) induced by stage C(1).

First, during the interval 0 � g < ∞, we have an integer

Ij (g) ≡ kj (g) − 1

π

∑

j �=l

arctan
g

kjl(g)
. (3)

This is a consequence of Eq. (2) and (t + i)/(t − i) =
−e−2i arctan t , which is applicable as long as t−1 �= 0. We use
the principal branch of arctan throughout this paper. This
is justified for Eq. (3) because g/kjl(g) does not cross its
standard branch cuts, which emanate from ±i to ±i∞ [24].
The continuity and discreteness of Ij (g) in 0 � g < ∞ imply
that Ij (g) takes a constant value, which can be determined
from the value of kj (g) at the initial point of C, i.e.,

Ij (g) = kj (0). (4)

Second, Eq. (2) and another formula for arctan(t + i)/
(t − i) = e2i arctan(t−1), which holds for t �= 0, implies that, in
the interval 0 < g � ∞,

Jj (g) ≡ kj (g) + 1

π

∑

l �=j

arctan
kjl(g)

g
(5)

is a half-integer for even N and an integer for odd N [1].
Following a similar argument for Ij (g) above, we obtain the
value of the invariant Jj (g) for 0 < g � ∞:

Jj (g) = kj (∞). (6)

Now we evaluate the change of kj (g) during C(1) using these
invariants. From Eqs. (3) and (5), we obtain

kj (∞) − kj (0) = 1

2

∑

l �=j

sgnRe
kjl(g)

g
, (7)

where we used the identity

arctan(t) + arctan(1/t) = π

2
sgn[Re(t)]. (8)

We note that the right-hand side of Eq. (7) makes sense only
for 0 < g < ∞. Here, kjl(g) is positive for j > l and negative
for j < l, since we have assumed the order of kj (g) at the
initial point of C(1), and the sign of kjl(g) does not change for
g > 0 [23]. This implies

∑

l �=j

sgnRe
kjl(g)

g
=

j−1∑

l=1

−
N∑

l=j+1

. (9)

Accordingly, we obtain

kj (∞) − kj (0) = j − N + 1

2
. (10)

Next we examine the second stage C(2), where g suddenly
changes from ∞ to −∞. Note that all kj (∞)’s are finite
because of Eq. (10). Since a finite root of the Bethe equation,
Eq. (2), at g = ∞ is also its root at g = −∞, we employ a
smooth extension of kj (g) along C(2), i.e.,

kj (−∞) = kj (∞). (11)

Details of the justification of our choice are explained in
Appendix A.

We further extend kj (g)’s for the final stage C(3). First, we
impose that kj (g)’s satisfy Jj (g) = kj (∞) within the interval
−∞ � g < 0. This implies that kj (g)’s also satisfy Eq. (2). We
provide an argument that such kj (g)’s exist for −∞ � g < 0,
and are real-valued in Appendix A . We accordingly conclude
that Jj (g) is independent of g within the interval −∞ � g < 0,
because kj (g)’s take real and finite values there.

Second, we examine Ij (g) [Eq. (3)] for −∞ < g � 0. In
contrast to the analysis of Jj (g) above, we need to inspect
kj (0−), which is the final value of kj (g) in C(3) and is different
from the initial value kj (0). We carry this out by extending
kj (g)’s from the interval −∞ � g < 0. We explain the details
of our argument in Appendix B and only show the result that
Ij (g) agrees with kj (0−) within the interval −∞ < g � 0.

