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Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light
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We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic
pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part
of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of
virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to
absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics
the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab,
as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced
group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving
control and manipulation of slow light.
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I. INTRODUCTION

Physical mechanisms driving to slow and fast light have
attracted considerable attention from the scientific community
in the past decade [1–3]. The inherent interest in slow
light comes from the long matter-radiation interaction time,
which can lead to considerable enhancement of all non-
linear processes that in turn may be exploited for active
functionalities [4], e.g., all-optical switching and modulation
[5,6]. The nonlinearity may also be enhanced by reducing
the effective area in subwavelength silicon on insulator
and plasmonic waveguides [7,8], where tight confinement
opens up possibilities for miniaturized nonlinear applications
[9–11]. Alternatively, extreme nonlinear dynamics [12,13],
and enhanced second and third harmonic generation [14,15] is
predicted in epsilon-near-zero (ENZ) metamaterials, where the
linear susceptibility is tailored in such a way that its modulus
becomes comparable to the nonlinear counterpart. Boosting
the nonlinearity of ENZ plasmonic channels can also lead
to active control of tunneling [16], switching, and bistable
response [17]. ENZ metamaterials have also been used for
directive emission [18,19], cloaking [20], energy squeezing in
narrow channels [21], subwavelength imaging [22,23], and for
investigating Anderson localization [24].

In all of the above-mentioned mechanisms, the trade-off
needed to achieve enhanced active functionalities is paid in
terms of increased losses. As a result, the ENZ regime one
usually invokes refers to the case where the real part of
the susceptibility becomes very small, while its imaginary
part remains finite. Indeed, due to the stringent physical
requirement of causality, Kramers-Kronig relations impose
that dispersion be inherently accompanied by loss and the
dielectric susceptibility cannot become rigorously null [25].
The residual loss either limits or even prevents giant en-
hancement of coherent mechanisms, e.g., in second and third
harmonic generation setups [14,15]. Recently, in the context
of surface plasmon polaritons, a method has been proposed
to overcome the loss barrier for superlensing applications

by loading the effect of loss into the time domain [26]. In
our analytical calculations, we will use a similar approach to
study the behavior of an electromagnetic pulse that scatters
from a slab having a Lorentz dielectric response. Indeed, by
considering nonmonochromatic virtual modes with complex
frequency [27], it is possible to drop off the effect of loss
on the temporal dependence of the “mode” itself. In this
complex frequency approach, it is possible to achieve the
condition where the dielectric susceptibility exactly vanishes.
Our formalism treats the dielectric polarization of the medium
as a generic Lorentz oscillator that, in the epsilon-equal-to-zero
condition, encompasses longitudinal collective oscillations
of both electrons (volume plasmons) and ions (longitudinal
phonons) that cannot be excited by light [28]. Recently, the
question as to whether or not volume plasmons can be excited
by classical light has been revived [29–33]. Some studies
on Mie extinction efficiencies reveal a maximum around the
characteristic frequency where the dielectric susceptibility
vanishes, attributing the enhanced extinction to the excitation
of volume plasmons [30,32]. Conversely, other similar studies
identify the physical origin of the enhanced extinction in the
excitation of leaky modes [29,31]. The latter interpretation is
also supported by studies of the excitation of surface phonon
polaritons in ENZ slabs [34–37].

In this paper we numerically investigate and analytically
interpret the scattering of a spatially and temporally localized
optical pulse from a dielectric slab in the ENZ regime. We
used a finite-difference time-domain (FDTD) algorithm to
solve the full vectorial Maxwell equations coupled to the
Lorentz oscillator equation for the dielectric polarization
of the slab. We find that, if the carrier frequency of the
optical pulse matches the ENZ condition, electromagnetic
quasitrapping occurs within the Lorentz slab since, after the
pulse has passed through it, an elecromagnetic-polarization
(polariton) oscillation persists and generally slowly damps
out. We demonstrate that nontrivial ENZ features such as
the enhancement of the longitudinal electric field component
are still observable in the time domain. We also find that
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the above-mentioned phenomenon is not observed for optical
pulses with carrier frequencies far from the ENZ condition.
Thus, in order to grasp the underpinning physical mechanisms
responsible for transient trapping in the ENZ regime, we
analytically investigate the scattering features of the Lorentz
slab by studying the virtual leaky modes of the structure. We
recognize that a set of polariton modes with reduced transverse
group velocity (vg � c/100, where c is the speed of light in
vacuum) is excited. Indeed, the plasma frequency plays the
role of a cutoff frequency and polaritons in the ENZ regime
are intrinsically characterized by a reduced group velocity.
Thus, we are able to interpret the transient trapping by means
of the excitation of slow polariton modes that are damped off
due to medium absorption and radiation leakage in the outer
medium.

