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Theory of electromagnetically induced transparency in strongly correlated quantum gases
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We develop a general theory to study the electromagnetically induced transparency (EIT) in ultracold quantum
gases, applicable for both Bose and Fermi gases with an arbitrary interparticle interaction strength. We show
that, in the weak probe field limit, the EIT spectrum is solely determined by the single-particle Green’s function
of the ground-state atoms, and reflects interesting quantum many-body effects when atoms are virtually coupled
to the low-lying Rydberg states. As an example, we apply our theory to a one-dimensional Luttinger liquid, a
Bose-Mott insulator state, and the superfluid state of two-component Fermi gases, and show how the many-body
features can be observed nondestructively in the unconventional EIT spectrum.
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Introduction. In the past decade, systems of ultracold
atoms have opened up great opportunities to study many-body
physics, which may not even exist in traditional condensed-
matter systems [1]. Huge advances in the experimental tech-
niques of tuning interaction strengths and generating an optical
lattice enable the study of strongly correlated atomic gases with
high controllability. Most of the experimental measurements
rely on the interference pattern of the matter wave in different
circumstances, for example, the time-of-flight experiment, the
noise correlation measurement [2], and the Bragg scattering
spectroscopy [3], etc. In situ imaging is also shown to be
important in characterizing the equation of state and the critical
properties near the phase transition point [4,5].

Besides the many-body problem, the quantum control and
manipulation of the light-atom interaction is also an exten-
sively studied field in cold atoms. One of the most important
examples is electromagnetically induced transparency (EIT),
which has led to several interesting subjects, such as the
dark-state polariton, slow light, and the induced photon-photon
interaction in a cold atomic gas [6,7]. EIT experiments in
quantum degenerate gases [8,9] or in Rydberg states [10–13]
are also recently explored by several groups. However, so
far the EIT theory is still mainly based on the single-particle
picture (or within a mean-field approximation), and therefore
cannot clarify the nontrivial coupling between the light-atom
interaction and the many-body physics. For example, how is
the EIT spectrum modified when the ground state is a strongly
correlated state without single-particle excitations? In what
conditions can a nontrivial many-body effect be measured
experimentally? Resolving these interdisciplinary problems is
not only an interesting theoretical subject itself, but may be also
applied to experimentally detect some many-body properties
via EIT spectroscopy.

In this Rapid Communication, we develop a general
EIT theory in a strongly interacting quantum gas, taking
into account the full kinetics and interatomic interaction,
within the weak probe field limit. We explicitly show how
the experimental EIT spectrum is directly related to the
dynamical Green’s function, and how the quantum many-body
phenomena are manifested most when atoms are coupled
to a low-lying Rydberg state due to sufficient recoil energy
compared to the decay rate of the excited state [14]. As an

example, we apply our theory to three important strongly
correlated systems: a Luttinger liquid of one-dimensional (1D)
Bose gases, a Bose-Mott insulator in an optical lattice, and
the superfluid state of two-component Fermi gases. For the
Luttinger liquid, we demonstrate a power-law dependence of
the EIT spectrum near the resonance, while the significant
frequency shift and the asymmetric absorption spectrum can
be identified for the other cases. Our results demonstrate the
strongly correlated effects in the EIT experiment, suggesting
a nondestructive measurement on the quantum gases.

General EIT theory for quantum gases. We consider the
conventional EIT setup (�-type scheme) as shown in Fig. 1(a):
Atoms are initially prepared in the ground state |g〉. The
probe (�1) and control (�2) fields couple the ground state
to another low-energy state |s〉 and an excited state |e〉 with
detunings �1 = ω1 − (Ee − Eg) and �2 = ω2 − (Ee − Es),
respectively, where we set h̄ = 1. Here ω1,2 are central
frequencies of probe and control fields, while Eg,s,e denote
the energies of atoms in different internal states. After using
the dipole approximation and rotating wave approximation, the
total Hamiltonian [Ĥtot = Ĥ0 + ĤU + Ĥ1(t)] in the rotating
frame becomes

Ĥ0 =
∑

c={g,s,e}

∑
k

(
k2

2m
− μ

)
ĉ
†
kĉk

+
∑

k

[(�2 − �1)ŝ†kŝk − �1ê
†
kêk]

−
∑

k

(
�2ê

†
k+k1

ŝk+k1−k2 + H.c.
)
, (1)

ĤU = 1

2V

∑
c,d={g,s,e}

∑
k,k′,q

Ucd ĉ
†
k+qd̂

†
k′−qd̂k′ ĉk,

Ĥ1(t) = − 1

V

∑
k,q

�̄1,k(t)ê†k+qĝq + H.c..

