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Streamlining Shor’s algorithm for potential hardware savings
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We constructed a virtual quantum computer by running a complete, scaling, quantum-gate–by–quantum-gate
implementation of Shor’s algorithm on a 128-core classical cluster computer. In mode A [quantum period finding
(PF) only, supplied with classical results for the modular exponentiation (ME) part of Shor’s algorithm], factoring
semiprimes up to N = 557 993 with up to n = 39 qubits, we confirm earlier, smaller-n results concerning the
performance scaling of Shor’s algorithm equipped with a truncated (banded) quantum Fourier transform. Running
our virtual quantum computer in mode B (full quantum implementation of ME and PF), we find that a large
number of gates may be discarded in a scalable way in both the ME and PF parts of Shor’s algorithm in exchange
for only a small reduction in performance. We explicitly state the associated scaling laws. Implying significant
savings in quantum gates, we suggest that these results are of importance for future experimental and technical
large-n implementations of quantum computers.
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Most computations of practical interest cannot be per-
formed on classical, digital computers because they exceed
the capabilities of even the largest presently existing supercom-
puters. A well-known example of importance in cryptanalysis
is the factorization of large semiprimes N = pq, where p

and q are prime numbers of about equal size [1]. Solution
of the factorization problem would immediately break many
popular encryption schemes, such as the RSA (Rivest, Shamir,
and Adleman) encryption scheme [2], and would immediately
reveal untold scores of government, military, and bank secrets.
However, even if we build a classical supercomputer com-
bining the resources of the entire known universe, we would
still not be able to factor a relatively modest-sized semiprime
with 5000 decimal digits [3]. Therefore, encryption codes that
rely on the difficulty of integer factorization are considered
secure—for now.

Classical digital computing, however, is not the only form
of information processing. Since the early 1980s, we have
known that a quantum computer [4–6], a qualitatively new
form of information processor, is capable of solving problems
that are strictly beyond the powers of any conceivable classical
computer. In the world of integer factoring this is impressively
demonstrated by Shor’s algorithm [7], which is exponentially
more powerful than any currently known classical factoring
algorithm. In particular, at least in principle, a quantum com-
puter running Shor’s algorithm is powerful enough to break
currently employed RSA-based encryption codes [8–10].

The quantum core of Shor’s algorithm may be broken
down into two parts: (1) modular exponentiation (ME) and
(2) period finding (PF). Given an integer x, relatively prime
to N , the ME part of Shor’s algorithm determines the values
f (r) = xr mod N for integer exponents r . This is followed
by the PF part of Shor’s algorithm, which, supplemented
with an efficient classical algorithm (classical postprocessing
[8–10]), performs a quantum Fourier transform (QFT) [8–10]
to determine the period ω of f , i.e., f (r + ω) = f (r). Given
the period ω and a few additional conditions that are straight-
forwardly accommodated in practice [8–10], the factors of N

are then determined according to p = gcd(xω/2 − 1,N ) and

q = gcd(xω/2 + 1,N ), where gcd is the greatest common
divisor, efficiently computed via Euclid’s algorithm [1].

Because of its importance, several experimental groups
have implemented demonstration models of quantum comput-
ers that are capable of factoring small semiprimes [11–15].
Although these experiments employ quantum circuits that
implement both parts of Shor’s algorithm, i.e., ME and PF, the
quantum circuits are tailor-made and optimized for a single
semiprime N . Thus, these quantum circuits do not scale; i.e.,
they are not capable of factoring any other N than the one
they are designed for. The high degree of specialization in
the experimental implementations of ME and PF is necessary
since even with today’s standards of exquisite quantum control,
it is still a daunting task to coherently control more than a
handful of qubits. Therefore, experimental implementations of
quantum computers are currently limited to N � 21 [11–15].

