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Blind quantum computation is a new quantum secure protocol, which enables Alice who does not have enough
quantum technology to delegate her computation to Bob who has a fully fledged quantum power without revealing
her input, output, and algorithm. So far, blind quantum computation has been considered only for the circuit
model and the measurement-based model. Here we consider the possibility and the limitation of blind quantum
computation in the ancilla-driven model, which is a hybrid of the circuit and the measurement-based models.
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I. INTRODUCTION

Traditionally, quantum computation has been studied in
the circuit model [1], where the quantum register which
stores quantum information consists of many qubits, and a
quantum gate operation is performed by directly accessing
one or two qubits in the quantum register. Another canonical
model of quantum computation is the one-way model [2] (or
more general measurement-based models [3–13]), where the
universal quantum computation is performed by adaptive local
measurements on a highly entangled resource state. Recently, a
mixture of those two models, which is called the ancilla-driven
quantum computation, was proposed [14,15]. In this model,
the quantum register is a set of many qubits like the circuit
model, whereas a quantum gate operation is, like the one-way
model, performed by adaptive local measurements: one or
two register qubits are coupled to a single mobile ancilla,
and the ancilla is measured after establishing the interaction
between the ancilla and register qubit(s). The back action of
this measurement provides the desired gate operation, such
as a single qubit rotation or an entangling 2-qubit operation,
on register qubit(s). In the ancilla-driven model, the universal
quantum computation is performed with only a single type
of interaction [controlled Z (CZ) or SWAP + CZ] between
the ancilla and register qubit(s). It is a great advantage for
experiments, since in many experimental setups, implementing
various different types of interactions at the same time is
very difficult (such as the solid-based quantum computation).
Furthermore, the roles of the register and the information
carrier are clearly separated, and no direct action on the
register is required. Therefore, it is also useful in experimental
systems where measurements destroy quantum states, such as
photonic systems. In short, this model is a natural theoretical
model of the “hybrid quantum computer” where the flying
ancilla mediates interactions between static qubits (such as the
chip-based quantum computation [16,17] or the hybrid system
of matter and optical elements [18,19]).

In the future, when a scalable quantum computer is
realized, quantum computation should be done in the “cloud”
style, since only a limited number of people would have
enough money and technology to create and maintain quantum
computers. Blind quantum computation [20–29] ensures the
privacy of the client in such a cloud quantum computing. In
protocols of blind quantum computation, Alice, the client,

does not have enough quantum technology. On the other hand,
Bob, the server, has a fully fledged quantum power. Alice asks
Bob to perform her computation on his quantum computer in
such a way that Bob cannot learn anything about her input,
output, or algorithm. Blind quantum computation was initially
considered by using the circuit model [20–22]. However, in
that case, Alice needs a quantum memory. Recent new ideas
of blind quantum computation which use measurement-based
models have succeeded to exempt Alice from a quantum
memory [23–29].

In terms of the computational power, measurement-based
models do not offer any advantage over the circuit model, since
the circuit model can be simulated by measurement-based
models and vice versa. However, measurement-based models
have provided new points of view for studying quantum
computation, and in fact such new viewpoints have enabled
plenty of successes which have never been done in the circuit
model, such as high-threshold fault tolerance [10–12,30–36],
clarification of the roles of entanglement played in quantum
computation [3,37–40], and relations to condensed-matter
physics [3–7,13,41–44]. Therefore it is important to explore
the possibility of blind quantum computation on models other
than the circuit model and measurement-based models.

II. ANCILLA-DRIVEN QUANTUM COMPUTATION

We first define several notations for the basis and for
the basic transformations as follows: |+θ,ϕ〉 = cos( θ

2 )|0〉 +
eiϕ sin( θ

2 )|1〉, |−θ,ϕ〉 = sin( θ
2 )|0〉 − eiϕ cos( θ

2 )|1〉, Rx(θ ) =
e− iθX

2 and Rz(θ ) = e− iθZ
2 . We conventionally use the notations

{|±〉} and {|0〉,|1〉} to denote the bases along X and Z axes
in the Bloch sphere, respectively. Measurement outcome is
represented by s ∈ {0,1}, associated with ±. We denote the
ith measurement outcome by si .

