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Tunable source of correlated atom beams
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We use a one-dimensional optical lattice to modify the dispersion relation of atomic matter waves. Four-wave
mixing in this situation produces atom pairs in two well-defined beams. We show that these beams present a
narrow momentum correlation, that their momenta are precisely tunable, and that this pair source can be operated
in the regimes of low mode occupancy and of high mode occupancy.
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In quantum optics, the existence of mechanisms to produce
photon pairs, such as parametric down-conversion, enabled the
realization of several fundamental experiments on quantum
mechanics. For example, the violation of Bell’s inequalities
[1] or the Hong-Ou-Mandel effect [2] reveal the surpris-
ing properties of quantum correlations in entangled photon
pairs. These fascinating properties have found applications in
quantum information and communications [3]. In analogy to
photon pairs, there have been several recent demonstrations
of correlated atom-pair production [4–10]. In particular,
momentum correlations of spatially separated samples is an
important requirement for the demonstration of an atomic
Einstein-Podolsky-Rosen state [11,12] and the violation of
Bell’s inequalities. Such momentum correlations were demon-
strated for atom pairs produced by molecule dissociation [4]
or by spontaneous four-wave mixing in free space through
the collision of two Bose-Einstein condensates (BECs) [5,13].
In these experiments the pairs which were produced lay on
a spherical shell. This geometry is disadvantageous because
many spatial modes are populated, and if one wishes to use
Bragg diffraction to manipulate and recombine the pairs on
a beam splitter [11,14], the vast majority of the pairs are
unusable.

On the other hand, if pair production is concentrated in
a small number of modes, experimenters can make more
efficient use of the generated pairs. One can then choose to
work either with low mode occupation, the well-separated
pair regime, or with high mode occupation, referred to as
the squeezing regime in Ref. [15]. An example of twin
beams generated in the latter regime is described in Ref. [6].
The squeezing regime is well suited to the study of highly
entangled multiparticle systems and for investigations of atom
interferometry below the standard quantum limit [16,17]. The
source we study in this Rapid Communication can be operated
in both regimes. We use atomic four-wave mixing in a one-
dimensional (1D) optical lattice, which results in production
of atom pairs in two well-defined beams, as proposed in
Ref. [18] and demonstrated in Ref. [19]. We show that these
beams present a narrow momentum correlation, that their
momenta are precisely tunable, and that we can control their
intensities.

*bonneau@lens.unifi.it; Present address: INO-CNR, via G. Sansone
1, 50019 Sesto Fiorentino - Firenze, Italy.
†Present address: Harvard-Smithsonian Center for Astrophysics,

Cambridge, Massachusetts 02138, USA.

In atom optics, four-wave mixing corresponds to scattering
into new momentum classes subject to energy and momentum
conservation. In a wave picture, the conservation requirements
can be thought of as phase-matching conditions. The presence
of an optical lattice modifies the free-space atomic dispersion
relation and therefore, for a range of initial quasimomenta
k0 [20], the 1D scattering event 2k0 → k1 + k2 is allowed, as
shown in Fig. 1(a). Thus, beginning from a BEC at k0, atom
pairs are spontaneously generated along the lattice axis with
well-defined quasimomenta k1 and k2. We refer to this process
as four-wave mixing, but it can also be viewed as a special case
of a dynamical instability [21,22], which was studied in the

FIG. 1. (Color online) (a) 1D pair creation process in an optical
lattice with period λlatt./2: The dispersion relation in the first Bloch
band (green solid curve) allows scattering of atoms from a BEC with
quasimomentum k0 (open red circle) in the lattice frame into pairs
with quasimomenta k1 (filled orange circle) and k2 (filled blue circle),
so that phase-matching conditions given by energy and momentum
conservations are fulfilled. The example here is for a lattice depth
V0 = 0.725Erec and k0 = −0.65krec, with krec = 2π/λlatt. the recoil
momentum and Erec = h̄2k2