The change of kj (g) in the path C(3) is given by

kj (0−) − kj (−∞) = −1

2

∑

l �=j

sgnRe
kjl(g)

g
. (12)

We can ensure that

k1(g) < k2(g) < · · · < kN (g) (13)

because it holds at g = −∞ (see Appendix B ). Recalling the
fact that g is negative here, we obtain

kj (0−) − kj (−∞) = j − N + 1

2
. (14)

Combining above three arguments, we obtain a nontrivial
change of kj (g) due to C in the form

kj (0−) − kj (0) = 2j − (N + 1). (15)

Note that the total momentum remains unchanged during the
cycle C. The final energy and state after the adiabatic cycle,
however, are different from the initial ones, showing that C
induces the eigenenergy and eigenspace anholonomies [22].
We also remark that k1 < k2 < · · · < kN holds at the end of C.
This implies that we can repeat the adiabatic cycle C arbitrarily,
and the repetition of C will induce the further instances of the
eigenenergy and eigenspace anholonomies.

We can summarize our results in terms of a mapping
between two sets of quasimomenta of free bosons, i.e., kj (0)’s
and kj (0−)’s. It is sufficient to consider the case that ini-
tial condition nj ≡ kj (0) satisfies n1 � n2 � · · · � nN . With
the notation n′

j ≡ kj (0−), the mapping (n1,n2, . . . , nN ) �→
(n′

1,n
′
2, . . . , n

′
N ) = F (n1,n2, . . . , nN ), which is given by

F (n1,n2, . . . , nN )

= (n1 − N + 1,n2 − N + 3, . . . , nN + N − 1), (16)

expresses the quantum holonomy induced by the cycle C.
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III. INVERSE CYCLE

We now examine the inverse of the cycle C. In contrast to
the forward cycle C, the parametric variation along the inverse
C−1 is not always possible. This is because the clustering of
particles at g = −∞ induces the divergence of eigenenergy
[1]. Such a clustering invalidates the use of the Hamiltonian,
Eq. (1). We call an eigenstate of free boson at g = 0 a minimal
state if the the parametric variation along C−1 is impossible.
The precise condition for appearance of the minimal state is
the subject of this section.

Formally, C−1 corresponds to the inverse of the mapping F

[Eq. (16)] on the sets of quasimomenta at g = 0:

F−1(n1,n2, . . . , nN )

= (n1 + N − 1,n2 + N − 3, . . . , nN − N + 1), (17)

where we impose the ordering condition n1 � n2 � · · · � nN .
When the distance between nj ’s are far enough, F−1 preserves
the ordering. This is the case that C−1 can be realized, and
the resultant energy and quantum state are the solution of the
eigenvalue problem of H [Eq. (1)] at g = 0. On the other hand,
when a pair of nj ’s is too close, F−1 breaks the ordering,
which implies the emergence of the clustering of particles
during the inverse cycle. There are two possible cases. The
first case is where a pair of quasimomenta, say, nj and nj+1,
are degenerate, i.e., nj = nj+1. By applying F−1, the resultant
quasimomenta satisfy nj > nj+1. In fact, the eigenenergy
diverges −∞ as g → −∞ during C−1. The second case,
nj = nj+1 + 1, also leads the clustering of particles.

The argument above is sufficient to determine the condition
for the minimal states. When there is, at least, a pair of two
quasimomenta at g = 0 that satisfies

|nj − nj+1| � 1, (18)

states specified by nj and nj+1 are minimal states.

IV. CLASSIFICATION OF SPECTRA

Because of the existence of quantum holonomy, some states
are reachable by the repetitions of parametric cycles C and C−1

starting from one particular eigenstate, while other states are
not. This offers the classification of whole eigenstates into
families of states connected by quantum holonomy. Such a
family can be specified by a minimal state introduced above,
because an arbitrary eigenstate with a finite energy can become
minimal by a finite repetition of C−1.

From one minimal state, we can find other minimal
states using the symmetries of the Hamiltonian (1). Sup-
pose that a minimal state is specified by quasimomenta
(n1,n2, . . . , nN ). The translational symmetry implies that
(n1 + 1,n2 + 1, . . . , nN + 1) is also a minimal state, whose
total momentum is larger by N than the original one.
For an arbitrary integer �, (n1 + �,n2 + �, . . . , nN + �) is
also a minimal state. The reflection symmetry implies that
(−nN, . . . , − n2, − n1) is also a minimal state, which may or
may not be different from the original state.