In order to overcome the current experimental limitations
on N and to be able to study, theoretically, the performance of
Shor’s algorithm under various conditions, we implemented
a complete quantum-gate–by–quantum-gate simulation of a
scaling, virtual quantum computer on a 128-core classical
cluster computer. We designed our virtual quantum computer
to run in two modes: (A) PF only, supplied with ME
performed classically, and (B) both ME and PF executed
quantum mechanically. With our currently available classical
computing resources, running our virtual quantum computer
in mode A, we are able to factor all semiprimes up to and
including N = 557 993. Running the quantum computer in
mode B, we are able to factor all semiprimes up to and
including N = 57. We view our virtual quantum computer as a
convenient virtual quantum laboratory that lets us investigate
the effects of various (scaling) optimizations. One of these
optimizations is the use of a banded QFT and its influence on
the performance of Shor’s algorithm [3,16,17]. Running our
virtual quantum computer in mode A, we report results that
test our performance scaling laws [3,17] in the region of up
to 39 qubits. Running our quantum computer in mode B, we
report results on the effects of a scaling optimization of the
adder and ME-QFT components [18] of ME.
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FIG. 1. Logic circuit of a five-qubit example of the Griffiths-Niu
QFT [19], illustrating the concept of bandwidth, defined as the
number b of off-diagonal quantum states coupled by the QFT:
(a) full implementation (bandwidth b = 4); (b) truncated implemen-
tation (bandwidth b = 1). H, θ , and M denote Hadamard, single-qubit
conditional rotation, and measurement gates, respectively.

Given the experimental challenges in achieving coherent
quantum control of many qubits simultaneously, experimental
implementations of Shor’s algorithm are facilitated if the
algorithm itself can be simplified. We distinguish two types
of simplifications: performance conserving and performance
changing. One such simplification, a performance-conserving
optimization, is the substitution of the fully coherent QFT
[8–10] in Shor’s algorithm by a semiclassical version due to
Griffiths and Niu [19]. A five-qubit circuit of the Griffiths-Niu
QFT is shown in Fig. 1(a). Although the Griffiths-Niu version
of the QFT replaces all two-qubit gates in the fully coherent
QFT by (controlled) single-qubit gates and destroys phases
as a result of measurement (see M gates in Fig. 1), it is exact
when used in conjunction with the PF part of Shor’s algorithm.
Our virtual quantum computer is equipped with a banded
version [3,16,17,20] of the Griffiths-Niu QFT [see Fig. 1(b)].
This means that in addition to using only single-qubit gates,
as shown in Fig. 1(a), we also retain only coupling to b

nearest-neighbor qubits, which results in a banded structure
of the quantum circuit [see Fig. 1(b)]. Of course, denoting by
n the number of qubits of our virtual quantum computer, the
exact case is included for the choice b = n − 1. While the
case b = n − 1 is performance conserving, b < n − 1 is not
but leads to substantial savings in quantum gates. Therefore,
for given n, our goal is to determine the optimal choice of b that
corresponds to maximal savings in gates for still acceptable
quantum computer performance.

Quantifying our performance measure, we note that the
probability of finding our quantum computer in state |l〉 after
running Shor’s algorithm for a specific semiprime N with
maximal bandwidth b = n − 1 (exact case) is [3]

P̃b=n−1(l) = sin2(Kπωl/2n)

2nK sin2(πωl/2n)
, (1)

where K ≈ 2n/ω. Apparently, P̃b=n−1(l) exhibits ω peaks
l̃j located at integer multiples of K , i.e., l̃j = jK , j =
0, . . . ,ω − 1. Running our quantum computer with b < n − 1,
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FIG. 2. Scaled probability for bandwidths b = 5 (triangles), 6
(asterisks), 7 (diamonds), and 8 (squares) for n ranging from 8 to 39.
The data for n = 34, . . . ,39 are consistent with the scaling law (3)
(solid lines) predicted in [3,17].