Here ĉk and/or d̂k denote the atomic field operators in the
momentum space. Ĥ0 includes all the single-particle parts
without the probe field for atomic mass m, chemical potential
μ, and the Rabi frequency of plane-wave control field �2.
All the interatomic interactions are included in ĤU with the
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FIG. 1. (Color online) (a) Schematic figure of a standard EIT
experiment in a strongly interacting atomic gas with the �-type
scheme: The control (�2) and the probe (�1) fields couple two
hyperfine ground states |g〉 and |s〉 with the excited state |e〉 (detunings
are �2 and �1, respectively). � is the spontaneous decay rate of |e〉.
Solid circles denote atoms with mutual interaction U in the ground
state. (b) Experimental setup for EIT on a two-dimensional (2D) array
of 1D Luttinger liquids in the counterpropagating scheme.

short-range interaction Ucd (extension to a certain long-ranged
interaction is straightforward). Finally, Ĥ1 denotes the effect
of the probe field with �̄1,k(t) being the slowly varying
Rabi frequency of wave vector k. V is the quantization
volume and k1,2 are momenta of the probe and control fields,
respectively.

To derive the electric susceptibility in the linear response
of the probe field [7], we treat H1 as a time-dependent
perturbation and keep the full interaction effects. Therefore,
Ĥ ≡ Ĥ0 + ĤU can be separated into two decoupled parts,
Ĥ = Ĥ g + Ĥ se, where Ĥ g includes all the ground-state
kinetic energy and interaction energy terms, while Ĥ se

includes all the single-particle terms of states |s〉 and |e〉 (see
Supplemental Material (SM) [16]). In the leading-order limit
of a weak probe, all atoms are in the ground state (|g〉) and
none in states |e〉 and |s〉. As a result, the interaction between
|g〉 and the other two states is nothing but a background energy
shift in the single-particle energy, i.e., Es/e → Es/e + nUg,s/e,
where n is the total particle density. The mutual interaction
between |s〉 and |e〉 is the second-order effect and is hence
negligible. A similar treatment can be also easily applied to a
long-ranged interaction if Rydberg states of a high principal
quantum number are involved [17].

A phenomenological spontaneous decay rate (�) of the
excited state can be added, and we also assume a negligible
dephasing rate between the two hyperfine ground states. Note
that when considering a standard D2 transition, � ≈ 6 MHz,
which is much larger than the average atomic kinetic energy,
and therefore the quantum many-body effect may not be easily
observed.

Defining the polarization operator, P̂ (r,t) =
d0[ψ̂†

e (r,t)ψ̂g(r,t) + H.c.], where ψ̂
†
g/e(r,t) is the field

operator, and d0 is the dipole moment, we calculate
its variation with respect to the probe field (H1)
via the linear response theory [23], δ〈P̂ (r,t)〉 =
i
∫ t

−∞ dt ′H 〈	G|[Ĥ1,H (t ′),P̂H (r,t)]|	G〉H , where Ĥ1,H (t)
and P̂H (r,t) are the corresponding operators in the Heisenberg
picture, and |	G〉H is the ground state of the unperturbed
Hamiltonian Ĥ = Ĥ g + Ĥ se. In the momentum-frequency
space, the electric susceptibility can be obtained to be (see

SM [16])

χ (q,ω) = −d0

V

∑
k

∫ ∞

−∞
dω̃iG̃<(k,ω̃)

×
[

cos2 φk+q

ω̃ − ω − ε−(k + q)
+ sin2 φk+q

ω̃ − ω − ε+(k + q)

]
.