2
g

1
g 1

0
g 0

1
g 1

2
g

x

1

2

3
E

FIG. 1. (Color online) Parametric evolution of eigenenergies of
the two-body Lieb-Liniger model, where the x and y axes indicate
(4/π ) arctan g and

√
E, respectively. The unit is chosen such that h̄

and the mass of a particle are set to unity. The period of the position
space is chosen to be 2π . The thick (black) and thin (blue) lines
correspond to the families specified by the minimal states (0,0) and
(0,1), respectively. See Eqs. (21) and (22). Note that the eigenenergies
are continuous at g = ±∞.

Hence, it is sufficient to find all minimal states whose total
momenta satisfy the condition

−N

2
<

∑

j

nj � N

2
, (19)

to enumerate all minimal states using the translational symme-
try, offering a way to classify the spectra of the Lieb-Liniger
model completely. We illustrate this classification for few-
body cases.

We start the analysis of N = 2 case with two minimal states,

(0, 0) and (0, 1). (20)

We obtain two families of eigenstates at g = 0 from these two
minimal states, by repeating C,

(0,0) �→ (−1,1) �→ (−2,2) �→ · · · (21)

and

(0,1) �→ (−1,2) �→ (−2,3) �→ · · · , (22)

respectively. The eigenenergies of these families are depicted
in Fig. 1. By shifting the total momentum from the two minimal
states[Eq. (20)], we obtain an infinite number of minimal states
(�,�) and (�,� + 1) with an arbitrary integer �. The (�,�) and
(�,� + 1) families have the set of quasimomenta at g = 0
given by {(� − m,� + m)}∞m=0 and {(� − m,� + 1 + m)}∞m=0,
respectively. This exhausts the minimal states and families for
N = 2.

The N = 3 case is far more complex than the N = 2 case.
First, we consider the case that the total momentum is zero,
where an infinite number of minimal states can be found. We
depict some of them in Fig. 2. There are two minimal states,

(0,0,0) and (−1,0,1), (23)
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FIG. 2. (Color online) Eigenenergies of N = 3 families, where
the x and y axes are the same as in Fig. 1. The total momentum of
all families shown here is zero. The thick (black) line corresponds to
the family [Eq. (24)] specified by the minimal state (0,0,0). The thin
(blue) line corresponds to the (−1,0,1) family. These two families
are trimers. The dotted (red), dashed (brown), and dash-dotted (gray)
lines are dimer families specified by minimal states (−1, −1,2),
(−2, −2,4), and (−3, −3,6), respectively. Although there are level
crossings, the adiabatic theorem ensures that the adiabatic time
evolution is confined within a family [25]. The choice of the unit
is the same as in Fig. 1.

which are called trimers [26], because the clustering of all
three particles occurs in the limit g → −∞. The family of
eigenstates at g = 0 specified by the minimal state (0,0,0) is

(0,0,0) �→ (−2,0,2) �→ (−4,0,4) �→ · · · . (24)

Besides, there are an infinite number of minimal states,

{(−�, − �,2�)}�>0 and {(−2�,�,�)}�>0, (25)

where the latter set can be induced through the use of the
reflection symmetry. These minimal states are called dimers
[26], because the clustering of two particles occurs in the limit
g → −∞. Second, we consider the case

∑
j nj = 1. We have

a trimer,

(0,0,1), (26)

and an infinite number of dimers

{(−�, − �,2� + 1)}�>0, {(−�, − � + 1,2�)}�>0,

{(−2� + 1,�,�)}�>0, {(−2�,�,� + 1)}�>0. (27)

Note that all minimal states that satisfy
∑

j nj = −1 can be
obtained from the minimal state with

∑
j nj = 1 through the

use of the reflection symmetry. We obtain all other minimal
states from above using the translational and reflection
symmetry.