we find that the probabilities of all quantum states |l〉, where l

is in the vicinity of l̃j , i.e., states useful for factoring [8–10],
respond in unison to the reduction of b [3]. Therefore, defining
lj as the closest integer to l̃j , we find it useful and convenient to
measure the performance of the banded Shor algorithm using
the normalized performance measure [3]

Pb(n) =
ω−1∑
j=0

P̃b(lj )

/ ω−1∑
j=0

P̃b=n−1(lj ), (2)

where P̃b(l) is the probability of collapse into the state |l〉 if
the full QFT is replaced by its banded version of bandwidth
b [see Fig. 1(b)]. Previously, we were able to compute Pb(n)
for quantum computers with up to 33 qubits [3] and found the
scaling law

Pb(n) = exp[−1.1 × 2−2b(n − 8)] (3)

(solid, straight lines in Fig. 2). Testing our earlier results,
we report here calculations of Pb(n) that extend the range
of qubits to n = 39. The plot symbols in Fig. 2 include our
data for Pb(n) in the range from n = 34 to 39. These data were
obtained by running our virtual n-qubit quantum computer
for various N , ranging from N = 116 939 to N = 557 993.
These computations are extensive, so that in the range from
n = 34 to n = 39 we can only afford to choose a single
sample N for each n. We chose N = 116 939 = 337 × 347
for n = 34, N = 171 371 = 409 × 419 for n = 35, N =
239 117 = 487 × 491 for n = 36, N = 265 189 = 509 × 521
for n = 37, N = 378 221 = 613 × 617 for n = 38, and N =
557 993 = 743 × 751 for n = 39. Our chosen N values are
products of consecutive primes. This is obviously not useful
for cryptological applications but emulates the case p ≈ q,
known to be the most difficult case to factor [1]. For each
chosen N , we determine all of its orders ω (each of these
N has up to 72 different orders, which all require quantum
processing) and then compute the ω-averaged Pb [3], which
then appears as a plot symbol in Fig. 2. These results confirm
the scaling law (3), thus confirming the conclusion in [3] that a
substantial number of quantum gates can be saved by pruning
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the QFT down to bandwidths around b = 8 (although based
on a slightly different scaling law, the same conclusion was
reached by the authors of [16]). This is seen clearly in Fig. 2,
which shows that for b = 8 the performance of the quantum
computer is very close to 1 for all n ranging up to n = 39.

We now turn to our mode-B calculations. Supplementing
the QFT with quantum circuitry as described in [18], we obtain
a complete quantum-gate–by–quantum-gate implementation
of a virtual quantum computer that currently runs on a 128-core
classical cluster computer. Our gate-by-gate implementation
gives us access to each individual quantum gate and allows us
to investigate the effects of gate pruning on the performance
of the quantum computer. Another advantage of our imple-
mentation is that it allows us to experiment with the factoring
of actual semiprimes N . We report here results for N = 21,
although, given our classical hardware resources, N = 33, 35,
39, 51, 55, and 57 are within our reach [21]. Running test cases
for N = 15 and N = 21 and comparing the computational
results to the theoretically expected result (1), we verified that
our virtual quantum computer is implemented correctly.

Relating to our experiments with a reduced bandwidth b

in the PF part of Shor’s algorithm and making use of our
access to each individual quantum gate of our virtual quantum
computer, we introduced the bandwidth bME in the adder and
ME-QFT parts [18] of Shor’s algorithm by removing all gates
causing single-qubit phase shifts of less than exp(iπ/2bME ).
For fixed bME we compute Pb(bME) as in (2) and define
�b(bME) = 1 − Pb(bME). We chose N = 21 with n = 10 to
investigate the effects of this pruning operation. Figure 3
shows �b = 1 − Pb for our test case N = 21 with b ranging
from 1 to 7. We find that �b depends only weakly on bME

and decays exponentially for increasing b. This implies that
satisfactory performance of Shor’s algorithm can be achieved
with relatively small b (bME), resulting in tremendous savings
in quantum gates. Quantitatively, we find that

�b ≈ 2−2b, (4)
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FIG. 3. Complement �b(bME) = 1 − Pb(bME) of quantum com-

puter performance as a function of b for five different values of bME.
Triangles: bME = 1; asterisks: bME = 2; diamonds: bME = 3; squares:
bME = 4; circles: bME = 5. The solid line is the scaling function (4).

which is reminiscent of the b scaling in mode A [see (3)].
Because exponentially many quantum operations need to be
simulated, our quantum computer currently runs at an accuracy
of ≈10−5. The point corresponding to b = 8 in Fig. 3 is not
shown because it is at the limit of our accuracy and therefore
unreliable.