(2)

Here G̃<(k,ω̃) is the Fourier transform of the Green’s
function at zero temperature [23], G<(0,0; r,t) ≡
∓iH 〈	G|ψ̂†

g(r,t)ψ̂g(0,0)|	G〉Hθ (t), where the upper (lower)
sign refers to bosons (fermions). We note that the above result
is very general in the limit of the weak probe field, and all
the many-body effects are hidden in G̃<(k,ω̃). However, as
pointed out in Ref. [24], such a many-body effect can be identi-
fied more easily in the counterpropagating (rather than the co-
propagating) setup of the EIT experiment, since the recoil mo-
mentum of the former is manifested more significantly in the
quantum statistics. In the rest of this Rapid Communication,
therefore, we just consider the counterpropagating scheme in
order to measure the many-body effect from the EIT spectrum.

EIT in Luttinger liquid. Now we study EIT in a Luttinger
liquid (LL), as shown in Fig. 1(b), which is a very general
1D effective model [25,26] and has no condensate even at
zero temperature. Since all the elementary excitations of a
LL are collective, it is therefore interesting to investigate how
the probe field propagates inside such a strongly correlated
system. The single-particle Green’s function can be exactly
calculated by the bosonization method [26] (see SM [16]),

iG<
LL(x,t) = na1/2κ

[x2 + (a + ivt)2]1/4κ
, (3)

where κ is the Luttinger parameter, v is the phonon velocity,
and a−1 is the system-dependent momentum cutoff. 1 < κ <

∞ for a short-ranged repulsive interaction, while κ can be
smaller than one if the interaction is long ranged.

In Figs. 2(a) and 2(b), we show the full numerically inte-
grated EIT absorption and dispersion profiles [from Eqs. (2)
and (3)] of 1D 87Rb atoms (see the caption for the parameters)
in the counterpropagating scheme. It is easy to see that the
power-law dependence of χLL makes the dispersion highly
asymmetric about the resonance points and the absorption
depth (α) becomes larger at the transparency point (�∗

1) in
the strong interacting regime (smaller κ), in contrast to the
standard EIT profiles in the weak interacting limit (κ � 1).
This is because when a ground-state atom is excited by the
probe field, the transition matrix elements are a composite of
all the collective excitations of different energies, weighted by
the density of states in a power-law distribution. In Fig. 2(c),
we show the group velocity of light (proportional to the slope
of dispersion at the transparent point, where the absorption is
the smallest) as a function of κ . One can see that for a stronger
interaction (smaller κ), the group velocity becomes smaller
due to steeper dispersion relations, but the absorption is also
larger, making the slow light propagate less effectively in a
LL. On the other hand, such an unconventional EIT spectrum
also implies a sensitive measurement about the many-body
properties.
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FIG. 2. (Color online) The EIT profiles for a Luttinger liquid of
87Rb atoms in the counterpropagating excitation scheme. We take a
static probe field (q,ω = 0) and a resonant control field (�2 = 0) with
Rabi frequency �2 = 5�. The excited state is chosen as a low-lying
Rydberg transition of |24P3/2〉 with the spontaneous decay rate �−1 =
28.3 μs. The effective 1D interaction strength can be tuned by the
confinement resonance of 1D tubes [27]. (a) Absorption (Re[iχ ]) and
(b) dispersion (Im[iχ ]) profiles for κ = 1 (solid) and 10 (dashed). The
horizontal line guides the eye to the zero in (b). (c) shows the group
velocity vg (�), and the absorption depth α (♦) at the transparency
point (�∗

1) as a function of κ . For convenience, we take the phonon
velocity v = 4.3 mm/s and the cutoff a = 0.12 μm within a typical
experimental regime [28]. c is the speed of light.