It is possible to enumerate minimal states and associated
spectral families in a similar way for larger N . We simply close
this section by showing several families of the N = 4 system
in Fig. 3.

2
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0
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FIG. 3. (Color online) Parametric evolution of eigenenergies of
the N = 4 case, where the x and y axes are the same as in
Fig. 1. The thick (black) line corresponds to the family (0,0,0,0) �→
(−3, −1,1,3) �→ (−6, −2,2,6) . . . . The thin (blue) and dotted (red)
lines correspond to (−1,0,0,1) and (−1, −1,1,1) families, respec-
tively. The choice of the unit is the same as in Fig. 1.

V. EXCEPTIONAL POINTS

So far we have focused on the quantum holonomy induced
by the real cycle C. In this section, we examine the relationship
between the exotic quantum holonomy and non-Hermitian
degeneracy points, which are also known as Kato’s exceptional
points [27,28], using the complexification of the coupling
parameter g. When we adiabatically vary g along a cycle that
encloses an exceptional point, the permutation of eigenener-
gies as well as eigenspaces occurs. This resembles the exotic
quantum holonomy. Indeed, in Ref. [29] it is argued that,
through an analysis of a quantum kicked top, the quantum
holonomy has a correspondence with the exceptional points.
In other words, it is conjectured that the eigenenergy and
eigenspace anholonomy can be understood as a result of
the metamorphosis of eigenenergies and eigenstates induced
by the encirclements around the exceptional points. In the
following, we offer another example of this conjecture using
the two-body Lieb-Liniger model by deforming C in the
complexified g space.

Due to the complexification of g, the Lieb-Liniger Hamil-
tonian (1) becomes non-Hermitian, which describes a one-
dimensional dissipative Bose system [30]. We obtain eigenen-
ergies with complex-valued coupling parameter g through
numerical computation. We here focus on the (0,0) family
[Eq. (21)]. Let En(g) denote the eigenenergy of the state whose
quasimomenta take (−n,n) at g = 0. We depict En(g) for n =
0,1,2 in Fig 4. We find that these eigenenergies compose a Rie-
mann surface. Its Riemann sheets En(g) are connected by the
exceptional points and associated branch cuts (cf. Ref. [31]).

Under the present choice of the branch cuts, all exceptional
points of the (0,0) family appear in the E0(g) sheet. A pair of
eigenenergies En(g) (n > 0) and E0(g) has a pair of degenerate
points gn and g∗

n, where we choose Imgn < 0. We find that
all degenerate points are of degree two. Hence, the pair of
eigenenergies for an exceptional point exhibits square-root-
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FIG. 4. (Color online) Contour plots of ReEn(c): (a) n = 0;
(b) n = 1; (c) n = 2. Lighter (darker) color indicates larger (smaller)
value of ReE. Thin lines are the contours of ReEn(c). The exceptional
points are indicated by solid circles. Bold lines indicate the branch
cuts. While all complex exceptional points appear in E0(c), each En(c)
(n = 1,2) has a single exceptional point. (d) Schematic explanation
of complex cycles that enclose exceptional points. We depict C by a
thick (red) line. Dashed (blue) and dotted (black) curves indicate C1

and C2, respectively. See the main text. The choice of the unit is the
same as in Fig. 1.

type singularity. The encirclement around the exceptional
point gn in the complex g plane induces the permutation of
E0(g) and En(g). We numerically confirm these properties of
gn with n = 1,2, . . . ,10. We find that Regn and Imgn decrease
monotonically as n increases. We also obtain similar results
for the (0,1) family.

We note that our numerical finding can be explained by a
perturbation expansion for g = −∞ with a small parameter
g−1, as for the exceptional points that are far from the
real axis [32]. We will explain the details in a forthcoming
publication [33].

