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Discrete flat-band solitons in the kagome lattice
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We consider a model for a two-dimensional kagome lattice with defocusing nonlinearity, and show that
families of localized discrete solitons may bifurcate from localized linear modes of the flat band with zero
power threshold. Each family of such fundamental nonlinear modes corresponds to a unique configuration in the
strong-nonlinearity limit. By choosing well-tuned dynamical perturbations, small-amplitude, strongly localized
solutions from different families may be switched into each other, as well as moved between different lattice
positions. In a window of small power, the lowest-energy state is a symmetry-broken localized state, which may
appear spontaneously.
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Discrete nonlinear systems have developed into an impor-
tant area of research, with many theoretical and numerical
predictions tested and proved experimentally [1–3]. In partic-
ular, nonlinear optics [2] and cold atoms [3] provide excellent
implementations of old and new theory, mainly coming from
solid state physics. Due to the flexibility of experimental
techniques for fabrication of periodic and aperiodic structures,
simple as well as very complicated lattice topologies can be
controllably obtained in different dimensions.

Generally, when a weak nonlinearity is added to some
spatially periodic Hamiltonian system, families of nonlinear
localized modes (“gap solitons”) bifurcate from the linear
band edges [1]. In generic situations, when the band edge
is a nondegenerate local minimum or maximum with nonzero
group-velocity dispersion, perturbation theory for weak non-
linearity yields a nonlinear Schrödinger (NLS) equation for
the slowly varying amplitude of solutions close to the band
edge (see Ref. [4], and references therein). In the most
common case of an effective cubic (Kerr) nonlinearity, one
may then conclude from the properties of the corresponding
NLS solitons that in one dimension (1D), gap solitons bifurcate
from the linear band edge with zero power (norm), while
in two dimensions (2D) the bifurcating solution appears at
a nonzero power, resulting in a generic excitation threshold
for gap solitons in two (and also higher) dimensions [5]. In
both cases, the soliton envelope decays exponentially with a
localization length that diverges in the linear limit.

However, there are some particularly interesting classes of
lattices where the above mentioned conditions are not fulfilled.
Probably the most well-known example is the 2D kagome
lattice, where one of the tight-binding bands (the lowest-energy
one with the sign-conventions used below) is completely flat,
and in addition it touches the extremum of the second band
at one point so that also the latter becomes degenerate (see,
e.g., Ref. [6], and references therein). It is therefore an open
question, which we aim at resolving here, if and how solitons
may bifurcate also from such flat-band linear modes.

The study of kagome lattices has a long history, in particular
as a prototype system for geometrically frustrated magnetism
(see, e.g., [7]). Recently, successful syntheses of artificial
kagome lattices have been reported in several contexts; e.g.,

nondiffracting kagome lattice for light beams were obtained
in [8], photon-based litography was used to fabricate kagome
lattice structures in [9], in [10] a kagome optical lattice was
realized for trapping ultracold atoms, and in [11] a metallic
kagome lattice was fabricated and a flat plasmonic band
observed. Thus, the technology to experimentally observe
physical phenomena arising from the presence of a flat
dispersion band in a nonlinear lattice appears to be within
reach.

Effects of including interactions in Hubbard-type models
on kagome lattices have been discussed for fermionic [12] as
well as bosonic [13] systems, and in both cases an effective
gap opening appears between the lowest-energy flat band and
the second band at a certain filling factor for sufficiently
strong interaction. These gap openings were related to a
breaking of translational symmetry of the ground states of
the noninteracting lattices.

Concerning localized structures in classical nonlinear
kagome lattices with defocusing nonlinearity, a number of
such structures were described in [14]. However, these authors
focused on complex structures such as vortices and their
properties in the limit of strong nonlinearity, and did not
at all discuss the fundamental modes and their connections
to the linear flat-band modes (in fact, Ref. [14] does not
even mention the existence of a flat linear band). More
recent works discuss defect solitons in kagome optical lattices
with saturable nonlinearity [15] and localization of light
in kagome nanoribbons [16]; however, both these works
considered exclusively the case of focusing nonlinearity with
solitons bifurcating from the edge of the upper band, which is
nondegenerate and therefore these solitons follow the standard
NLS phenomenology in 2D with excitation threshold [1,5].

