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1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
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Production of electron-positron pairs from vacuum in the combined electromagnetic fields of a high-intensity
laser pulse and an atomic nucleus is studied within the framework of laser-dressed quantum electrodynamics.
The focus lies on the influence exerted by a finite laser pulse length on the energy spectra of created electrons and
positrons, which is examined in a broad range of field frequencies and intensities. The results for an isolated short
laser pulse are also compared with corresponding calculations for an infinite train of laser pulses. It is shown that
the laser pulse length and its carrier-envelope phase have a substantial effect on the pair creation process, leading
to both quantitative and qualitative differences in the particle spectra.
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I. INTRODUCTION

Investigations of electron-positron (e−e+) pair production
via multiphoton absorption in the strong electromagnetic
fields of intense laser radiation started in the 1960s [1–3].
While the problem was of purely theoretical interest at that
time, nowadays there is a clear perspective for corresponding
experimental studies due to a remarkable and still ongoing
progress in high-power laser technology. Field intensities well
beyond 1020 W/cm2 are available today in many laboratories
worldwide and an increase towards 1025 W/cm2 is envisaged
within the Extreme Light Infrastructure (ELI) project [4].
This way the characteristic intensity level for extracting
e−e+ pairs out of the vacuum, given by the critical value
Icr ∼ 1029 W/cm2, is being approached. These developments
have stimulated substantial theoretical activities on e−e+ pair
production and other quantum electrodynamic processes in
high-intensity laser fields during the last decade [5,6].

Already at present, a suitable combination of advanced
technologies allows for experimental studies on e−e+ pair
production in strong laser fields. The relevant field intensity
can be amplified effectively when a highly relativistic particle
beam from an accelerator counterpropagates an intense laser
pulse. In the rest frame of the projectile particles the laser
intensity is enhanced by a factor 4γ 2 where γ � 1 denotes
the relativistic Lorentz factor. In this manner the first (and so
far only) observation of e−e+ pair production via multiphoton
absorption was accomplished in ultrarelativistic electron-laser
collisions at the Stanford Linear Accelerator Center (SLAC)
in the 1990s [7]. The detected pairs were attributed to a mul-
tiphoton version of the Breit-Wheeler process, according to
ωC + NωL → e−e+, with a high-energy photon ωC generated
through Compton backscattering and a certain number N of
laser photons ωL being involved.

Another mechanism of laser-induced e−e+ pair production
is the nonlinear Bethe-Heitler process, Z + NωL → Z +
e−e+, where the leptons are created by laser radiation in the
vicinity of an atomic nucleus. This is the subject of the present
paper. This hitherto unobserved process could, in principle,
be realized by exploiting the relativistic nuclear beams (γ ∼
103–104) of the Large Hadron Collider at CERN, together with
superstrong laser beams of intensity 1022 W/cm2. At the future

ELI facility, corresponding measurements could be conducted
at significantly lower nuclear beam energies (γ ∼ 10–100). In
view of these prospects, it is important to develop more and
more refined theoretical models in order to provide a realistic
description of the experimental situation.

Various aspects of nonlinear Bethe-Heitler pair production
in relativistic nucleus-laser collisions have already been stud-
ied theoretically. Total production rates and positron or elec-
tron spectra were obtained in a broad range of field parameters
[8–13]. The relevance of bound atomic states [14], the influ-
ence of nuclear recoil [15–18], and electron spin effects [19,20]
have also been explored. Besides, Bethe-Heitler pair produc-
tion in a combination of high-frequency and low-frequency
laser fields was studied [21,22]. Very recently, the process has
been calculated in a bichromatic laser field of commensurate
frequencies, revealing quantum interference and relative phase
effects [23,24]. In all these investigations the laser field was
assumed to be of infinite extent in space and time.

In the present paper, we consider e−e+ pair production
via the nonlinear Bethe-Heitler process in a laser pulse of
finite length. Our study is motivated by the fact that laser
fields of ultrahigh intensity, as required for pair production,
are typically generated in short pulses comprising just a few
field oscillations. We generalize the well-established theory
based on Dirac-Volkov states to the case where the laser
field is nonzero only on a finite phase interval. Our theory
enables us to treat nonlinear Bethe-Heitler pair production
by single laser pulses of arbitrary length. In particular, the
case of a very short few-cycle pulse will be investigated in
detail. We also compare our results for a single laser pulse
with the periodic situation of an infinite train of pulses.
It will be shown that the precise shape of the laser field
exhibits a characteristic influence on the electron and positron
energy spectra. Our study complements earlier calculations
where nonlinear Bethe-Heitler pair production in a finite, but
relatively long laser pulse (comprising many field oscillations)
was analyzed [25]. Besides, the process was also considered
for a pulse train of special form which can be modeled within
a bichromatic theory [23].

We point out that calculations of quantum electrodynamical
processes in finite laser pulses have recently been performed
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with regard to nonlinear Compton scattering [26–31] and
nonlinear Breit-Wheeler pair production [32–34]. Both re-
actions are related via a crossing symmetry of the corre-
sponding Feynman graphs. The latter process offers moreover
an interesting means to measure the duration of ultrashort
high-energy photon pulses [35]. Also other mechanisms of
laser-induced e−e+ pair creation involving short field pulses
or special field combinations have been examined (see, e.g.,
Refs. [36–43]). In addition we note that e−e+ pairs can be
produced very efficiently through interaction of high-intensity
laser pulses with solid targets. Here the pair production relies
on a reaction chain, with the ordinary (linear) Bethe-Heitler
effect representing the final step [44].

It is well known that laser-induced e−e+ pair production
shares characteristic similarities with atomic ionization in
strong laser fields [45]. In our study we shall mainly focus
on a nonperturbative interaction regime, which corresponds
to the above-threshold ionization (ATI) of atoms. Effects
of ultrashort few-cycle pulses on ATI have been studied
thoroughly, both in theory and experiment [46]. Relativistic
ATI [47,48] and electron spin effects [49,50] were examined
as well. Another analogy of field-induced pair production can
be realized by interband transitions in optical lattices [51].

The paper is organized as follows. In Sec. II we present our
theoretical approach to nonlinear Bethe-Heitler pair creation
in a laser field of finite length. First, the case of a single,
isolated laser pulse will be treated (Sec. II A) and, afterward,
the case of a laser pulse train (Sec. II B). The pulse shapes
under consideration are introduced in Sec. III. Results of our
numerical calculations are shown and discussed in Sec. IV.
Here we focus on differences in the electron and positron
energy spectra when the pair creation occurs in a single
pulse or a train of pulses. Pulses comprising very few or
several field oscillations are considered. The resulting pair
yields are compared in Sec. V. In Sec. VI we summarize the
conclusions that can be drawn from our study. Some details of
the calculations are provided in the Appendixes. Throughout
the paper, we use the notation and mathematical convention
introduced in Ref. [31].

