
PHYSICAL REVIEW A 87, 054301 (2013)

Negative eigenvalues of partial transposition of arbitrary bipartite states
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The partial transposition of a two-qubit state has at most one negative eigenvalue and all the eigenvalues lie in
[−1/2,1]. In this Brief Report, we extend this result by Sanpera et al. [A. Sanpera, R. Tarrach, and G. Vidal, Phys.
Rev. A 58, 826 (1998)] to arbitrary bipartite states. We show that partial transposition of an m ⊗ n state cannot
have more than (m − 1)(n − 1) number of negative eigenvalues. Low-dimensional states have been studied to
show the tightness of this result and explicit examples have been provided for mn � 9. It is also shown that all
the eigenvalues of partial transposition lie within [−1/2,1]. Some possible applications are also discussed.
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Characterization of entangled states is an important issue in
quantum-information theory, from both a theoretical as well
as an experimental perspective. Unfortunately, even for the
bipartite states, it may be very difficult to decide whether a
given state is entangled or not [1,2]. However, there are still
many effective ways to detect entanglement, particularly for
low-dimensional systems. Undoubtedly, the most useful one
is the positive partial transposition (PPT) criteria, introduced
by Peres in his seminal work [3].

For an m ⊗ n state ρ acting on the Hilbert space HA ⊗ HB ,
its partial transposition (PT) with respect to the subsystem A is
formally defined by ρTA := (T ⊗ I )ρ, with T being the usual
transposition map and ρTB defined in a similar manner. If {|i〉}
is an orthonormal basis of HA, then the PT can be computed
as

ρTA =
∑
i,j

|j 〉〈i| ⊗ 〈i|ρ|j 〉. (1)

Evidently, ρTA depends explicitly on the chosen basis {|i〉},
but its eigenvalues do not. So, while considering properties
related to eigenvalues, we use ρ� to indicate that the result
is independent of the chosen subsystem. If ρ� � 0, then ρ is
called PPT, otherwise nonpositive partial transposition (NPT).
It is well known that separable states are PPT and the converse
holds only for mn � 6 [3,4]. Also, NPT states are necessarily
entangled and the negativity, a well-known measure of mixed
state entanglement, is defined as the absolute value of the
sum of the negative eigenvalues of ρ� [5]. So, the negative
eigenvalues of ρ� not only certify but also quantify the amount
of entanglement in ρ. Thus, it is important and interesting to
explore the negative eigenvalues of ρ� .

The two-qubit case has been solved by Sanpera et al. [6]
more than a decade ago. It was shown that the PT of a two-
qubit state has at most one negative eigenvalue and all the
eigenvalues lie within [−1/2,1] (of course, a two-qubit state
has a negative eigenvalue iff it is NPT and hence entangled).
Surprisingly, apart from some conjectures, this beautiful result
has not been extended to arbitrary states [7,8]. Recently we
have shown in Ref. [9] that the PT of a 2 ⊗ n state can have
at most (n − 1) number of negative eigenvalues. Examples
of such states are provided in Ref. [10]. However, the general
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m ⊗ n case is not yet known. In this Brief Report, we solve this
problem. It should be mentioned that based on some numerical
findings, the authors of Ref. [8] have conjectured that the
PT of an n ⊗ n state can have at most n(n − 1)/2 number
of negative eigenvalues. We show that contrary to this, the
maximum number of negative eigenvalues of PT could go up
to (n − 1)2. More generally, for an m ⊗ n state, we have the
following result.

Theorem 1. Partial transposition of any m ⊗ n state
cannot have more than (m − 1)(n − 1) number of negative
eigenvalues.

Proof. Here we follow a treatment similar to that of Ref. [6]
for the 2 ⊗ 2 case. The main ingredient is Proposition 1.4 from
Ref. [11], namely, any subspace of dimension (m − 1)(n −
1) + 1 of the space Hm ⊗ Hn contains at least one (nonzero)
product vector.