Let us consider the cycle that is a concatenation of C and
C1 in Fig. 4(d). Because this cycle encircles the exceptional
point g1, the cyclic permutation (E0,E1) occurs. On the
other hand, the cycle composed of C and C2 induces the
cyclic permutation among (E0,E1,E2). As the cycle involves
more deeper exceptional points, the accuracy of the the
resultant permutation become better to approximate a shift to
eigenenergies (E0,E1, . . .) �→ (E1,E2, . . .), which is realized
by the quantum holonomy along the cycle C. In this sense,
we may say that the spectrum of Lieb-Liniger model feels the
exceptional points that reside in the complex parameter space
to induce the quantum holonomy along C.

VI. CONCLUSION

We have shown in this work that an eigenstate of the
free Lieb-Liniger system g = +0 is transformed to another

eigenstate with higher energy in the process of eigenspace
anholonomy involving the parametric cycle g : +0 → +∞ :
−∞ → −0. Experimental testing should be within the range
of current techniques [16,17]. On the way to prove the
existence of quantum holonomy, we have demonstrated that
the eigenstates of the Lieb-Liniger model can be classified
according to their clustering property. The two- and three-
boson systems have been analyzed in detail.

Our result can be interpreted in terms of geometry.
Consisting of real numbers and ±∞, the parameter space
of coupling strength is homeomorphic to S1. Therefore, our
anholonomy is affected by the topology of S1. The presence of
two kinds of invariants, Ij (g) [Eq. (3)] and Jj (g) [Eq. (5)], for
the parametric evolution of kj (g) reflects the fact that at least
two charts are required for S1. Converting one of spectrum
condition to the other by using the formula of arctan (8)
corresponds to coordinate transformation. The cycle of the
winding number m, Cm, increases kj (0) by m[2j − (N + 1)].

The topological nature of the the quantum holonomy
implies that it is stable against, at least, small perturbations
[34]. This also suggests that an experimental realization of the
quantum anholonomy is possible in one-dimensional bosonic
systems.
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APPENDIX A: EXTENSION OF k j (g)’S TO −∞ � g < 0

We examine kj (g)’s that satisfy

kj (∞) = kj (g) + 1

π

∑

l �=j

arctan
kjl(g)

g
(A1)

in the interval −∞ � g < 0 in this appendix. Our argument
consists of two parts. First, we provide an argument that kj (g)’s
are real and finite for −∞ � g < 0. Second, we explain that
such kj (g)’s are the smooth extension of the ones defined in
the first stage C(1).

We have already examined kj (∞), which appears in the left-
hand side of Eq. (A1), in the main text. In particular, kj (∞)’s
are real and finite. Also, kj (∞)’s are not degenerate, i.e.,

kj (∞) − kl(∞) > 0, (A2)

for j > l, which is ensured by Eq. (10).
We introduce an assumption that plays the crucial role in

the following argument. We assume that there uniquely exists
{kj (g)}Nj=1 that satisfies Eq. (A1). We note that this assumption
indeed holds, as for g > 0 [8].

We show that kj (g)’s are real numbers by reductio ad
absurdum. Namely, we suppose that kj (g) is not real and
satisfies Eq. (A1) for a given j . Accordingly, its complex
conjugate kj (g)∗ also satisfies Eq. (A1), because Eq. (A1) is
invariant under the complex conjugate. Since kj (g)∗ is different
from kj (g) and there uniquely exists {kj (g)}Nj=1, there exists j ′

such that kj ′(g) = kj (g)∗ and j ′ �= j . We compare kj (∞) and
{kj ′(∞)}∗, which are real numbers. Using Eq. (A1), we find
kj (∞) − {kj ′(∞)}∗ = 0, which contradicts Eq. (A2).
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A corollary of the above proposition, i.e., kj (g) are real for
−∞ � g < 0, is the continuity of kj (g)’s in the stages C(2) as
well as C(3), as mentioned in the main text [see Eq. (11)]. In this
sense, kj (g)’s that satisfy Eq. (A1) are the smooth extension of
kj (g) for 0 < g � ∞. We prove this corollary. Since kj (g)’s
are real numbers, we have

| arctan[kjl(g)/g]| < π/2, (A3)

which implies that kj (g)’s are finite, i.e.,

|kj (g)| � |kj (∞)| + 1

π

∑

l �=j

π

2
< ∞, (A4)

where we use Eq. (A1). Hence, we find

lim
g→−∞ kjl(g)/g = 0. (A5)