Multiprocessor simulations of Shor’s algorithm on classical
hardware are not new (see, e.g., [22–25]), and applications
range from proofs of principle of the suitability of the
multiprocessor architecture [22,23] and the creation of con-
venient parallel-computing environments [25] to massively
parallel implementations on state-of-the-art supercomputer
facilities [24]. While we cannot compete with supercomputer
implementations of Shor’s algorithm as far as raw computing
power is concerned, the results reported in this paper push
the envelope in different ways. Our mode-A calculations
allow us to confirm the scaling behavior of Shor’s algorithm
equipped with a banded QFT for up to n = 39 qubits, which
is substantially larger (the execution time essentially doubles
with each unit increase in n) than the number of qubits used
in earlier investigations of this type [3,16,17]. The results of
our calculations confirm our analytical model of performance
scaling [3,17], which predicts that the scaling (3) persists for
quantum computers with several thousand qubits, relevant for
factoring semiprimes of practical interest. However, our main
result is the realization that the ME part of Shor’s algorithm
may be banded in the same way as the PF part, resulting in
the scaling law (4). This proves that the adder and ME-QFT
components of ME may be considerably streamlined, resulting
in substantial savings in quantum gates in exchange for only a
negligible reduction in performance. Detailed circuit diagrams
illustrating the ME pruning operation defined above will be
published elsewhere [21].

We also mention the investigations by Garcı́a-Mata et al.
[26,27]. These investigations are related to our mode-A
calculations since in [26,27] the ME part of Shor’s algorithm
is represented by the product of unitary matrices computed
classically. However, the focus in [26,27] is not on the effects
of bandedness but on the influence of noise on the performance
of Shor’s algorithm. This motivates the question of whether in
the presence of noise and decoherence a larger bandwidth b

(bME) may be required than predicted by our noise-free model,
possibly erasing the benefits that a small b (bME) entails. For
the following simple reason this is highly unlikely. The gates
pruned now are (classically controlled) single-qubit rotation
gates with exponentially small rotation angles. Because the
rotation angles are so small, these gates are easily drowned
out by noise, and instead of performing their function, they
would merely act as “antennas” to pick up noise and channel
it into the quantum circuit. Therefore, in the presence of noise,
it may actually be beneficial to prune even more gates, i.e., to
work with an even smaller bandwidth than indicated by the
noise-free model in order to avoid this “antenna effect.” Our
preliminary calculations confirm these conclusions and will be
reported elsewhere [21].

The computations reported in this paper are expensive. They
took three months to execute on a 128-core cluster-computer
and are thus at the limit of computer power that even a
university computing center can provide for a single research
group. Therefore, we need streamlined versions of Shor’s
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algorithm not only for efficient practical implementations of
Shor’s algorithm but also for quantum simulations performed
on classical computers in order to be able to explore the high-
n regions of practical importance for meaningful quantum
computations.

In summary, we presented some recent results on extending
our mode-A calculations to 39 qubits, thereby testing and
confirming our scaling laws for finite-bandwidth quantum
computer performance [3,17]. These calculations involved
quantum factorization of actual semiprimes up to and including

N = 557 993. Running our quantum computer in mode B, we
showed that quantum adders and ME-QFTs may be banded
without significant loss in factoring performance. We are sure
that this will be of considerable interest for technological
implementations of Shor’s algorithm.
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