The aim of the present Rapid Communication is threefold.
First, we present an experimentally realizable 2D lattice
where nonlinear localized modes appear, for a standard Kerr
nonlinearity, without excitation threshold. Second, we show
that this system has, in a window of small power, a symmetry-
broken ground state, which may appear spontaneously. Third,
we show how small-power, strongly localized modes may be
moved around and switched by controllable perturbations.
Our specific model uses the discrete nonlinear Schrödinger
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FIG. 1. (Color online) (a) Kagome lattice structure with a unit
cell of three fundamental sites, including their interactions. (b) Band
structure. Linear modes profiles at λ = 3.91 (c) and λ = −1.98 (d)
for a lattice of 205 sites with rigid boundary conditions.

(DNLS) equation, of direct applicability in nonlinear optics
[2], but also relevant in many other physical contexts [1,3].

We thus consider a kagome lattice with cubic nonlinearity
using the following equation:

i
∂u�n
∂z

+
∑

�m
V�n, �mu �m + γ |u�n|2u�n = 0, (1)

where z corresponds to the normalized dynamical coordinate,
γ is an effective nonlinear cubic parameter, and u�n represents
the field amplitude at site �n in a 2D kagome lattice [see
Fig. 1(a)]. The coupling function

∑
�m V�n, �mu �m defines the linear

interactions between u�n and its nearest neighbors. Model (1)
possesses two conserved quantities, the norm (power) de-
fined as P = ∑

�n |u�n|2, and the Hamiltonian (energy) de-
fined as H = −∑

�n{
∑

�m V�n, �m(u �mu∗
�n + u∗

�mu�n) + (γ /2)|u�n|4}.
Unless otherwise stated, the defocusing nonlinear lattice is
obtained by fixing γ = −1, and V�n, �m = 1 for nearest neighbors
and zero otherwise.

Linear solutions (γ = 0) are obtained by solving model (1)
with a stationary ansatz of the form u�n(z) = u�n exp (iλz).
To obtain the linear spectrum (cf., e.g., [6,11–13]), we
first consider an infinite system and three fundamental sites
belonging to a unit cell of the lattice [triangle in Fig. 1(a)].
We construct the corresponding 2D �k vectors and obtain three
different linear bands:

λ(kx,ky) = −2, 1 ± √
1 + 8f (kx,ky), (2)

where f (kx,ky) ≡ 1 + 2 cos4(kx/2) − 3 cos2(kx/2) −
cos2(

√
3ky/2) + 2 cos2(kx/2) cos2(

√
3ky/2). Figure 1(b)

shows a three-dimensional (3D) plot of the band structure
in the first Brillouin zone. The upper and lower bands
are “connected” at λ = 1 by six Dirac points located at
the vertices of the hexagon forming the Brillouin zone
[f (kx,ky) = −1/8]. Sketches of the fundamental modes

associated with the top of the upper band and the bottom
of the lower band are shown in Figs. 1(c) and 1(d), for
a finite-size lattice with rigid boundary conditions. The
largest eigenvalue mode has a typical structure resembling
the fundamental mode of any 2D system, where all sites
oscillate in phase with a decaying amplitude due to the open
boundary conditions. The smallest eigenvalue mode of the
lower band possesses a structure reminiscent of a staggered
mode; however, due to the particular geometry of the kagome
lattice it is not possible to construct a fully staggered mode,
but a “frustrated” state like the one shown in Fig. 1(d). Note
that, in contrast to the case with periodic boundary conditions,
this eigenvalue is slightly larger than −2 for rigid boundary
conditions, and therefore this band does not touch the flat
band at −2 [6].

The third degenerate-flat band, located at λ = −2, contains
as many states as the number of closed rings in the lattice
(infinite for an infinite system) [6]. These states—called
“six peaks” or “ring” solutions—have six peaks with equal
amplitude but alternating sign (phase), with strictly zero
background [see Fig. 2(a) inset]. These ring (hexagon) modes
constitute “building blocks” for a kagome lattice. Any linear
combination of them will generate an exact linear stationary
solution of the system.

Therefore, a fundamental question concerns nonlinear
solutions bifurcating from specific linear combinations of
these modes. We first compute this ring stationary solution
in the nonlinear regime. It is easily shown that each ring mode
of the flat band can be continued into a nonlinear mode with
exactly the same configuration, only with a frequency shift;
thus these solutions are “exact discrete compactons” [17]. For
any nonlinear ring mode, the frequency shift and power are
related as P = 6(λ + 2)/γ .