II. THEORY

A. Single laser pulse

In this section, we formulate the theory for the Bethe-Heitler
process by a finite laser pulse, which is similar to the approach
introduced by Neville and Rohrlich in the context of Compton
scattering [52]. We assume that the pulse lasts for a time Tp,
which defines the fundamental frequency of the laser field
oscillations ω = 2π/Tp and the wave four-vector k = k0(1,n),
where ω = ck0. We consider a laser pulse described by the
following four-vector potential,

A(k · x) = A0[ε1f1(k · x) + ε2f2(k · x)], (1)

where the polarization four-vectors are such that εi · εj = −δij

and k · εi = 0. Without loss of generality, we assume that
both polarization vectors are real, i.e., each of them is linearly
polarized. However, the vector potential (1) defines an arbitrary
polarized laser field, depending on the choice of the shape
functions fi(k · x). We will use the parameter μ, which defines
the strength of the laser field, μ = |eA0|/(mec) with e < 0

being the electron charge. The laser pulse shape functions
fi(k · x) are chosen such that the following condition is
satisfied,

A(k · x) = 0 for k · x < 0 and k · x > 2π. (2)

For an electron (positron) that is coupled to the electromagnetic
radiation (1), the Dirac equation has the form

(i /∂ − e /A − mec)ψ (β)
p,λ(x) = 0, (3)

where solutions ψ
(β)
p,λ(x) are called the Volkov waves [53].

Here, the Volkov solutions are labeled by three indices; while
p and λ refer to the particle momentum outside the laser
focus and to its spin projection, respectively, β distinguishes
between positive- and negative-energy states that correspond
to an electron (β = +1) or to a positron (β = −1). In the most
general form, these solutions are given by (see Ref. [16])

ψ
(β)
p,λ(x) =

√
mec2

V E p

(
1 − βe

2k · p
/A/k

)
u

(β)
p,λ e−iβS

(β)
p (x), (4)

where u
(β)
p,λ are four-spinors satisfying the field-free equation,

(/p − βmec)u(β)
p,λ = 0. These four-spinors are normalized such

that ū
(β)
pλu

(β ′)
pλ′ = βδββ ′δλλ′ . In addition, the phase factor S

(β)
p (x)

is

S(β)
p (x) = p · x +

∫ k·x
dφ

[
β

eA(φ) · p

k · p
− e2A2(φ)

2k · p

]
. (5)

Here, E p = cp0 � mec
2 and p = (p0, p). Since the condition

(2) is imposed, the momentum p that is present in Eqs. (4)
and (5) is interpreted as a field-free asymptotic momentum
of a particle. Thus, it satisfies the on-shell mass relation
p · p = (mec)2.

In the so-called potential approximation, the S-matrix
amplitude describing the nonlinear Bethe-Heitler process can
be written as

Sfi = −iZα

∫
d4x

1

|x|
[
j

(+−)
pe−λe− , pe+λe+

(x)
]0

, (6)

where Z is the atomic number of an atomic nucleus, α =
e2/(4πε0c) is the fine structure constant and j

(+−)
pe− λe− , pe+λe+

(x)
is the electron-positron four-current with the ν component
defined as[

j
(+−)
pe−λe− , pe+ λe+

(x)
]ν = ψ̄

(+)
pe−λe−

(x)γ νψ
(−)
pe+ λe+

(x). (7)

Substituting here the Volkov solutions (4), the S-matrix
amplitude (6) becomes

Sfi = −iZα
mec

2

V
√

E pe− E pe+

×
∫

d4x
1

|x| C
0(k · x) e−iQ·x−iH (k·x), (8)

where Q = −pe− − pe+ , whereas

H (k · x) =
∫ k·x

0
dφh(φ) =

∫ k·x

0
dφ

{
h1f1(φ) + h2f2(φ)

+h0
[
f 2

1 (φ) + f 2
2 (φ)

]}
, (9)
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which implicitely defines h(φ) with

h0 = −1

2
(μmec)2

(
1

k · pe−
+ 1

k · pe+

)
, (10)

hi = μmec

(
εi · pe−

k · pe−
− εi · pe+

k · pe+

)
, i = 1,2. (11)

Moreover, in Eq. (8) we have also

C0(k · x) = g00 + (g10 + g01)f1(k · x) (12)

+ (g20 + g02)f2(k · x) + g11f
2
1 (k · x)

+ (g12 + g21)f1(k · x)f2(k · x) + g22f
2
2 (k · x),

with the coefficients gij (i,j = 1,2) defined as

g00 = ū
(+)
pe− λe−

γ 0u
(−)
pe+ λe+

, (13)

gi0 = − μmec

2(k · pe− )
ū

(+)
pe−λe−

/εi/kγ 0u
(−)
pe+λe+

, (14)

g0i = − μmec

2(k · pe+)
ū

(+)
pe−λe−

γ 0/εi/k u
(−)
pe+λe+

, (15)

gij = (μmec)2

4(k · pe−)(k · pe+ )
ū

(+)
pe− λe−

/εi/kγ 0/εj /k u
(−)
pe+λe+

. (16)

Let us express the S-matrix element (6) in the light-cone
variables [31],

Sfi = −iZα
mec

2

V
√

E pe− E pe+

∫
d4x

C0(k0x−)√
(x⊥)2 + (x+ − x−

2 )2

× e−i(Q−x++Q+x−− Q⊥x⊥)−iH (k0x−). (17)

Performing here integrals with respect to x⊥ and x+, we arrive
at

Sfi = −iZα
mec

2

V
√

E pe− E pe+

4π

( Q⊥)2 + (Q−)2

×
∫

dx−C0(k0x−) exp[−iQ0x− − iH (k0x−)]. (18)

We note that in the present case both conditions Q⊥ = 0 and
Q− = 0 cannot be simultaneously satisfied, which means that
the denominator in the above equation does not vanish.