Now, if possible, let the partially transposed state ρTA

have (m − 1)(n − 1) + 1 number of negative eigenvalues λi

with corresponding eigenvectors |ψi〉. Then the hyperplane
generated by these |ψi〉’s must contain at least one product
vector, say |e,f 〉. Therefore, expanding the product vector as
|e,f 〉 = ∑

ci |ψi〉, we get

〈e,f |ρTA |e,f 〉 =
(m−1)(n−1)+1∑

i=1

λi |ci |2 < 0.

But this would imply 〈e∗,f |ρ|e∗,f 〉 < 0, which is impossible
as ρ is positive semidefinite. �

We note that, by Schmidt decomposition, any m ⊗ n pure
state can be written as

|ψ〉 =
d�min{m,n}∑

i=1

λi |ii〉, λi > 0,
∑

i

λ2
i = 1. (2)

Clearly, its PT is given by

F :=
d∑

i,j=1

λiλj |ij 〉〈ji|.

It could be easily checked that |ii〉 and |ij 〉 ± |ji〉 are the
eigenvectors of F with the corresponding eigenvalues

λ2
i , ∀i = 1,2, . . . ,d,

±λiλj , ∀1 � i < j � d.
(3)
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Thus, for any pure state P = |ψ〉〈ψ |, its PT, P � , has d(d −
1)/2 number of negative eigenvalues. We also observe that, due
to the restriction

∑
λ2

i = 1, the following inequality holds,

− 1
2 � λmin(P �) � λmax(P �) � 1. (4)

The bound for λmin(P �) could be easily derived using
Lagrange’s multiplier method or by setting x = λ2

i and noting
that the maximum value of

f (x) = x(1 − x − c) (5)

over 0 � x � 1 and c � 0 is 1/4. The bound for λmax(P �)
follows trivially.

This observation about pure states immediately leads to the
following general result.

Theorem 2. All eigenvalues of PT of any m ⊗ n state always
lie within [−1/2,1].

Proof. Let the spectral decomposition of ρ be given by

ρ =
∑

k

pk|ψk〉〈ψk| :=
∑

k

pkPk. (6)

Then we have

λmin(ρ�) �
∑

k

pkλmin
(
P �

k

)

�
∑

k

pk

(
−1

2

)

= −1

2
, (7)

where in the first inequality we have used the fact that, for
Hermitian matrices Ai , λmin(

∑
Ai) �

∑
λmin(Ai). Similarly,

utilizing the dual inequality for λmax, we have

λmax(ρ�) �
∑

k

pkλmax
(
P �

k

)

�
∑

k

pk1

= 1. (8)

The tightness of Eq. (7) follows from the fact that PT of the
pure state

|ψ〉 =
√

1

2
|00〉 +

√
1

2
− ε|11〉 +

√
ε

m − 1

m∑
k=2

|kk〉

has an eigenvalue −√
(1/2)(1/2 − ε), where ε could be chosen

to vanish. Similarly, the tightness of Eq. (8) follows from the
fact that PT of the (separable) state

ρ = (1 − ε)|00〉〈00| + ε

m

m∑
k=1

|kk〉〈kk|

has an eigenvalue (1 − ε). Actually, for all pure product states,
equality holds in Eq. (8) and no state can saturate both the
bounds. �

It is clear from Eq. (2) and Eq. (3) that the PT of any
n ⊗ n pure state with n nonzero Schmidt coefficients will have
n(n − 1)/2 number of negative eigenvalues. This gives the
intuition that the maximum number of negative eigenvalues
could go beyond the conjectured number n(n − 1)/2. We now

TABLE I. Eigenvalues of ρ�
a with multiplicities.

Eigenvalues Multiplicities

−1 n(n−1)
2 − 2

1 n(n+1)
2 − 4

1 ± √
2a 1

1
2 (1 + a2 ± √

5 − 2a2 + a4) 2

give several examples to show that this is indeed the case and
that the bound given in Theorem is tight.