Taking the limit of Eq. (A1) as g → −∞, we obtain

lim
g→−∞ kj (g) = kj (∞) + lim

g→−∞
1

π

∑

l �=j

arctan
kjl(g)

g

= kj (∞). (A6)

Hence, we conclude that kj (g) is continuous at g = −∞. A
similar argument above tells us that kj (g) is also continuous
at g = ∞.

APPENDIX B: EXTENSION OF k j (g)’S
FROM g < 0 TO g = 0

We have explained the smooth extension of kj (g)’s through
the flip of g from ∞ to −∞ in Appendix A . Here we
extend further kj (g)’s from g < 0 to g = 0 to complete the

analysis of the stage C(3). We carry this out by showing
kj (0−) = Ij (g).

To prepare this, we show that kj (g) �= kj ′(g) holds for g < 0
and an arbitrary pair of (j,j ′). We prove this by contradiction.
Suppose that there exists g (<0), where kj (g) = kj ′ (g) (j �=
j ′). Then Eq. (A1) implies that kj (∞) = kj ′(∞), which is
inconsistent with Eq. (A2).

Next we show that kj (g) �= kj ′(g) (j �= j ′) also holds in the
limit g → 0−. We show this by using reductio ad absurdum.
Suppose kj (0−) = kj ′(0−). We can assume j > j ′ without
loss of generality. Hence, Eq. (A1) under the limit g → 0−
implies

kj (∞) − kj ′(∞) = lim
g→0−

2

π
arctan

kjj ′(g)

g
. (B1)

Thus, we conclude kj (∞) − kj ′ (∞) � 0, since
arctan[kjj ′(g)/g] < 0 holds as long as g < 0. This conclusion
contradicts with Eq. (A2) with j > j ′. We thus show
kj (0−) �= kj ′ (0−).

We examine Ij (g) [Eq. (3)] in the limit g → 0−.
Since kjl(0−) �= 0 holds, as shown above, we find
limg→0− g/kjl(g) = 0. Hence, we obtain Ij (0−) = kj (0−).
Because Ij (g) is independent of g for −∞ < g < ∞, we
conclude Ij (g) = kj (0−) for g � 0. We note that this re-
sult and Eq. (4) imply continuity of kj (g) at g = 0±. As
for the proof of the continuity at g = 0+, we refer to
Ref. [23].

Finally, we remark that the present argument and Eq. (A2)
imply that the ordering of kj (g) satisfies k1(g) < k2(g) <

· · · < kN (g) for g � 0.
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104, 153203 (2010).

[18] M. T. Batchelor, M. Bortz, X. W. Guan, and N. Oelkers, J. Stat.
Mech.: Theory Exp. (2005) L10001.

[19] T. Cheon and A. Tanaka, Europhys. Lett. 85, 20001 (2009).
[20] M. Berry, Proc. R. Soc. A 392, 45 (1984).
[21] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[22] T. Cheon, Phys. Lett. A 248, 285 (1998).
[23] T. Dorlas, Commun. Math. Phys. 154, 347 (1993).
[24] See, e.g., F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.

Clark, NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010), Sec. 4.

[25] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).
[26] J. G. Muga and R. F. Snider, Phys. Rev. A 57, 3317

(1998).
[27] T. Kato, Perturbation Theory for Linear Operators (Springer-

Verlag, Berlin, 1980).
[28] W. D. Heiss, Czech. J. Phys. 54, 1091 (2004).
[29] S. W. Kim, T. Cheon, and A. Tanaka, Phys. Lett. A 374, 1958

(2010).
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