At this point, let us note that the integral in Eq. (18) has
to be transformed, similar to the transformation introduced by
Boca and Florescu [26] in the context of Compton scattering.
Following the procedure defined in Ref. [31], it can be shown
that the replacement should be made,∫

dx− exp[−iQ0x− − iH (k0x−)]

→ − k0

Q0

∫
dx−h(k0x−) exp[−iQ0x− − iH (k0x−)], (19)

which consequently leads to a redefinition of the matrix ele-
ment C0(k0x−) in Eq. (18). Note that the above transformation
is justified provided that Q0 �= 0, which is exactly the case. In
the next step, we represent the phase in (18) as

Q0x− + H (k0x−) = Q̄0x− + G(k0x−), (20)

where a linear and an oscillatory part with respect to x− have
been separated. More specifically, we have

Q̄ = Q + [
h1〈f1〉 + h2〈f2〉 + h0

(〈f 2
1 〉 + 〈f 2

2 〉)]k, (21)

and

G(k · x) =
∫ k·x

0
dφ

{
h1(f1(φ) − 〈f1〉) + h2[f2(φ) − 〈f2〉]

+h0
[
f 2

1 (φ) − 〈f 2
1 〉 + f 2

2 (φ) − 〈f 2
2 〉]}, (22)

where it is understood that

〈fi〉 = 1

2π

∫ 2π

0
dφfi(φ) = 1

Tp

∫ Tp

0
dtfi(ck

0t − k · r), (23)

for i = 1,2, and similarly for 〈f 2
i 〉. When separating linear

and periodic parts in Eq. (20), the so-called laser-field-dressed
momenta can also be introduced [31,34]

p̄ = p − βμmec

[
ε1 · p

k · p
〈f1〉 + ε2 · p

k · p
〈f2〉

]
k

+ 1

2
(μmec)2

〈
f 2

1

〉 + 〈
f 2

2

〉
k · p

k. (24)

Due to the presence of terms which are linear in 〈fi〉 (i = 1,2)
in Eq. (24), one can anticipate that the electron (β = +1) and
positron (β = −1) response to a finite laser pulse can be very
different. This will be investigated later on when analyzing
spectra of created pairs.

In the integrand in Eq. (18), we deal now with terms, which
can be Fourier decomposed,

[f1(k0x−)]n[f2(k0x−)]me−iG(k0x−) =
∑
N

G
(n,m)
N e−iNk0x−

,

(25)
where n,m = 0,1,2, and where the case when n = m = 0 has
been eliminated by the transformation (19). Using the above
Fourier expansion, we end up with integrals,

∫ 2π/k0

0
dx−e−i(Nk0−p̄0

e−−p̄0
e+ )x−

= 1 − e−2πi(Nk0−p̄0
e− −p̄0

e+ )/k0

i(Nk0 − p̄0
e− − p̄0

e+ )
. (26)

Thus, the S-matrix amplitude (18) becomes,

Sfi = − Zαmec
2

V
√

E pe− E pe+

× 4π

( p⊥
e− + p⊥

e+ )2 + (p0
e− + p0

e+ − n · pe− − n · pe+ )2

×
∑
N

C0
N

1 − e−2πi(Nk0−p̄0
e− −p̄0

e+ )/k0

Nk0 − p̄0
e− − p̄0

e+
, (27)
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where the transformed coefficients C0
N are defined as

C0
N =

(
g10 + g01 + g00

k0h1

p0
e− + p0

e+

)
G

(1,0)
N

+
(

g20 + g02 + g00
k0h2

p0
e− + p0

e+

)
G

(0,1)
N

+
(

g11 + g00
k0h0

p0
e− + p0

e+

)
G

(2,0)
N

+
(

g22 + g00
k0h0

p0
e− + p0

e+

)
G

(0,2)
N

+ (g12 + g21)G(1,1)
N . (28)

Let us note that based on Eq. (27), one recovers the appropriate
expression for the S-matrix amplitude in the monochromatic
limit. In the latter case, the summation parameter N has a clear
interpretation as a number of laser photons exchanged by the

nucleus with the field in order to produce pairs. A similar
interpretation is justified for a laser pulse train, which will be
discussed in the next section.

Based on Eq. (27), one can define the probability of
electron-positron pair creation due to the laser-nucleus inter-
action,

P(p) =
∑
{λ}

∫
V d3pe−

(2π )3

V d3pe+

(2π )3
|Sfi|2. (29)

Here, |Sfi|2 describes the respective probability of pair creation
between well-defined momentum and spin states of particles.
In addition, the integration over the density of final momentum
states of electrons V d3pe−/(2π )3 and positrons V d3pe+/(2π )3

is performed. Finally, the symbol
∑

{λ} = ∑
λe−=±

∑
λe+=±

denotes summation with respect to the final spin degrees of
freedom. Having this in mind, we can rewrite the formula
defining the probability of pair creation (29) by a single laser
pulse,

P(p) = Z2α2m2
e

4π4

∑
{λ}

∫
dE pe− dE pe+ d� pe− d� pe+

| pe−|| pe+|[
( p⊥

e− + p⊥
e+ )2 + (p0

e− + p0
e+ − n · pe− − n · pe+ )2

]2

×
∣∣∣∣∣
∑
N

C0
N

1 − e−2πi(Nk0−p̄0
e− −p̄0

e+ )/k0

Nk0 − p̄0
e− − p̄0

e+

∣∣∣∣∣
2

, (30)

where we used the fact that d3pe± = | pe±|p0
e±dp0

e±d� pe± .
Based on this equation, we can define the differential probability distribution of pair creation by a single laser pulse,

d6P(p)

dE pe− dE pe+ d� pe− d� pe+
= Z2α2m2

e

4π4

∑
{λ}

| pe−|| pe+|[
( p⊥

e− + p⊥
e+ )2 + (p0

e− + p0
e+ − n · pe− − n · pe+ )2

]2

×
∣∣∣∣∣
∑
N

C0
N

1 − e−2πi(Nk0−p̄0
e− −p̄0

e+ )/k0

Nk0 − p̄0
e− − p̄0

e+

∣∣∣∣∣
2

, (31)

such that

P(p) =
∫

dE pe− dE pe+ d� pe− d� pe+

× d6P(p)

dE pe− dE pe+ d� pe− d� pe+
. (32)

Let us note that in the sum over N in Eq. (31), the main
contribution in the case of a long laser pulse comes from those
terms N , which are close to Neff , where Neffk

0 − p̄0
e− − p̄0

e+ =
0. This means that Neffck

0 is the energy absorbed from the
laser pulse,

Neff = p̄0
e− + p̄0

e+

k0
= cTp

p̄0
e− + p̄0

e+

2π
. (33)

To have an analogy with the case of a laser pulse train discussed
in the next section, we redefine the differential probability of

pair creation such that

d6P(p)

dNeffdE pe− d� pe− d� pe+

=
∣∣∣∣dE pe+

dNeff

∣∣∣∣ d6P(p)

dE pe− dE pe+ d� pe− d� pe+
, (34)

where dE pe+ /dNeff is calculated numerically. We shall refer
to the above distribution in Sec. IV when presenting our
numerical results.