EIT in a Mott insulator. Now we consider the Mott insulator
(MI) of strongly interacting bosons in a three-dimensional (3D)
optical lattice, which can be well described by a single-band
Hubbard model (HM) [29]. The ground-state field operator is
expressed as ψ̂g(r,t) = ∑

R ĝR(t)wR(r), where wR(r) is the
Wannier function, and ĝR(t) is the field operator at site R.
When deep inside the MI state, we can use the three-state
model [30,31] to control the small number fluctuation above
the Fock state, and obtain the Green’s function at zero temper-
ature (see SM [16]), iG̃<(k,t) = n0

∑
R |w̃R(k)|2e−iεh(k)t θ (t),

where n0 is the integer filling fraction, w̃R(k) is the Fourier
transform of wR(r), and εh(k) = ε0(k)/2 + δμ + ω̃(k) is the
hole excitation with ω̃(k) ≈ U/2 when deep inside the Mott
state. Here ε0(k) ≡ 2J

∑3
α=1 cos(kαd), and δμ = −3J for

a 3D square lattice of lattice constant d. J and U are the
tunneling amplitude and on-site interaction. As a result, the
susceptibility from Eq. (2) becomes

χMI(q,ω) = d0N

V

∑
k

|w̃R(k)|2
[

cos2 φk+q

ω + εh(k) + ε−(k + q)

+ sin2 φk+q

ω + εh(k) + ε+(k + q)

]
. (4)

Compared to the standard EIT spectrum, we find that χMI

is contributed by EIT in different momentum states, weighting
by the Wannier function of the optical lattice. When the
momentum distribution is large in a strong lattice strength, the
contribution from different momenta makes the EIT spectrum
much broadened, in contrast to the superfluid state which
is similar to the standard EIT spectrum in a Bose-Einstein
condensate (BEC) [24].

In Fig. 3, we demonstrate the EIT spectrum inside the
MI state of 87Rb with unit filling for different control fields
and lattice strengths. As discussed above, the momentum
distribution of the Wannier function leads to an asymmetric

−10 0 10 20

−1

−0.5

0

0.5

1

Δ
1
/Γ

iχ
M

I (
ar

b.
 u

ni
ts

)

−10 0 10 20

−1

−0.5

0

0.5

1

Δ
1
/Γ

(a) Ω
2
=5Γ (b) Ω

2
=10Γ

FIG. 3. (Color online) EIT profiles of a unit-filling Mott insulator
with 87Rb atoms loaded in a 3D optical lattice (lattice constant d =
426 nm). The corresponding parameters (U,J ) in units of the recoil
energy ER are (0.5,0.007) and (1.05,10−4) for V0/ER = 15 (solid
blue and dashed red) and 40 (♦ and �), respectively. Absorption
(Re[iχ ], solid blue, ♦) and dispersion (Im[iχ ], dashed red, �) profiles
are plotted for various control field strengths (a) �2 = 5 and (b) 10�.
All other parameters are the same as in Fig. 2.

and inhomogeneous broadening of the absorption profiles near
the resonance. It makes the EIT window less transparent when
the control field is weak [Fig. 3(a)], while it becomes less
effective in the large field limit. In other words, by measuring
the absorption depth, one may also determine the momentum
distribution of the underlying many-body system.

EIT in a BCS superfluid state. Finally we investigate the EIT
in a BCS superfluid of two-component Fermi gases, using a
similar setup [15] by coupling one of the atomic ground states
to a low-lying Rydberg state [14]. Without losing generality,
here we just presume the existence of a superconducting
gap �BCS, not specifying the pairing mechanism. One of
the two components (pseudo-spin-up) is our ground state
(|g〉) in the EIT experiment, and the other is not involved
in the EIT process. The Green’s function can be calculated by
transforming toward the Bogoliubov quasiparticles (α and β),
ĝk,↑ = cos θkα̂k + sin θkβ̂

†
−k, where sin2 θk ≡ (1 − ξk/Ek)/2.

Here Ek =
√

�2
BCS + ξ 2

k is the excitation energy with ξk ≡
k2/(2m) − μ and μ being the chemical potential. We find that
−iG̃<

BCS(k,t) = sin2 θ2
ke−iEkt θ (t) (see SM [16]), and then

χBCS(q,ω) = d0

V

∑
k

sin2 θk

(
cos2 φk+q

ω + Ek + ε−(k + q)

+ sin2 φk+q

ω + Ek + ε+(k + q)

)
. (5)

Note that in the limit of zero pairing gap, �BCS = 0,
sin2 θk becomes a step function at the Fermi energy, and
hence χBCS becomes the result of a noninteracting Fermi
gas [24].