We review the ancilla-driven quantum computation
(ADQC) proposed in [14,15]. ADQC is performed with a
1-qubit ancilla, only on which we can make measurements,
and (a single or a few) 2-qubit entangle operator(s) Ẽas.
As in Fig. 1(a), Ẽas can be decomposed into Ẽas = (Ws ⊗
W ′

a)Das(Vs ⊗ V ′
a) by the Cartan decomposition [45], where

Vs,V
′
a,Ws , and W ′

a are 1-qubit local unitaries and Das is
a 2-qubit nonlocal unitary. Figure 1(a) can be rewritten as
Fig. 1(b) by applying V ′

a to the prepared ancilla state |+〉a and
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FIG. 1. ADQC. A rectangle box with bold line represents a
measurement and the inside represents a basis for the measurement.

W ′
a to the measurement basis {|0〉,|1〉}. Das is described as

Das = e−i(αxXa⊗Xs+αyYa⊗Ys+αzZa⊗Zs )

by using nonsymmetric parameters 0 � αx,αy,αz � π
4 due to

the Weyl chamber [46].
For universal quantum computation, we should choose all

the parameters appropriately. To this end, Anders et al. [15]
derive sufficient conditions for (i) unitarity, (ii) one-step cor-
rectable branching, (iii) standardization, and (iv) universality.
Especially, we will discuss one-step correctable branching,
which states that the generalized Pauli correction according
to the measurement outcome after “one” execution in ADQC
enables the Kraus operator acting on the system deterministic.
To fulfill these conditions, it is shown that the entangle
operator Ẽas must be locally equivalent to either SWAP + CZ

(αx = αy = π
4 ,αz = 0) or CZ (αx = π

4 ,αy = αz = 0).

III. ANCILLA-DRIVEN UNIVERSAL BLIND
QUANTUM COMPUTATION

ADQC of SWAP + CZ type can be considered as an extension
of one-way quantum computation because the measurements
are made on the system instead of on the ancilla if we
exclude the SWAP and this case is exactly one-way quantum
computation. So we can perform universal blind ADQC of the
SWAP + CZ type as in [23]. In this paper, we focus only on
universal blind ADQC of CZ type. Requiring all the conditions
(i)–(iv) is too strong for universal blind ADQC of CZ type,
since ADQC of CZ type satisfying all the conditions cannot
be blind (in the sense of [23]) as is shown in the following.
The system Kraus operator for Ẽas is specified as K̃±

s =
VsK

±
s Ws and K±

s = a〈±θ,ϕ |Das|+γ,δ〉a . As in [15], unitarity
and one-step correctable branching require that the parameters
for the ancilla satisfy sin θ cos γ sin φ = cos θ sin γ sin δ and
the Kraus operator K±

s = f±I + i(−1)n±g±X, where n± are
integers that differ in the parity. These coefficients are rewritten

as

f± = cos αx√
2

√
1 ± cos γ cos θ ± sin γ sin θ cos(δ − φ),

g± = sin αx√
2

√
1 ∓ cos γ cos θ ± sin γ sin θ cos(δ + φ).

Moreover, the parameter αx for Das and the parameters for the
ancilla have the following relation:

tan2 αx =
√

1 − [cos γ cos θ + sin γ sin θ cos(δ − φ)]2

1 − [cos γ cos θ − sin γ sin θ cos(δ + φ)]2
.

Therefore, unitarity and one-step correctable branching imply
that admissible parameters of the ancilla are classified into the
following four cases.

Prepared ancilla Measurement basis Kraus operator

γ = 0 θ = 0 K±
s = XsI

γ = 0 θ = any,φ = 0 K±
s = XsRx(θ )

γ = π

2 θ = 0 K±
s = XsX

γ,δ = any θ = π

2 ,φ = 0 K±
s = XsX

For “universal” blind computation, a rotation operator Rx(θ ) is
indispensable. Thus, we consider only the second case. In that
case, the prepared ancilla should be fixed to |0〉 since γ = 0.
This means that we cannot use a random ancilla restricted on
some plane in the Bloch sphere to make the computation blind
similar to that in [23].