B. Laser pulse train

In this section, we present the theory of the nonlinear Bethe-
Heitler process, which is induced by a laser pulse train. Within
the train, a single laser pulse lasts for time Tp, which defines
also its fundamental frequency ω = 2π/Tp. If n determines
direction in which the pulse train propagates in space then
its four-vector k becomes k = k0(1,n), with k0 = ω/c. We
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assume also that the train of pulses is described by the four-
vector potential given by Eq. (1), although the condition (2) is
not satisfied this time (for more details, see Ref. [31]). Since
in the present case, we have that k · k = 0 and k · A(k · x) = 0
the approach based on the Volkov states introduced in Sec. II
is still valid. In fact, all derivations that lead to Eq. (18) are the
same for a single laser pulse and for a train of pulses.

Let us go back to Eq. (18). In the current case, there is
no need to transform the integral over x−, which means that
C0(k0x−) present there is determined by Eq. (12). We also
find that the definitions of Q̄ and G(k0x−) still hold if we
put 〈fi〉 = 0 (i = 1,2) in Eqs. (21) and (22), respectively. The
same applies for the laser-dressed four-momenta of product
particles, which means that

p̄ = p + 1

2
(μmec)2

〈
f 2

1

〉 + 〈
f 2

2

〉
k · p

k. (35)

Having this established, we perform the respective integral in
(18) using the following Fourier expansion,

C0(k0x−) e−iG(k0x−) =
∑
N

GN e−iNk0x−
, (36)

where N can be interpreted such that Nck0 is a net energy
absorbed from the laser field. As a result, we obtain the final
formula for the S-matrix amplitude,

Sfi = −8iπ2 Zαmec
2

V
√

E pe− E pe+

×
∑
N

GN

( p̄e− + p̄e+ − Nk)2
δ(p̄0

e− + p̄0
e+ − Nk0), (37)

where the δ function expresses here the energy conservation
law. Let us note that by using this conservation law and the
definition (24) one can rewrite the denominator ( p̄e− + p̄e+ −
Nk)2 in exactly the same form as in Eq. (27) using p⊥

e± , p0
e± ,

and n · pe± .
The total probability rate of pair creation induced by a laser

pulse train can be defined as

W =
∑
{λ}

∫
V d3pe−

(2π )3

V d3pe+

(2π )3

|Sfi|2
T

. (38)

Using the prescription that 2π [δ(p̄0
e− + p̄0

e+ − Nk0)]2 →
cT δ(p̄0

e− + p̄0
e+ − Nk0) (see, for instance, Ref. [54]), we

obtain

|Sfi|2
T

= 4(2π )3 Z2α2m2
ec

5

V 2E pe− E pe+

×
∑
N

|GN |2
( p̄e− + p̄e+ − Nk)4

δ(p̄0
e− + p̄0

e+ − Nk0).

(39)

Putting the above expression into Eq. (38), we arrive at

W = Z2α2m2
ec

2π3

∑
N

∑
{λ}

∫
dE pe− dE pe+ d� pe− d� pe+

× | pe−|| pe+| |GN |2
( p̄e− + p̄e+ − Nk)4

δ(p̄0
e− + p̄0

e+ − Nk0).

(40)

With the well-known property,

δ[f (x)] =
∑

�

1

|f ′(x(�))|δ[x − x(�)], (41)

where x(�) is the �th solution to the equation f (x) = 0, we can
simplify Eq. (40) such that the total probability rate of pair
creation by a laser pulse train becomes

W = Z2α2m2
ec

2

2π3

∑
N

∑
{λ}

∑
�

∫
dE pe− d� pe− d� pe+

× | pe−|| pe+|
D(pe+)

|GN |2
( p̄e− + p̄e+ − Nk)4

∣∣∣∣
E p

e+ =E
(�)
p
e+

, (42)

with

D(pe+) =
∣∣∣∣1 + p̄0

e+ − p0
e+

p2
e+

(
k0

k · pe+
(mec)2 − p0

e+

)∣∣∣∣ . (43)

For details on solving the energy conservation condition with
respect to E pe+ , see Appendix A. In order to have a meaningful
comparison with the case described in Sec. II A we also define
another quantity,

P(t) = 2π

ck0
W, (44)

which can be interpreted as a probability of pair creation by
an individual laser pulse within the train.

The above equation together with Eq. (42) allow us to define
the differential probability of pair creation per one laser pulse
from the train. Namely,

d5P(t)
N

dE pe− d� pe− d� pe+
= (Zαmec)2

π2ck0

∑
{λ}

∑
�

| pe−|| pe+|
D(pe+ )

× |GN |2
( p̄e− + p̄e+ − Nk)4

∣∣∣∣
E p

e+ =E
(�)
p
e+

,

(45)

which symbolically can be denoted as

d5P(t)
N

dE pe− d� pe− d� pe+
= d6P(t)

dNdE pe− d� pe− d� pe+
. (46)

This quantity will be calculated and compared with the
respective differential distribution of created particles by an
isolated laser pulse in Sec. IV.

III. SHAPE FUNCTIONS

Consider a linearly polarized laser pulse, which propagates
in the z direction (n = ez), with a polarization vector along the
x axis (ε1 = ex). Here, f2(φ) = 0 and f1(φ) = Bf (φ) where
the meaning of the constant B will be explained following
Eq. (53). Let us assume that the shape function f ′(φ) has the
following Fourier expansion,

f ′(φ) =
N=N0∑

N=−N0

f ′
Ne−iNφ, (47)

with a vanishing zero Fourier component f ′
0 = 0. In order

to keep this function real we require that f ′
−N = [f ′

N ]∗. The
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four-vector potential shape function is obtained according to
Eq. (B6). For a single laser pulse,

f (φ) = f0 −
N=N0∑

N=−N0

f ′
N

iN
e−iNφ, (48)

which means that there is a zero Fourier component but it is
chosen such that f (0) = f (2π ) = 0. Hence,

f0 =
N=N0∑

N=−N0

f ′
N

iN
. (49)

As indicated by Eq. (2), the shape function f (φ) for an
individual laser pulse vanishes for φ < 0 and φ > 2π . On
the other hand, for an infinite sequence of pulses,

ftrain(φ) = −
N=N0∑

N=−N0

f ′
N

iN
e−iNφ, (50)

where the zero Fourier component can be removed using the
gauge transformation. In fact, this is necessary if we want to
keep the same definition of field-free asymptotic momenta of
charged particles, which enter the Volkov solutions [Eqs. (4)
and (5)] as in the case of a finite laser pulse. In other words,
ftrain(φ) is periodic in φ and hence, 〈ftrain〉 = 0.