For a defocusing nonlinearity (γ < 0), all fundamental
nonlinear solutions bifurcate at λ = −2 (P = 0) from some
linear combination of these ring modes. Generally in discrete
nonlinear systems, a “one-peak solution” is identified as a
family of solutions approaching a single-site localized state
in the strong-nonlinearity–weak-coupling (“anticontinuous”)
limit, and typically corresponds to the geometrically simplest
fundamental nonlinear mode bifurcating from the linear modes
at the band edges [5]. For a kagome lattice this mode can be
constructed by combining two neighboring rings having one
common central site which, in the linear limit, will get twice
the amplitude of the other ring sites. For nonzero nonlinearity
this compact solution will no longer be exact; instead, it
develops into a discrete soliton with exponentially decaying
tails, which continues smoothly to a single-site solution at the
anticontinuous limit (larger norms). Therefore, the effective
size of this solution will drastically decrease being, for some
value of the norm, smaller than the ring solution. We may thus
expect an exchange of fundamental properties between the
ring and the one-peak solutions if compared at a given norm
(cf., e.g., similar features for saturable systems, where multiple
changes on the effective size of fundamental solutions result
in stability exchanges [18–20]).

We construct the family of one-peak solutions by
implementing a multidimensional Newton-Raphson iterative
method [1], demanding a (norm-square) accuracy of at least
10−15. Results (including the exact six-peaks solutions) are
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FIG. 2. (Color online) (a) P vs λ, (b) �H vs P , and (c) G

vs P diagrams. The one-peak, ring, and intermediate solutions are
shown with black, blue, and red-dashed lines, respectively. Insets
show profiles of the stationary modes for P = 0.43.

shown in Fig. 2. The P -λ diagram [Fig. 2(a)] shows how these
modes bifurcate from the flat band at P = 0, i.e., without exci-
tation threshold. Moreover, these solutions are very localized
for lower values of the norm being, therefore, very unusual 2D
discrete solitons originating in the particular topology of this
lattice and its fundamental building blocks. [In fact, Fig. 2(a)
is more similar to what is obtained for 1D cubic lattices.] For
larger norms, these two solutions strongly deviate, the norm
content of the ring solution being much larger.

In Fig. 2(b) we show a �H -P diagram, for �H ≡ Hi −
Hring (i represents any solution). For smaller values of the
norm, we see how the ring solution (�H = 0) corresponds to
the ground state bifurcating from the linear band at zero norm.
Then we observe a crossing point at P ≈ 0.43, between the
one- and the six-peaks solutions, that indicates an exchange of
stability properties.

We calculate the linear stability of the—analytically and
numerically—obtained nonlinear solutions with a standard
procedure [21]: We linearly perturb the nonlinear modes and
obtain an equation system for the perturbation. Solving it yields
the linear eigenvalue spectrum {ω2 ≡ g} and computing the
largest G = √

[|g| − g]/2 gives the most unstable perturbation
mode. A stable (unstable) nonlinear solution corresponds
to G = 0 (G �= 0). The G-P diagram [Fig. 2(c)] confirms
that for small values of the norm, the six-peaks solution is
stable (ground state) while the one-peak mode is unstable.
For 0.32 � P � 0.51 an instability inversion regime with bi-
instability appears, so that none of the fundamental solutions
correspond to minima in a Hamiltonian representation. Thus,
in this regime a new stationary solution—corresponding to a
minimum in-between them—should appear, connecting them
in parameter space. For larger power, the one-peak solution is
always stable (minimum) while the ring mode is unstable.

The solution corresponding to a minimum in the bi-
unstable region is known as “intermediate solution” (IS) and
constitutes a symmetry-broken stationary solution appearing
when the stability properties of fundamental solutions are
exchanged [18–20,22,23]. In the present case we find a stable
IS [23,24] in-between two unstable fundamental modes (in
other contexts, the opposite is also possible [18,19,22,23]).
In Fig. 2 (red-dashed line) we show the appearance of the
IS connecting the two fundamental modes. In the stability
diagram [Fig. 2(c)] we observe how the IS is stable in
the region where the two fundamental modes are unstable
simultaneously. Figure 2(b) shows the emergence of the IS
connecting the ring solution with the one-peak mode. In its
existence region the IS possesses the smaller Hamiltonian
value and constitutes an effective ground state of the system.