For that reason, we disregard one-step correctable branch-
ing for the present and derive some more admissible parame-
ters of the ancilla as follows.

Prepared Measurement
ancilla basis Kraus operator

γ = any, θ = any, K+
s = cos( θ−γ

2 )I − i sin( θ+γ

2 )X

δ = 0 φ = 0 K−
s = sin( θ−γ

2 )I + i cos( θ+γ

2 )X

γ,δ = any θ = γ,φ = δ K+
s = I − i sin γ cos δX

K+
s = (i sin δ − cos γ cos δ)X

Then, we have the Kraus operators written as

K+
s = Rx(γ ) and K−

s = XRx(−γ )

by choosing the prepared ancilla parameters γ to be any value
and δ = 0 and the measurement basis parameters φ,θ = 0.
Blind ADQC of the CZ type is enabled by allowing the above
Kraus operators. For blind computation, it is sufficient that all
the information Client sends to Server is uniformly random.
This is for hiding the rotation of unitaries to Server in the
computation and we show a rough sketch to incorporate this
idea into ADQC. First, Client chooses a prepared ancilla
parameter γ randomly and Client sends ancilla |+γ,0〉 or
|−γ,0〉 = |+γ+π,0〉 with equal probabilities. Then, Server
performs the Kraus operator Rx((−1)sγ ) using this ancilla.
At this time, the ancilla is 1

2

∑
r∈{0,1} |+γ+rπ,0〉〈+γ+rπ,0| =

I
2 as a maximally mixed state. Moreover, if we assume
the input state |ψ〉 = cos θ ′

2 |+〉 + eiϕ′
sin θ ′

2 |−〉, the output
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FIG. 2. Universal gate pattern.

state is 1
2

∑
r∈{0,1} Rx((−1)s(γ + rπ ))|ψ〉〈ψ |R†

x((−1)s(γ +
rπ )) = ( cos2(θ ′/2) 0

0 sin2(θ ′/2) ) so this state contains no information
about γ . After that, Client sends a measurement basis
parameter θ and Server performs the Kraus operator Rx(θ ).
Therefore, the total Kraus operator is Rx(θ + (−1)sγ ) and
the total rotation of the Kraus operator is hiding to Server
because γ is hiding. Based on this idea, we relax one-
step correctable branching to multiple step and derive a
sufficient condition which can make ADQC of the CZ type
blind. Multiple step means that in “multiple” executions in
ADQC, each Kraus operator need not be deterministic but
the whole Kraus operator must be deterministic up to the
correction.

For universal blind ADQC of CZ type, two types of Kraus
operators are necessary. One type is an uncorrectable Kraus
operator which depends on an outcome of the measurement,
such as VsRx((−1)sγ )Ws , performed using a prepared ancilla
parameter γ . The other is a correctable Kraus operator,
such as VsRx(θ )Ws up to Pauli correction, performed with
a measurement basis parameter θ . With respect to these
Kraus operators, we consider two conditions: L-hiding and G-
hiding. L-hiding requires that WsRx(θ )VsWsRx((−1)sγ )Vs =
WsRx(θ ′)VsWsVs

def= S holds, where θ ′ = θ ± (−1)sγ . G-
hiding requires that a gate pattern which can perform both
U ⊗ U ′ where U and U ′ are any 1-qubit unitaries and one
kind of entangle operator is composable by using a unitary S

and a controlled Pauli that can be simulated. In L-hiding, we
might use an assistant Kraus operator, such as WsRx(0)Vs , for
satisfying universality.

If the two conditions are satisfied, we can perform universal
quantum computation by tiling the gate pattern in G-hiding
regularly as in Fig. 2. What unitaries the gate pattern performs
depends on a parameter θ ′ of each gate in L-hiding composing
the gate pattern. When Client decides a parameter θ ′, Client

FIG. 3. Simulating (a) HRz(θ ′) such that θ ′ = −θ − (−1)s1γ and
(b) CZ.