We use this scheme for a particular choice of the shape
function f ′(φ) defining the electric and magnetic field com-
ponents. Namely, we choose

f ′(φ) = −Nf sin2
(φ

2

)
sin(Noscφ + χ ), (51)

where φ = k · x changes as 0 � φ � 2π , Nosc defines the
number of field oscillations within a pulse, whereas χ is the
carrier-envelope phase (CEP). The normalization constant Nf

is chosen such that (Appendix B)

1

2π

∫ 2π

0
dφ[f ′(φ)]2 = 1

2
. (52)

Next, we introduce the four-vector potential

A(k · x) = A0Bεf (k · x), (53)

where ε = (0,ex), whereas A0 and B are constants chosen such
that the mean intensity carried out by the laser pulse does not
depend on the pulse duration (see Appendix B). If we define,

μ = |eA0|
mec

, (54)

then the mean intensity of the electromagnetic radiation in the
pulse becomes

I = μ2

8πα
B2k2

0(mec
2)2, (55)

which does not depend on Nosc if only B = Nosc. Because
Nosck0 = ωL/c, where ωL is the central frequency of the laser
field, we find that

I = μ2ω2
L(mec)2

8πα
. (56)

This can be conveniently replaced by the following scaling
formula,

I = 2.3 × 1029μ2ω2
L, (57)
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FIG. 1. (Color online) Shape functions for a two-cycle laser pulse

(Nosc = 2) and different carrier-envelope phases: χ = 0 (solid blue),
χ = 0.25π (dashed red), and χ = 0.5π (dash-dotted black). While
the top panel shows the shape function for the electric and magnetic
field components [Eq. (51)], f ′(φ), in the middle panel the shape
function for the vector potential is drawn, f (φ). In the bottom panel,
we plot the shape function for a single pulse within a train, ftrain(φ).
Both f (φ) and ftrain(φ) are calculated based on Eq. (51) (for details,
see Sec. III).

where I is expressed in W/cm2, whereas ωL is in units of
the electron rest energy mec

2. From now on, we keep the
current definition of the parameter μ, which corresponds to
a rescaled peak value of the vector potential. By doing so,
we compare the pair creation at a fixed averaged intensity
of the laser field in the pulse, even though its duration is
changed. In order to define a shape function for a train of
pulses we repeat f (φ) [Eq. (51)] for all times, with the zero
Fourier component being removed by an appropriate gauge
transformation.

Figure 1 illustrates the shape functions f ′(φ),f (φ), and
ftrain(φ) of our choice [Eq. (51) and the following discussion]
for different values of the carrier envelope phase. Specifically,
we plot these functions for χ = 0 (solid blue line), χ =
0.25π (dashed red line), and χ = 0.5π (dash-dotted black
line). Figure 1 corresponds to a very short laser pulse that
includes only two oscillations of the electromagnetic field
(Nosc = 2). One recognizes here that a temporal structure
of both the vector potential and the electric (magnetic) field
component is very sensitive to a change of the carrier-envelope
phase χ . It follows from this figure that 〈f 〉 defining the
finite laser pulse can dramatically change with χ . For much
longer pulses, this is not the case since 〈f 〉 almost vanishes.
The latter is also true for an infinite sequence of identical
pulses.
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FIG. 2. (Color online) Probability distributions of pair creation by a single laser pulse (blue solid line) and by an individual laser pulse from
the train of pulses (green dots) for the laser field parameters: μ = 1, ωL = 0.1 mec

2, χ = 0, and Nosc = 32 [Eqs. (34) and (46), respectively].
In the upper row, we present the results for the case when the positron momentum as measured at the detector is fixed such that | pe+ | = mec,
ϕe+ = π , and θe+ = 0.7π . In addition, the direction of electron detection is fixed: ϕe− = 0 and θe− = 0.8π . In the lower row, the situation is
reversed, meaning that this time | pe− | = mec, ϕe− = π , θe− = 0.7π , ϕe+ = 0, and θe+ = 0.8π .

IV. SPECTRA OF CREATED PARTICLES: SINGLE PULSE
VERSUS PULSE TRAIN

In this section, numerical results for probability spectra
of created particles in collisions of a proton (treated as an
infinitely heavy particle) with an incident laser beam are
presented and discussed. For the incident laser field, we choose
either an isolated laser pulse or an infinite sequence of such
pulses propagating in the z direction and linearly polarized in
the x direction, with shape functions introduced in Sec. III.
As we have discussed there, we are going to compare the
pair creation processes induced by laser pulses of a fixed
mean laser-field intensity but for different pulse durations (for
details, see Sec. III and Appendix B). Note that the results
presented in this and in the following section always refer to
the proton frame of reference.

In Fig. 2, we demonstrate probability distributions of
Bethe-Heitler process for the case when the driving laser field
is either a single pulse (blue solid line) [Eq. (34)] or a sequence
of individual pulses (green dots) [Eq. (46)]. In both cases, we
keep the same parameters such that the central frequency of
the laser field is ωL = 0.1mec

2, the parameter μ = 1, χ = 0,
whereas Nosc = 32. The top panel illustrates the dependence
of differential probability distributions of pair creation on
the electron energy E pe− (measured in units of mec

2). The
presented results are for the case when the electron is detected
with the azimuthal and polar angles ϕe− = 0 and θe− = 0.8π ,
respectively. At the same time, its accompanying positron
is measured with the momentum such that | pe+| = mec,

ϕe+ = π , and θe+ = 0.7π . The situation is reversed for the
bottom panel. Namely, the differential probability distributions
are shown there as a function of the positron energy E pe+
(in units of mec

2) when the positron momentum direction
is specified such that ϕe+ = 0 and θe+ = 0.8π . In this case,
we have chosen | pe−| = mec, ϕe− = π , and θe− = 0.7π . The
choice of these angles has been made to some extent arbitrarily,
but deliberately such that the electron and the positron are
emitted asymmetrically.