Figure 3 shows the linear spectra and eigenmodes of the
fundamental solutions in the low-power regime. The flat band
spreads out due to the spatial symmetry breaking caused by
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FIG. 3. (Color online) Linear spectra g vs λ for the one-site
(blue dots) and the ring (black dots) solutions in the regime of weak
nonlinearity. Insets (a1)–(a3) show the profiles of the indicated linear
modes.
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FIG. 4. (Color online) Vertical center of mass evolution of an
unstable one-peak solution for P = 0.4655, kx = 0, ky = 0.009.
Insets: Zoom of different profiles |u�n(z)|2. Horizontal full (dashed)
lines represent the one- (six-)peaks solutions.

the particular nonlinear localized mode excited, and isolated
localized linear eigenmodes bifurcate from this band. For the
one-site solution one such mode is unstable [Fig. 3(a1)], while
for the one-ring mode there are two stable (soft) internal modes
close to the linear limit [Figs. 3(a2) and 3(a3)]. One of these
modes then becomes unstable in the bifurcation, where the
symmetry-broken intermediate solution is born (the second
mode also becomes unstable slightly afterwards). In the linear
limit (λ → −2), a gap opening around zero is seen, which is
a classical counterpart to the gap openings due to interactions
in quantum Hubbard models [12,13].

Exploring the dynamics of unstable one-peak solutions
shows how symmetry-broken ground states may appear
spontaneously. The unstable internal mode of the one-peak
solution [Fig. 3(a1)] essentially corresponds to a deformation
in the vertical direction, similar to a phase gradient in the
profile: u�n exp(i�k · �n), with �k a “kick” vector. Figure 4 shows
how applying a small vertical kick yields a slow, smooth
movement of a low-norm, very localized solution. The velocity
of the center of mass changes as the effective Hamiltonian
(Peierls-Nabarro) potential is traced (cf., e.g., [18,19]). The
regions with largest velocity correspond to effective poten-
tial minima, here corresponding to intermediate stationary
solutions with profiles possessing a geometry in-between the
one- and six-peaks solutions. For the small kick used, the
solution jumps coherently one complete site in the vertical
direction, and radiation losses prevents it from overcoming
the next one-peak barrier (horizontal full lines in Fig. 4). After
oscillations through ring modes and intermediate solutions, it

finally gets trapped with decaying oscillations around one of
the symmetry-broken ground states.

The possibility of moving very localized solutions across
the lattice is certainly important in different physical contexts.
Typical 2D nonlinear cubic lattices do not allow mobility of
highly localized excitations [25], which are thought to be the
key entities for controlling the propagation of information—in
the form of waves—in periodical media. By choosing different
phase gradients, we were able to move one- and six-peaks
profiles across the whole lattice. For example, giving a vertical
kick of ky = 0.25 to a one-peak mode of P = 0.502 resulted
in vertical translation of six unit cells (stopping because
of borders and radiation effects). While moving, solutions
generate some radiation and the dynamics is not as soft as
in Fig. 4. Nevertheless, coherent mobility of highly localized
solutions is allowed due to the particular properties of the
kagome lattice. We stress that the flatness of the linear band,
resulting from the kagome topology, is intimately connected
to this mobility scenario, since (i) in a generic 2D lattice with
dispersive bands and Kerr nonlinearity, small-power strongly
localized modes will not even exist, let alone mobile ones, and
(ii) the smallness of the Peierls-Nabarro potential results from
the small energy shifts caused by the nonlinearity-induced
lifting of the degeneracy of the flat band.

In conclusion, we showed, using the kagome lattice as
example, how nonlinear localized modes can bifurcate from a
highly degenerate, dispersionless linear band without excita-
tion threshold. We identified two types of fundamental modes,
which were shown to exchange their stability and therefore
could be switched into each other through a symmetry-broken
intermediate state, constituting the ground state around the
exchange region. Since this scenario appears already for
a weak (Kerr) nonlinearity, and involves states which are
strongly localized due to the flatness of the linear band, it
could be of large relevance for practical applications. While
for simple cubic regular DNLS lattices symmetry-broken
ground states do not appear and stability properties are never
exchanged between fundamental modes, the topology of the
kagome lattice allows the appearance of new solutions that
can be crucial to improve the dynamical properties of these
nonlinear systems, opening new possibilities for controlling
the propagation of waves.

The authors thank U. Naether for useful discussions. M.J.
thanks the Nonlinear Optics Group, Universidad de Chile,
for kind hospitality, and acknowledges support from the
Swedish Research Council. This work was supported in part
by FONDECYT Grant No. 1110142, Programa ICM P10-
030-F, and Programa de Financiamiento Basal de CONICYT
(FB0824/2008).

[1] S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).
[2] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,

M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008).
[3] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).
[4] T. Dohnal and D. Pelinovsky, Phys. Rev. E 85, 026605 (2012).
[5] S. Flach, K. Kladko, and R. S. MacKay, Phys. Rev. Lett. 78,

1207 (1997).