rec/2m = h × 44 kHz the recoil energy.
(b) Vertical single-shot momentum distribution (integrated over the
total transverse distribution) measured for these conditions. The three
main peaks correspond to the initial BEC and to the macroscopically
populated beams centered at k1 and k2, which are mainly projected in
the first Brillouin zone (in white) when the lattice is switched off. As
expected, small diffraction peaks at k0 + 2krec and k2 − 2krec are also
visible, due to the proximity of k0 and k2 to the band edge.
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FIG. 2. (Color online) Experimental setup and sequence: (1)
Initially, a BEC of metastable helium is trapped in a vertical optical
potential with a 43 μm waist. (2) An optical lattice is suddenly
applied in the presence of the trap. It is tilted by 7◦ with respect to
the trap axis, and is focused on the BEC with a 200 μm waist. (3)
After the dipole trap and optical lattice switch off, the cloud expands
and falls on the 3D resolved single atom detector. Given the values of
the vertical and transverse Thomas-Fermi radii (0.5 mm and 3 μm),
the arrival time and position reflect the 3D momentum distribution,
provided the momenta are well above 3 × 10−2krec along z and
2 × 10−4krec transversely.

context of coherence [23,24] and atomic [25] losses appearing
for a BEC moving in a lattice.

The experiment is performed on 4He atoms in the mx = 1
sublevel of the 2 3S1 metastable state. The experimental setup
and sequence are shown in Fig. 2. After evaporative cooling
in an elongated, vertical dipole trap with frequencies ν⊥ =
1.5 kHz and νz = 6.5 Hz [26], we produce a BEC (or more
precisely a quasi-BEC [27]) with about 105 atoms. We then
apply a 1D optical lattice with a depth V0 = 0.725Erec. This
lattice is tuned 19 nm to the blue of the 1083 nm 2 3S1–2 3P

transition of helium. It is formed by two counterpropagating
17 mW beams with 200 μm waists and whose relative detuning
δν can be varied using acousto-optic modulators. We thus
control the value of k0/krec = h δν/4Erec, the BEC’s momen-
tum in the lattice frame. The lattice is held on for a duration
TL = 2 ms, and suddenly switched off, simultaneously with
the optical trap. To avoid magnetic perturbation of the cloud
during free fall, we apply an rf pulse that transfers 50% of
the atoms to the field insensitive mx = 0 sublevel [26]. The
atoms remaining in mx = 1 are subsequently removed by a
strong magnetic gradient. After a 307 ms mean time of flight,
the mx = 0 atoms fall on a microchannel plate detector, which
permits 3D reconstruction of the atomic cloud [28].

As shown in Fig. 1(b), we observe three main density peaks
after the time of flight. The tallest is the initial BEC. The two
others are formed by atoms scattered into momentum classes
centered in k1 and k2, whose values are consistent with those
expected from the phase-matching conditions illustrated in
Fig. 1(a). Since the optical lattice is switched off abruptly,
the Bloch states of momenta k0, k1, and k2 are projected onto
plane waves, mainly in the first Brillouin zone due to the

low lattice depth. Each of the beams at k1 and k2 contains
about 102 detected atoms, which we estimate to correspond
to about 2 × 103 atoms per beam. We also detect some atoms
between the beams, which result from scattering into excited
transverse modes [29]. Due to the low overlap between the
transversely excited states and the initial wave function, this
transverse excitation is far less efficient than the previously
described 1D process. In addition, scattered atoms can also
undergo secondary scattering contributing to the background
between the beams.

In the following, we focus on the two beams. Using them
for quantum atom optics experiments or for interferometry
will require recombining them. It is therefore crucial to
know the width of their correlation. From the 3D-momentum
distribution n(k), we computed the normalized second-order
cross-correlation function,

g
(2)
C (k,k′) = 〈n(k) n(k′)〉

〈n(k)〉 〈n(k′)〉 , (1)

where k belongs to beam 1 and k′ to beam 2. The BEC is
not exactly at rest in the optical trap, but exhibits shot-to-shot
momentum fluctuations on the order of 10−2 krec. We correct
for these fluctuations by recentering separately the single shot
momentum distributions n(k) around k1 and k2, using the
shift obtained from Gaussian fits to the peak at k1 and to
the diffraction peak at k0 + 2krec. This correlation function
exhibits a peak for kz � k1 and k′

z � k2 [Figs. 3(a) and 3(b)].
The presence of this peak indicates that the two atomic beams
are indeed correlated.