One can conclude from Fig. 2 that there is a good overall
agreement between the results for a single laser pulse and
for a train of pulses. Note that the spectra presented in
Fig. 2 correspond to large numbers N (in the case of a
pulse train) and Neff (in the case of a single pulse), which
are between 950 and 1600. While for smaller N and Neff ,
corresponding to production of low-energy electrons and
positrons, the respective spectra are less sensitive to the actual
structure of the driving laser field, with increasing N and
Neff (and, hence, also with increasing the energy of produced
particles) this sensitivity becomes more evident. In particular,
the agreement between the respective spectra might seem not
as good as for the nonlinear Compton scattering considered
in Ref. [31]. The possible explanation being that there is a
nonzero threshold for the pair creation process, which makes
the process more sensitive to even a small modification of
the driving laser field as compared to the Compton scattering.
This would suggest also that the actual temporal structure of
the electromagnetic radiation is particularly important in the

062107-7



K. KRAJEWSKA, C. MÜLLER, AND J. Z. KAMIŃSKI PHYSICAL REVIEW A 87, 062107 (2013)

2.3 2.4 2.5 2.6
10

−21

10
−20

10
−19

10
−18

Epe− /mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

2.3 2.4 2.5 2.6
10

−21

10
−20

10
−19

10
−18

Epe− /mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

2.3 2.4 2.5 2.6
10

−21

10
−20

10
−19

10
−18

Epe+
/mec

2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

2.3 2.4 2.5 2.6
10

−21

10
−20

10
−19

10
−18

Epe+
/mec

2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

FIG. 3. (Color online) The same as in Fig. 2 but zoomed into
the more narrow energy range. Whereas the results shown in the
left column are for χ = 0, the results in the right column are for
χ = 0.4π .

context of laser-induced pair creation. At the same time, one
sees that the spectra are asymmetric with respect to interchange
of an electron and a positron. This asymmetry will be even
more pronounced for shorter driving laser pulses.

In Fig. 3 we show the same as in Fig. 2 but over a narrow
range of the electron and positron energies. Specifically, the
left column is for exactly the same parameters as in Fig. 2
while the right column is for a different carrier-envelope phase,
χ = 0.4π . One has to realize that the agreement between the
spectral distributions for a single pulse and a pulse train looks
worse only on the scale of the figure. What is important to note
here is a change of the distributions with changing the CEP.
This is even more pronounced for a two-cycle driving pulse,
as shown in Fig. 4.

In Fig. 4, we present the same energy distributions as
in Fig. 3 but for the case that only two oscillations of an
electromagnetic radiation are contained in the pulse (Nosc =
2). We see from this figure that there is not even qualitative
agreement between the situation when an incident laser field
is a single pulse or a sequence of pulses, which happens
even for low-energy electrons (positrons). In particular, a very
rich oscillatory structure of the energy spectra present for an
individual pulse is washed out for a laser pulses train. Also,
as mentioned before, the spectra of produced electrons and
positrons can in principle be very different, which for the
current choice of the normalized pulse shape is particularly
clear when comparing panels corresponding to χ = 0 (i.e., in
the left column). This illustrates the fact that the electron and
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FIG. 4. (Color online) The same as in Fig. 3 but for a much shorter
laser pulse, with Nosc = 2. In the upper left panel, we use yellow dots
instead of green dots for visual purpose.

positron responses to a few-cycle laser pulse are very different,
due to a different field-dressing of particles and antiparticles
(see Sec. II A). In this context one should understand that, in
comparison with the monochromatic case where the spectra of
electrons and positrons are identical, the finite laser pulse leads
to redistribution of the particles. In particular, in Fig. 4 (left
column), the amount of electrons is by four orders larger than
the amount of positrons. However, the total amount of emitted
electrons and positrons must be the same, so the positrons must
be emitted into some other angular regions.

It follows from Fig. 1 that the shape functions characterizing
the laser field for χ = π/2 are symmetric with respect to
the change of polarization direction, ε → −ε, or, in other
words, that 〈f 〉 = 〈f ′〉 = 〈ftrain〉 = 0. We expect therefore that
the respective energy distributions for an electron and for a
positron should be the same, regardless of the incident pulse
duration. We have checked this numerically for parameters of
Figs. 3 and 4. Indeed, for the carrier envelope phase π/2 the
plots are identical when we interchange an electron with a
positron. For this reason, we do not present here the respective
results. This also explains why for χ = 0.4π , the electron and
positron energy spectra presented in the right column of Fig. 4
are quite similar.

All figures discussed so far relate to the nonperturbative
regime of laser-induced pair creation such that μ = 1 and
ωL = 0.1mec

2. The question arises: Is the same behavior of
probability distributions of product particles observed also
in other regimes of laser-matter interaction? To answer this
question, we performed calculations for other values of the
field parameters; while we observed a reasonable agreement
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FIG. 5. (Color online) The same as in Fig. 3 but for the laser field
parameters: μ = 0.1, ωL = mec

2, and Nosc = 32.

between the results for a single pulse and a pulse train
when Nosc = 32, this agreement substantially decreased for
Nosc = 2. Specifically, in Figs. 5 and 6, we present the energy
spectra for μ = 0.1 and ωL = mec

2, which correspond to
a perturbative regime of laser-induced pair creation. Even
though the presented spectra show the exactly same general
tendency one can argue, however, that in the perturbative
regime the agreement between the results for a pulse and a
pulse train is still better than for stronger fields.

In closing this section, we compare the probability dis-
tributions of pair creation by a train of laser pulses and by
a monochromatic plane wave. The latter can be treated as a
train of pulses with a constant envelope in Eq. (51). In other
words, in both cases we refer to the distribution defined by
Eq. (46). The respective results are presented in Fig. 7. While
in the left panel of Fig. 7 we show the results for pair creation
induced by a train of pulses, in the right panel we show
the corresponding results for a monochromatic plane wave,
each of them containing 32 cycles of the laser field within a
segment of the envelope. For an illustration, we have chosen
the laser field characterized by the following parameters:
μ = 1, ωL = 0.1mec

2, and χ = 0. The other parameters are
| pe−| = mec, ϕe− = π , θe− = 0.7π , ϕe+ = 0, and θe+ = 0.8π .
The spectra are plotted as a function of the number of laser
photons N absorbed from the laser field (in units of Nosc). It
means that the spectra are composed of discrete points, even
though in the left panel we have connected these points by
straight lines for the visual purpose. In the right panel, on the
other hand we keep these points separated (and denote them as
stars). Note that the results for a monochromatic plane wave
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FIG. 6. (Color online) The same as in Fig. 5 but for Nosc = 2.