In Figs. 4(a) and 4(b), we plot the EIT profiles of the BCS
superfluid phase for 40K in the counterpropagating excitation
schemes. Different control field strengths and different gap
amplitudes are shown together for comparison. One can
see that when the control field is turned smaller, the recoil
energy becomes more important so that the presence of a
Fermi sea makes the EIT spectrum disappear, similar to
the noninteracting fermions [24]. When the control field

061802-3



RAPID COMMUNICATIONS

H. H. JEN AND DAW-WEI WANG PHYSICAL REVIEW A 87, 061802(R) (2013)

−2 0 2 4 6

−1

0

1

Δ
1
/ε

F

iχ
B

C
S
 (

ar
b.

 u
ni

ts
)

0 1 2
0.5

1

1.5

2

2.5

Δ
BCS

/ε
F

Δ 1* /ε
F

1.5

2

2.5

v g (
10

−
8  c

)

−1

−0.5

0

α 
(a

rb
. u

ni
ts

)

−1

0

1

(d) Ω
2
=10Γ(b) Ω

2
=10Γ

(c) Ω
2
=10Γ(a) Ω

2
=5Γ

FIG. 4. (Color online) EIT profiles of a BCS superfluid state of
two-component Fermi gases (40K). The excited state is chosen as a
low-lying Rydberg transition of |21P3/2〉 with �−1 = 25.4 μs. We fix
the chemical potential μ = εF = 6.7h̄� with an atomic density n ∼
1014 cm−3 and resonant control field (�2 = 0). Absorption (Re[iχ ],
solid blue, ♦) and dispersion (Im[iχ ], dashed red, �) profiles are
plotted for pairing gaps �BCS/εF = 0.1 (solid blue and dashed red)
and 1 (♦ and �), while the control field strengths are (a) �2 = 5 and
(b) 10�. (c) shows the group velocity vg (+) and the absorption depth
α (©) at the transparency point as a function of �BCS. (d) shows the
transparency positions �∗

1 (×).

becomes stronger, the quantum degeneracy becomes less
important so that the standard EIT features appear, while
an asymmetric broadening appears when the gap is opened.
Interestingly, we find the group velocity is larger for a larger
�BCS [see Fig. 4(c)], different from the results of a LL. In
Fig. 4(d) we show that the transparency points �∗

1 scale as

the gap energy, and therefore can be used to measure the
pairing gap.

Experimental issues. The difference between the EIT
approach and standard Bragg spectroscopy (BS) is twofold.
First, EIT is nondestructive while BS operates with the
interference of atoms. Second, BS measures the density-
density correlation function, in contrast to the first-order
correlation in EIT. For experimental realizations, it may
involve the integration time and precision of the spectrum
measurement. With kHz resolution required in our scheme,
we need a ms integration time compatible with the atomic
lifetime of several ms, which can be fulfilled by minimizing the
inelastic collisions of BEC [32]. The contrast of susceptibility
can be also enhanced by increasing the optical depth of the
atoms. Including the thermal excitations is crucial for practical
implementations and will be discussed in a future work.

In summary, we have developed a general and analytical
theory to investigate the EIT spectrum of quantum degenerate
ultracold atoms. The spectrum is solely determined by the
single-particle Green’s function, and has most significant
quantum many-body physics when the atoms are coupled to a
low-lying Rydberg state. In the regime of strong interaction,
the absorption profile has a highly asymmetric inhomoge-
neous broadening with a frequency shift in detuning. Our
results suggest a new nondestructive method to investigate
the strongly correlated physics from the well-developed EIT
experiment.
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B: At. Mol. Opt. Phys. 38, S295 (2005).

[21] R. Löw, H. Weimer, U. Krohn, R. Heidemann, V. Bendkowsky,
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