Example 1. A class of ρ ∈ Cn ⊗ Cn such that ρ� has 1 +
n(n − 1)/2 number of negative eigenvalues.

Let us consider the following one-parameter family of
unnormalized states:

ρa =
3∑

i=1

|ψi〉〈ψi |,

|ψi〉 = |0i〉 − a|i0〉, i = 1,2, (9)

|ψ3〉 =
n−1∑
i=0

|ii〉.

We list the eigenvalues (with multiplicities) of its PT in Table I.
Thus, ρ�

a has n(n − 1)/2 + 1 number of negative eigenvalues
for any a ∈ (1/

√
2,1).

Example 2. A class of ρ ∈ C3 ⊗ C3 such that ρ� has four
negative eigenvalues.

We first note that the class of states given by Eq. (9) qualifies
for the 3 ⊗ 3 example. However, for a more constructive
example, we generalize the construction of the 2 ⊗ n example
from Ref. [10]. We consider the following family:

ρ(a,b,c) =
3∑

i=1

|ψi〉〈ψi |,

|ψ1〉 = |00〉 + a1|11〉 + a2|22〉,
(10)

|ψ2〉 = |01〉 + b1|12〉 + b2|20〉,
|ψ3〉 = |02〉 + c1|10〉 + c2|21〉.

It could be easily checked that the characteristic polynomial
of its PT has three factors of the form

x3 − (
1 + a2

1 + b2
2

)
x2 + (

a2
1 − a2

2 − b2
1 + b2

2 + a2
1b

2
2

− c2
1c

2
2

)
xa2

1a
2
2 + b2

1b
2
2 + c2

1c
2
2 − a2

1b
2
2 − 2a2b1c1c2 = 0.

(11)

Given that all roots are real, the cubic equation x3 − p2x +
qx + r = 0 always has a positive root. Furthermore, the
conditions q < 0 and r < 0 are necessary and sufficient for
two negative roots. Thus we could force one of the three
factors to have two negative roots and the other two to
have only one. That is, there always exists real a,b,c such
that ρ�(a,b,c) has four negative eigenvalues. An example is
a1 = 1/4, b1 = b2 = 1/3, c1 = 1/2, and c2 = a2 = 1. Indeed
there are an infinite number of such states.

In Fig. 1, we have shown the eigenvalues of ρ�(a,b,c) when
each of ai , bi , and ci takes a value from {0,1,2,3,4}/4. The
situation remains almost same, even if we choose ai , bi , and
ci values as randomly generated complex numbers.
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FIG. 1. (Color online) In 3 ⊗ 3, many ρ�(a,b,c), PT of the
states in Eq. (10), have four negative eigenvalues. This figure is a
list plot—each point on the horizontal axis represents a state from
the family given by Eq. (10) and the vertical axis represents the
number of negative eigenvalues of its PT. For example, the first point
corresponds to the state with ai = 0 = bi = ci and its PT has no
negative eigenvalues (see the written text for details).

Example 3. An example of ρ ∈ C4 ⊗ C4 such that ρ� has
eight negative eigenvalues.

Based on Example 2, it is tempting to generalize the
construction for arbitrary Cn ⊗ Cn. We note that the char-
acteristic equation of ρ�(a,b,c,d) has four factors of the form
x4 − p2x3 + qx2 + rx + s = 0. In order for ρ�(a,b,c,d) to
have nine negative eigenvalues, one of the factors must have
three negative roots and each of the others at least two.
The set of constraints thus generated is very complicated
for analytic calculations. We, therefore, have tried to explore
numerically and it looks like each such factor has at least two
positive roots; thereby ρ�(a,b,c,d) cannot have more than
eight negative eigenvalues. Indeed, there are infinitely many
ρ�(a,b,c,d) having eight negative eigenvalues. In Fig. 2 we
show some of such states where ai,bi,ci,di takes value from
{2,4,6,8,10}/10. Like the previous case, the parameters could
be taken as random complex numbers as well.