We wish to determine the number of modes present in
each beam, and how many of these modes are correlated.
We therefore examine the local second-order correlation
function of a single beam, g

(2)
L (k,k′), which is obtained as

in Eq. (1) but with both k and k′ belonging to beam 1. This
correlation function, plotted in Figs. 3(c) and 3(d), exhibits
bunching for k′

z � kz � k1, due to density fluctuations [as
in the Hanbury-Brown–Twiss (HBT) effect [30]]. Similar
bunching is observed at k2. If we suppose that the widths
of the local correlation define the size of a single mode, we
can compare them to those of the density (longitudinal rms:
4 × 10−2krec; transverse rms: 4 × 10−1krec). We see that about
10 longitudinal and 3 transverse modes are populated. Thus the
mode population is, roughly, 70 atoms/mode. For comparison,
in the case of free-space four-wave mixing [31], starting from
a similar initial BEC, 105 modes were populated, with only
about 0.02 atoms/mode.

It appears in Fig. 3 that, while in the transverse direction,
the cross and local correlations have similar widths [Figs. 3(a)
and 3(c)], the cross correlation is 5 times broader than the
local one along the vertical axis [Figs. 3(b) and 3(d)]: each
mode is correlated with several modes of the other beam.
If one uses two such beams as inputs to a beam splitter,
this broadening amounts to a loss of coherence, and the
interference contrast would be reduced. We emphasize that
the observed widths may be broadened by other effects, and
so their numerical ratio is not exactly equal to the number of
correlated modes. For the local correlation, we estimate that
the finite vertical resolution of the microchannel plate detector
contributes notably to the observed width. This resolution
comes about because the surface which defines the atom arrival
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FIG. 3. (Color online) (a) and (b) Cuts along y and z of
the integrated, normalized cross-correlation function of the two
beams, g

(2)
C (�k) = ∫

dki g
(2)
C (ki,kj + �k). The integration over the

momentum distribution ki is performed on a box with dimensions
Lkx

= Lky
= 0.4krec and Lkz

= 5 × 10−2krec centered on beam 1,
ki + kj = (k1 + k2) êz, and the cuts have a thickness 10−2krec (1.5 ×
10−1krec) along z (x and y). The bunching, due to the correlation
between the two beams, has a longitudinal (transverse) width σc,z =
1.8 × 10−2krec (σc,y = 1.6 × 10−1krec). (c) and (d) Cuts along y and
z of the integrated, normalized local correlation function of beam
1, g

(2)
L (�k) = ∫

dki g
(2)
L (ki,ki + �k). The integration region is the

same as for the cross correlation, and the cuts have a thickness
2.5 × 10−3krec (0.1krec) along z (x and y). The bunching, due to
the HBT effect, has a longitudinal (transverse) width σl,z = 3.7 ×
10−3krec (σl,y = 1.3 × 10−1krec). Cuts along x (not shown here) have
the same widths and amplitudes as cuts along y. These correlation
functions are calculated using 850 experimental realizations, with
k0 = −0.65krec, a lattice depth V0 = 0.725Erec, and a lattice duration
TL = 2 ms. In all plots, the horizontal error bars indicate the bin size
and the vertical ones correspond to the statistical 1σ uncertainties.
The solid lines are Gaussian fits to the data from which we extract
the correlation widths.

time is not flat but consists of tilted channels which intercept
the atoms at different heights. The width shown in Fig. 3(d)
is consistent with this interpretation. For the cross correlation,
the observed width is broadened by the fact that the vertical
source size is not negligible [32]. Note also that the limited
coherence of the initial quasi-BEC plays a role in the cross
correlation width [32].

The use of an optical lattice permits control over the output
beam momenta. Changing the detuning δν between the lattice
beams results in varying the value of k0. In Fig. 4, we plot the
mean vertical momenta k1 and k2 of both beams, measured for
different k0, as well as the expectation (solid line) based on the
phase-matching conditions illustrated in Fig. 1(a). We obtain
a fair agreement over a large range, even though the solid line
presents a small shift in comparison to the data points and
does not reproduce the observed shape for high values of k0.
However, as already observed for four-wave mixing in free
space [33], phase-matching conditions can be influenced by
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FIG. 4. (Color online) Measured mean momenta k1 and k2 of the
beams (black dots, in units of krec) as a function of k0 (initial BEC
momentum in the lattice frame) for a depth V0 = 1.05Erec and a
duration TL = 1.5 ms of the lattice. The solid line shows the phase-
matching curve expected without interactions, while the dashed line
includes the mean field [see Eq. (2)].