[6] D. L. Bergman, C. Wu, and L. Balents, Phys. Rev. B 78, 125104
(2008).

[7] J. L. Atwood, Nat. Mater. 1, 91 (2002).
[8] M. Boguslawski, P. Rose, and C. Denz, Appl. Phys. Lett. 98,

061111 (2011).
[9] L. Wang et al., Appl. Phys. Lett. 101, 093104 (2012).

[10] G.-B. Jo et al., Phys. Rev. Lett. 108, 045305 (2012).

061803-4

http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevE.85.026605
http://dx.doi.org/10.1103/PhysRevLett.78.1207
http://dx.doi.org/10.1103/PhysRevLett.78.1207
http://dx.doi.org/10.1103/PhysRevB.78.125104
http://dx.doi.org/10.1103/PhysRevB.78.125104
http://dx.doi.org/10.1038/nmat740
http://dx.doi.org/10.1063/1.3554759
http://dx.doi.org/10.1063/1.3554759
http://dx.doi.org/10.1063/1.4748758
http://dx.doi.org/10.1103/PhysRevLett.108.045305


RAPID COMMUNICATIONS

DISCRETE FLAT-BAND SOLITONS IN THE KAGOME LATTICE PHYSICAL REVIEW A 87, 061803(R) (2013)

[11] Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, Phys. Rev. B
85, 205128 (2012).

[12] S. Nishimoto, M. Nakamura, A. O’Brien, and P. Fulde, Phys.
Rev. Lett. 104, 196401 (2010).

[13] S. D. Huber and E. Altman, Phys. Rev. B 82, 184502 (2010).
[14] K. J. H. Law, A. Saxena, P. G. Kevrekidis, and A. R. Bishop,

Phys. Rev. A 79, 053818 (2009).
[15] X. Zhu, H. Wang, and L. X. Zheng, Opt. Express 18, 20786

(2010).
[16] M. I. Molina, Phys. Lett. A 376, 3458 (2012).
[17] P. G. Kevrekidis and V. V. Konotop, Phys. Rev. E 65, 066614

(2002); P. G. Kevrekidis, V. V. Konotop, A. R. Bishop, and
S. Takeno, J. Phys. A 35, L641 (2002).

[18] R. A. Vicencio and M. Johansson, Phys. Rev. E 73, 046602
(2006).

[19] U. Naether, R. A. Vicencio, and M. Johansson, Phys. Rev. E 83,
036601 (2011).

[20] U. Naether, R. A. Vicencio, and M. Stepić, Opt. Lett. 36, 1467
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[25] E. Arévalo, Phys. Rev. Lett. 102, 224102 (2009).

061803-5

http://dx.doi.org/10.1103/PhysRevB.85.205128
http://dx.doi.org/10.1103/PhysRevB.85.205128
http://dx.doi.org/10.1103/PhysRevLett.104.196401
http://dx.doi.org/10.1103/PhysRevLett.104.196401
http://dx.doi.org/10.1103/PhysRevB.82.184502
http://dx.doi.org/10.1103/PhysRevA.79.053818
http://dx.doi.org/10.1364/OE.18.020786
http://dx.doi.org/10.1364/OE.18.020786
http://dx.doi.org/10.1016/j.physleta.2012.08.055
http://dx.doi.org/10.1103/PhysRevE.65.066614
http://dx.doi.org/10.1103/PhysRevE.65.066614
http://dx.doi.org/10.1088/0305-4470/35/45/103
http://dx.doi.org/10.1103/PhysRevE.73.046602
http://dx.doi.org/10.1103/PhysRevE.73.046602
http://dx.doi.org/10.1103/PhysRevE.83.036601
http://dx.doi.org/10.1103/PhysRevE.83.036601
http://dx.doi.org/10.1364/OL.36.001467
http://dx.doi.org/10.1364/OL.36.001467
http://dx.doi.org/10.1088/0305-4470/38/4/002
http://dx.doi.org/10.1016/j.physd.2005.12.020
http://dx.doi.org/10.1016/j.physd.2005.12.020
http://dx.doi.org/10.1103/PhysRevE.67.056606
http://dx.doi.org/10.1103/PhysRevE.67.056606
http://dx.doi.org/10.1103/PhysRevA.84.033621
http://dx.doi.org/10.1103/PhysRevA.84.033621
http://dx.doi.org/10.1103/PhysRevLett.102.224102