FIG. 4. Gate patterns for (a) a single entangle operator and (b)
two entangle operators.

sends a measurement basis parameter θ such that θ = θ ′ ∓
(−1)sγ . By choosing a prepared ancilla parameter γ randomly,
θ also looks random to Server. This process is performed
similarly to the protocol in [23]. We use the following protocol
for the performance of each S.

(1) Client chooses a prepared ancilla parameter γ ran-
domly and sends the ancilla to Server.

(2) Server performs WsRx((−1)sγ )Vs with the given
ancilla. Server sends an outcome s of the measurement in
this simulation to Client.

(3) Client decides θ ′ and calculates θ = θ ′ ∓ (−1)sγ + rπ

with a random bit r ∈ {0,1} then sends θ to Server.
(4) Server performs WsRx(θ )Vs and sends an outcome s ′

of the measurement in this simulation to Client.
(5) Client inverts s ′ if r = 1.
If we use an assistant Kraus operator in the protocol, Server

performs the corresponding simulation in step 2. In the above
protocol, each ancilla state is maximally mixed and each θ

looks random to Server. Therefore, the information leaked to
Server is only the upper bound on the size of the universal
gate pattern, that is, the upper bounds on the input size and the
depth of the computation.

In the rest of this section, we discuss relations between the
compatibility of the two hiding conditions and universality.
When the protocol uses only one kind of entangle operator
[e.g., (H ⊗ H )CZ used in [14,15]] and no assistant Kraus
operator, L-hiding and G-hiding do not hold simultaneously.

FIG. 5. Simulating Rx(θ ′) such that (a) θ ′ = −θ + (−1)s1γ and
(b) θ ′ = θ − (−1)s1γ .
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From L-hiding, it must hold that VsWsRx((−1)sγ ) = Rx( ±
(−1)sγ )VsWs . By the similar discussion for universality in
[15], VsWs must be aI + ibX or aY + bZ up to a global phase,
where a,b ∈ R. Therefore, any 1-qubit unitary U composed of
S is described as U = WsŨVs with the kernel Ũ which moves a
quantum state only in some plane of the Bloch sphere, parallel
to the Y -Z plane. If Vs and Ws are determined, U becomes
a unitary which moves a quantum state only in one plane of
the Bloch sphere so we cannot perform any arbitrary rotation
U ⊗ U ′ in G-hiding. When the protocol uses an assistant Kraus
operator, the two hiding conditions can hold simultaneously
even if one kind of entangle operator [e.g., (H ⊗ H )CZ] is
allowed. It is enough to show how to simulate it and the gate
pattern. The performance in L-hiding and a controlled-Pauli
(CZ) in G-hiding are shown in Fig. 3. The gate pattern in
G-hiding is shown in Fig. 4(a). When the protocol is allowed to
use two kinds of entangle operators, the two hiding conditions
can also hold simultaneously even if the protocol uses no
assistant Kraus operator. To see that, the simulation in L-hiding
is shown in Fig. 5 and the gate pattern in G-hiding is shown
in Fig. 4(b). In summary, universal blind ADQC of CZ type is
possible by considering three-step correctable branching when

one kind of entangle operator is allowed in the protocol and
two-step correctable branching when two kinds of entangle
operators are allowed.

IV. CONCLUSION

In this Rapid Communication, we considered the possibili-
ties and limitations for universal blind computation in ADQC.
First, we proved that if we satisfy all the conditions for univer-
sal quantum computation in [15], we cannot perform universal
blind computation. Therefore, we relaxed one condition and
derived a sufficient condition for the blindness. Finally, we
provided ways of universal blind computation in ADQC of CZ

type.
Second, our way of universal blind ADQC needs fewer

quantum requirements for Client than the approach taken
in [23] in the case of using quantum inputs. In our way,
Client does not need to rotate input states with respect
to the Z axis in the Bloch sphere but only to apply
Z. By extending our approach to a one-way model, we
might also lower the quantum requirements in the one-way
model.
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