FIG. 2. (Color online) In 4 ⊗ 4, many ρ�(a,b,c,d) have eight
negative eigenvalues. However, none seems to achieve the maximum
number of negative eigenvalues (nine).

TABLE II. The bound of Theorem 1 and its tightness.

Dimensions The bound (m − 1)(n − 1) Maximum achieved

2 ⊗ n n − 1 n − 1
3 ⊗ 3 4 4
3 ⊗ 4 6 5
3 ⊗ 5 8 6
4 ⊗ 4 9 8

We have explored (both numerically and analytically) other
small-dimensional states as well. Unfortunately, however, we
are unable to settle the question of the tightness of the bound
(m − 1)(n − 1) beyond two qutrits. In Table II we summarize
our findings.

As mentioned earlier, the main ingredient in the proof
of Theorem 1 was the result of maximal dimension of
entangled subspace from Ref. [11] and thus the proof is not
constructive. However, it appears that the problem could be
solved completely using only matrix theoretic techniques. But,
the question about the tightness of the bound is yet to be
explored.

Although the main motivation for this study was the
curiosity of extending the result of two qubits to arbitrary
states, nonetheless let us mention some possible applications
of this upper bound. Indeed prior to this work, the exact number
of negative eigenvalues of PT was applied to get interesting
results about small-dimensional systems. For example, the
result of the 2 ⊗ 2 system has been used to show that all
separable states can be expressed as a mixture of at most
four pure product states. The two-qubit case being so special,
this result, coupled with the fact that NPT is equivalent to a
full rank of PT, implies that a 2 ⊗ 2 state ρ is entangled iff
det ρ� < 0. Clearly, this condition, though always sufficient,
is not necessary for separability beyond two qubits. The pure
state after Eq. (8) also shows that, to estimate negativity, not
the number of negative eigenvalues of PT but rather the the one
with maximum modulus is significant. Thus, apparently this
generic bound, contrary to small-dimensional systems, may
have less direct physical significance for higher-dimensional
systems.

Apart from its close connection with the maximal dimen-
sion of completely entangled subspaces [11,12], the present
bound for arbitrary bipartite states, albeit mostly a mathe-
matical result, may also have some possible applications in
quantum-information theory. For example, similar to Ref. [9],
this bound could readily be applied to give a semianalytical
proof that squared negativity may exceed geometric discord in
higher-dimensional states as well and the number of such states
will increase with the dimension. It is mentioned in Ref. [9]
that, due to lack of knowledge about this generic bound (and
also lack of analytic formula for geometric discord), only 2 ⊗ n

states were considered. In view of the bound derived here, the
said result (about geometric discord and negativity) can be
easily arrived at by following exactly the proof of Theorem
2 therein. For unnecessary repetitions, we skip the details. In
another direction, following Ref. [7], the result may have some
applications in the study of the dynamics of entanglement.

To conclude, extending a decade-old result for two-qubits,
we have shown that the partial transposition of a generic
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m ⊗ n state cannot have more than (m − 1)(n − 1) number of
negative eigenvalues. Besides giving some explicit examples
of tightness in small dimension, we have shown that all the
eigenvalues always lie within [−1/2,1]. Some consequences
of this bound have been discussed; in particular, two possible
applications of the results have been mentioned. However, the
question of tightness of this bound beyond two qutrits remains
open.

Note added in proof. Recently we found a work [13] describ-
ing an interpretation of the number of negative eigenvalues of

ρ� . It has been shown that, if for any mixed state ρ, ρ� has
K + 1 number of negative eigenvalues (K � 1), then for any
K product state |ψk〉, the state ρ + ∑K

k=1 λk|ψk〉〈ψk|,λk 	= 0
will always remain NPT. Addition of one more pure product
state to ρ may lead to PPT (both separable and entangled) as
well as NPT states.

I am thankful to Guifré Vidal for important input. I would
also like to thank Preeti Parashar and Lin Chen for many
helpful discussions.
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