mean-field effects. A simple correction to the phase-matching
curve is found just by adding the mean field to the energy
conservation condition: Since the two atoms of a scattered
pair are distinguishable from the atoms of the initial BEC,
the mean-field energy experienced by each of them is not gn0

(with g = 4πh̄2a/m, a and m the scattering length and the
mass of He∗ and n0 � 1013 atoms/cm3 the BEC density), but
2gn0, so that the energy conservation condition reads:

2E(k0) + 2gn0 = E(k1) + E(k2) + 4gn0, (2)

where the energy E(k) is given by the dispersion relation in
the first Bloch band of the lattice without interaction. As seen
in Fig. 4 (dashed line), this correction leads to very good
agreement with the experimental data, and accounts for the
shift of the phase-matching curve and the change of its shape.
A more exact calculation of the phase-matching conditions,
inspired by Ref. [21], confirms the accuracy of Eq. (2) in our
experimental conditions and will be given in Ref. [34].

Another degree of freedom results from the fact that pair
creation only takes place while the lattice is on. We can thus
tune the beam populations with the lattice duration TL. In the
example of Fig. 5 these populations increase exponentially
with TL during a few hundred μs, and then reach a plateau.
This saturation could be explained by several mechanisms
such as the decrease of spatial overlap between condensate and
scattered beams [19], multimode effects [35], and secondary
scatterings from the beams. Condensate depletion is at most
about 20% and should be of little importance in the saturation.
For small TL, there is no discernible population difference
between both beams. By contrast, we observe that at large TL

the population of beam 1 is almost twice that of beam 2, a
phenomenon also noticed in Ref. [19]. This may be due to
k2 being in a dynamically unstable region while atoms with
quasimomentum k1 can only undergo secondary scattering to
excited transverse modes.

At intermediate TL, we observe negligible losses due to
secondary scattering and high mode population (around 60
atoms per mode at TL = 0.2 ms in the example of Fig. 5). The
resulting beams should contain strongly correlated pairs. In
an attempt to verify a nonclassical correlation, we examined
atom number difference between the two beams. By selecting
two regions around the centers of the two beams, we do indeed
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FIG. 5. (Color online) Dependence of the population of beam 1
(orange filled circles) and beam 2 (blue open circles) on the lattice
duration TL for k0 = −0.67krec and for a lattice depth V0 = 1.05Erec.
The gray line is an exponential fit of the detected population in beam
2 for TL < 0.3 ms, which gives a time constant of 0.1 ms and an
offset of 11.5 detected atoms. This offset is due to the small thermal
part of the source cloud with quasimomenta k1 and k2. For a lower
lattice depth, as for the data of Fig. 3, the temporal evolution is a few
times slower [21]. Inset: same data with linear scale.

observe a sub-Poissonian number difference [6,31], as shown
in Fig. 6. The observed variance is consistent with that ob-
served in Ref. [31], and is limited in large part by the quantum
efficiency of the detector. Other features of the variance are
puzzling, however. First the minimum of the dip in the variance
occurs when the center of region 1 is shifted by 0.1krec with
respect to the center of the density distribution in beam 1.
Second, in the transverse plane, the size of the regions over
which the variance is reduced is nearly an order of magnitude
smaller than the transverse width of the correlation function.
We plan to investigate these effects in future experiments.

To conclude, we have demonstrated an efficient process for
the production of correlated atom pairs. We have control over
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FIG. 6. (Color online) Normalized variance of atom number
difference between two regions selected close to beams 1 and 2.
The data are the same as those of Fig. 3. Regions are vertical
cylinders of radius 2.5 × 10−2krec and height 8.5 × 10−2krec. They
are centered on the two beams in the transverse plane. Along the
vertical axis, the center momentum (in the lattice frame) of region 1
is scanned, whereas region 2 is fixed. A variance below unity indicates
sub-Poissonian fluctuations.

both the final momenta and the intensity of the correlated
beams. We characterize the width of the correlation in
momentum and find evidence of sub-Poissonian fluctuations
of population difference. This source should be useful in
multiple particle interference experiments both in the regime
of well-isolated pairs [12] and in the regime of large occupation
numbers [11].
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