are by more than four orders of magnitude smaller than the
corresponding results for a train of pulses. This happens despite
the fact that the mean intensity of the laser field contained in
the sequence of Nosc field cycles is the same in both cases. The
point being that despite the same averaged intensity carried
out by a monochromatic plane wave or by a train of pulses,
the maximum intensity determined by N2

f [see, Eq. (51)] is
almost three times smaller for a monochromatic plane wave.
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FIG. 7. (Color online) Probability distributions of pair creation
as a function of the photon number N absorbed either from a train
of pulses (left panel) and from a monochromatic plane wave (right
panel), each containing 32 field oscillations (Nosc = 32). The results
are for μ = 1, ωL = 0.1mec

2, and χ = 0. In addition, we have chosen
| pe− | = mec, ϕe− = π , θe− = 0.7π , ϕe+ = 0, and θe+ = 0.8π . The
results in the right panel, represented in a stem plot, are multiples
of Nosc. The results in the left panel are also points corresponding to
integer N , however for visual purposes they have been connected by
vertical lines.
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K. KRAJEWSKA, C. MÜLLER, AND J. Z. KAMIŃSKI PHYSICAL REVIEW A 87, 062107 (2013)

1 1.5 2
0

2

4

6

x 10
−16

Epe− /mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

ωL = 0.5mec
2

1 1.5 2
0

0.5

1

1.5

2

2.5

x 10
−19

Epe− /mec
2

ωL = 0.4mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

1.15 1.2 1.25 1.3
0

1

2

3

4
x 10

−22

Epe− /mec
2

ωL = 0.3mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

1 1.5 2
0

1

2

3

4
x 10

−25

Epe− /mec
2

ωL = 0.2mec
2

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(r
el

. u
ni

ts
)

FIG. 8. (Color online) The electron spectra for μ = 0.1 but for
different values of ωL, as indicated in each panel. The results are
for the 32-cycle pulse with the CEP equal to 0. The accompanying
positron is detected with asymptotic momentum characterized by
| pe+ | = mec, ϕe+ = π , θe+ = 0.7π , while the electron direction is
specified by ϕe− = 0 and θe− = 0.8π .

While it makes sense to compare the electron (positron)
spectra for a train of pulses and for a single laser pulse,
both with exactly same shape function given by Eq. (51), a
similar comparison with a monochromatic plane wave is not
that meaningful. We suspect therefore that in order to have a
reasonable correspondence to the monochromatic plane wave
approximation one should consider a different pulse shape,
with the envelope that is constant for mostly all times. This
is beyond the scope of the present paper, but the respective
analysis will be presented in due course.

V. PAIR CREATION BY A SINGLE PULSE: IMPACT OF
PULSE LENGTH AND FREQUENCY

In Fig. 8, we show the electron energy distributions in the
Bethe-Heitler process induced by a finite laser pulse such that
μ = 0.1 and for different values of the central frequency ωL,
as indicated in each panel. The remaining parameters of the
laser pulse are Nosc = 32 and χ = 0, whereas the kinematic
parameters of the accompanying positron are | pe+| = mec,
ϕe+ = π , and θe+ = 0.7π . For ωL = 0.5mec

2, one can clearly
see typical multiphoton peaks separated by roughly ωL and
decreasing in magnitude for higher-order processes. If we de-
crease the frequency ωL to 0.4mec

2, the first multiphoton peak
appears just below the threshold. For still smaller frequency,
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FIG. 9. (Color online) The probability distribution of created
positrons as a function of their energy for a 32-cycle (red circles)
and a two-cycle (green pentagrams) driving laser pulses. For a
32-cycle pulse, the solid red line represents the fit of the function
P0 exp[−(E pe+ − mec

2)/E0] to the calculated points, with P0 =
2.7 × 10−15 (in relativistic units) and E0 = 0.24mec

2. For a two-cycle
pulse, the similar fit is less accurate as the respective distribution
is not a monotonically decreasing function, at least for the chosen
normalization of the pulse. The results are for the laser field
parameters such that μ = 1 and ωL = 0.1mec

2, as indicated in the
figure.

ωL = 0.3mec
2, only the first dominant peak survives, which, in

addition, splits into subpeaks. Note that the magnitude of this
dominant peak has decreased in magnitude such that the tiny
background oscillations becomes visible on the scale of the
figure. The frequency of these regular background oscillations
corresponds to the fundamental frequency of the laser field,
ω, which in the present case is slightly less than 0.01mec

2.
With still decreasing ωL, the dominant peak decreases and
eventually, for ωL = 0.2mec

2, it cannot be distinguished any
longer from the background oscillations. It is interesting to
note that the results presented in Fig. 8 for central frequencies
ranging from 0.5mec

2 down to 0.2mec
2 resemble the transition

from the multiphoton regime to the tunneling (or quasistatic)
regime of pair creation. While for the high frequencies we
observe very well separated multiphoton peaks, the spectrum
turns into a smooth and very broad distribution for the lowest
frequency.

In Fig. 9, we present the positron probability distributions
for a 32-cycle (red circles) and a two-cycle (green pentagrams)
driving laser pulses for which ωL = 0.1mec

2 and μ = 1. The
results were obtained by performing the five-dimensional
integral out of the six-dimensional integral in Eq. (32), i.e.,
by leaving out the integration with respect to the positron
energy, E pe+ . The remaining five-dimensional integral was
calculated using the Monte Carlo method [11] with 2 × 106

sample points in each run. While the integration over the
electron and positron momentum directions was performed
over the whole solid angle, the upper limit for the integral
over the electron energy was set to 10mec

2. This particular
choice of the energy cutoff is consistent with the obtained
results in the sense that for the positron energy bigger than
3mec

2, the results are already by an order of magnitude smaller
than the respective maximum. Note that in the current case
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the results carry the error less than 10%. In order to assure
that the Monte Carlo method is stable, we also performed
calculations for other parameters; for instance, we increased
number of sample points to 107 and limited the integration
over E pe− to 5mec

2. In this case, the Monte Carlo results
carried the error less than 10% for bigger positron energies
and less than 1% for smaller positron energies. The difference
between the calculated spectra and the results of Fig. 9 turned
out to be hardly noticeable. Finally, we calculated the exactly
same probability distributions as in Fig. 9 but as a function of
the electron energy. The corresponding distribution, integrated
over the positron momentum and the electron detection angles,
turned out to be identical as the one shown in Fig. 9.

The results for the 32-cycle pulse presented in Fig. 9, seem
to fit very well with the function P0 exp

[−(E pe+ − mec
2)/E0

]
for the estimated parameters P0 = 2.7 × 10−15 (in relativistic
units) and E0 = 0.24mec

2; the latter represented in Fig. 9
by the solid line. For the two-cycle laser pulse, the similar
fit is not justified. In this case, the probability distribution
is not a monotonically decreasing function of the positron
energy; in fact, the distribution increases monotonically for
small values of the positron energy and, only after reaching
the maximum, it starts to decrease. It also follows from Fig. 9
that the probability distribution of created positrons is much
smaller for short laser pulses than for long laser pulses in
the regime where the low-energy positrons are created. This
holds, however, for the chosen normalization of the driving
laser pulse, i.e., when the peak vector potential scales with
Nosc [see Eq. (53) and the following discussion].

VI. CONCLUSION

In this paper, the Bethe-Heitler scenario of e−e+ pair
creation by a finite laser pulse was investigated. Specifically,
we considered the pair creation in a collision of a laser pulse
with a proton, which was treated as an infinitely massive
particle. In other words, we neglected the proton recoil while
we studied the purely pulse-related effects on the pair creation
process.

The spectra of positrons and electrons for a single laser
pulse have been compared with the corresponding spectra for
an infinite sequence of such pulses. We found a very good
agreement between the particles spectra in these two cases if
the driving pulse is sufficiently long. However, as illustrated
by various examples, there are dramatic qualitative and
quantitative differences between the created particles spectra
in the aforementioned cases if the driving pulse is short. The
reason being that the dynamics of the Bethe-Heitler process
(and other laser-induced processes as well; see, for instance,
Refs. [31,34]) depends on the actual temporal behavior of the
driving field. This has been also demonstrated by looking at
the carrier-envelope phase effects on the positron and electron
spectra.

In closing, we note that the pair creation is a threshold-
related effect and therefore it is very sensitive to the features
of a driving laser field, which happens also for above-
threshold ionization of atoms and negative ions [55,56]. In the
current work we observed, for instance, that the probability
distributions of created pairs for a pulse train with a sine-
squared envelope disagree with respective results for a pulse

train with a constant envelope. In this context, it would be
further interesting to closely analyze the shape effects on the
Bethe-Heitler process when driven by a finite pulse. This is a
topic for future research.
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APPENDIX A: SOLVING THE ENERGY CONSERVATION
CONDITION

Let us analyze solutions of the following conservation
condition,

p̄0 + κ = 0, (A1)

where p̄ is an unknown four-vector such that

p̄ = p + ζ
n

n · p
. (A2)

In accordance with Eq. (35), ζ = 1
2 (μmec)2(〈f 2

1 〉 + 〈f 2
2 〉).

Moreover, n = (1,n) and we assume that the direction of the
vector p is known; we further denote it as np. For now, κ is
a known constant. Note also that p̄ · p̄ = (mec)2 + 2ζ , which
follows from Eq. (A2).

Having this in mind, Eq. (A1) can be rewritten as,

(p0 + κ)(n · p) + ζ = 0, (A3)

where one should remember that | p| =
√

(p0)2 − (mec)2.
Substituting this relation into the last equation, we derive the
following fourth-order equation to be satisfied by p0,

[1 − (n · np)2](p0)4 + 2κ[1 − (n · np)2](p0)3

+{2ζ + (mec)2(n · np)2 + κ2[1 − (n · np)2]}(p0)2

+ 2κ[ζ + (mec)2(n · np)2]p0

+ κ2(mec)2(n · np)2 + ζ 2 = 0. (A4)

Solving this equation for the fixed direction np, we are able to
determine the energy E p = cp0 and hence also the momentum

p. Among all four solutions of the above equation, p0(�)
where

� = 1,2,3,4, we choose only those which are real and greater
than mec. In particular, for the analysis presented in this paper
we have

p̄0 = p̄0
e+ , κ = p̄0

e− − Nk0, (A5)

in the energy conservation law (40).

APPENDIX B: LASER PULSE ENERGY

For a laser pulse, the electric and magnetic components of
the field are

E(k · x) = −ck0A0[ε1f
′
1(k · x) + ε2f

′
2(k · x)],

B(k · x) = −k0A0[n × ε1f
′
1(k · x) + n × ε2f

′
2(k · x)], (B1)

where n defines the propagation direction of the pulse, whereas
εi are real polarization vectors. Here, prime means a derivative
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with respect to k · x. If the laser pulse duration is Tp, the wave
four-vector is

k = k0(1,n), k0 = 2π/(cTp). (B2)

Since the electromagnetic field generated by lasers has to fulfill
the following condition [46]∫ ∞

−∞
E(ck0t − k · r)dt = 0, (B3)

the shape functions f ′
i (φ), which vanish for φ < 0 and φ >

2π , are such that ∫ 2π

0
dφf ′

i (φ) = 0. (B4)

Hence, the four-vector potential describing the pulse has the
form

A(x) = A0[ε1f1(k · x) + ε2f2(k · x)], (B5)

where the respective shape functions defined as

fi(k · x) =
∫ k·x

0
dφf ′

i (φ), (B6)

are zero when φ < 0 and φ > 2π .
The Poynting vector S defining the power flux density

carried out by the electromagnetic radiation [Eq. (B1)] is

S = 1

μ0
E × B

= μ2

4πα
k2

0(mec
2)2{[f ′

1(k · x)]2 + [f ′
2(k · x)]2}n, (B7)

where μ0 is the vacuum magnetic permeability, and where
we have introduced the relativistically invariant parameter μ,
defined according to Eq. (54). The shape functions will be
always normalized such that

1

2π

∫ 2π

0
dφ{[f ′

1(φ)]2 + [f ′
2(φ)]2} = 1

2
, (B8)

which corresponds to the normalization of a plane wave field.
Thus, the pulse-averaged intensity becomes

I = μ2

8πα
k2

0(mec
2)2. (B9)

If the laser pulse contains Nosc oscillations of the field, its
central frequency is ωL = Noscck0. Therefore,

I = ω2
L(mec)2

8πα

(
μ

Nosc

)2

. (B10)

In the case considered in Secs. III, IV, and V, we choose
f1(φ) = Bf (φ) and f2(φ) = 0. Keeping the normalization of
the shape function,

1

2π

∫ 2π

0
dφ[f ′(φ)]2 = 1

2
, (B11)

we find from Eq. (B10) that

I = ω2
L(mec)2

8πα

( μB

Nosc

)2
. (B12)

As one can see, if for a fixed frequency of the pulse, ωL, and
for a fixed intensity, I , we would like to compare the pair
creation signal for different pulse durations, we should choose
B = Nosc.
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