The paper is organized as follows. In Sec. II we report
the results of numerical finite-difference time-domain (FDTD)
simulations, comparing the distinct phenomenologies occur-
ring in ENZ and standard dielectric regimes. In Sec. III we
analytically investigate the virtual leaky modes of the structure,
we address their properties, and we discuss their role in the
interpretation of numerical results just developed in Sec. III.
In Sec. IV we draw our conclusions.

II. FINITE-DIFFERENCE TIME-DOMAIN ANALYSIS
OF THE TIME-DOMAIN ENZ REGIME

A. Pulse scattering by a Lorentz slab

Let us consider the scattering interaction illustrated in
Fig. 1(a), where an electromagnetic pulse is launched along
the z axis in vacuum and orthogonally impinges on the surface
of a dielectric slab. The pulse is a transverse magnetic (TM)
excitation, with electric Ex(x,z,t), Ez(x,z,t) and magnetic
Hy(x,z,t) field components. As it is well known, the time
evolution of the TM pulse forward propagating along the z

axis can be evaluated if one of the three field components
is known at a single plane (say, z = zin for the input plane)
at any time t . Therefore, for E(+)

x , the forward propagating
component of Ex , we set

E(+)
x (x,zin,t) = E0e

− x2

w2
x e

− (t−t0)2

τ2 sin (ω̄t) , (1)

FIG. 1. (Color online) (a) Interaction geometry of the pulse
colliding onto the dielectric slab. (b) Real and imaginary parts of
the slab dielectric permittivity for the Lorentz parameters used in the
FDTD analysis as a function of the wavelength.

which is both spatially (along the x axis) and temporally
localized, wx and τ being its transverse and temporal widths,
respectively. As a consequence of the temporal profile at
z = zin, the pulse, during propagating along the z axis, will
have a longitudinal width wz � cτ [see Fig. 1(a)]. The pulse
is temporally localized at the time t0 and it is modulated
by a carrier with frequency ω̄. As a consequence, ω̄ is the
pulse central frequency and δω � 1/τ is the spectral width.
Hereafter we will focus on quasimonochromatic pulses for
which the condition δω/ω̄ � 1 is satisfied.

The dielectric slab has width L, it is centered at (x,z) =
(0,0), and we assume that, in the presence of the external
electric field E, the dynamics of its dielectric polarization is
governed by the Lorentz oscillator model

d2P
dt2

+ γ
dP
dt

+ ω2
eP = ε0feE, (2)

where ωe is the resonant angular frequency, γ is the damping
constant, fe is the oscillator strength, and ε0 is the dielec-
tric permittivity of vacuum. It is well known that Eq. (2)
leads, in the frequency domain, to the constitutive relation
D̃ω = ε0ε(ω)Ẽω, where f̃ω = ∫ +∞

−∞ dteiωtf (t) is the Fourier
transform of f (t), D = ε0E + P is the displacement field
vector, and

ε(ω) = 1 + fe

ω2
e − iγ ω − ω2

(3)

is the frequency-dependent medium dielectric permittivity.
By performing the inverse Fourier transform of the relation
D̃ω = ε0ε(ω)Ẽω, one easily obtains the well-known result

D(t) = ε0

[
E(t) +

∫ t

−∞
dt ′χ (t − t ′)E(t ′)

]
,

(4)

χ (T ) = fee
− γ T

2

sin
(√

ω2
e − γ 2

4 T
)

√
ω2

e − γ 2

4

,

where χ (T ) is the time-dependent Lorentz susceptibility. The
realistic model of Eq. (2) is particularly accurate for describing
the medium dielectric response to fields with frequencies close
to the resonant frequency ωe (so that contributions due to
other resonances can be neglected). Therefore, the Lorentz
model is particularly suitable for our analysis since we are
here concerned with quasimonochromatic pulses whose carrier
frequency ω̄ coincides with (or is close to) the frequency

ω0 =
√

1

2

[(
2ω2

e − γ 2 + fe

)+
√

f 2
e + γ 2

(
γ 2 − 4ω2

e − 2fe

)]
,

(5)

where the real part of the permittivity vanishes, i.e.,
Re [ε(ω0)] = 0, the so-called epsilon-near-zero (ENZ) regime.

We have performed the numerical analysis of the pulse-slab
collision by means of a finite-difference time-domain (FDTD)
scheme where the polarization dynamics of Eq. (2) are coupled
to Maxwell equations for the TM field. Specifically, in order
to isolate the relevant phenomenon characterizing the ENZ
regime, we have analyzed through FDTD simulations two
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FIG. 2. (Color online) Results of the FDTD simulation pertaining to the interaction of pulse 0 (with ω̄ = ω0) with the slab. The fields Ex ,Ez

and the Fourier transform F [Ex] are captured at three different time steps corresponding to the three rows. In the first and the second time
steps the pulse peak is just behind and beyond the slab, respectively, whereas in the third time step the pulse has completely left the slab. Note
the large Ez component within the slab (signature of the epsilon-near-zero regime) and the persisting and pulse-free polariton oscillation in the
third time step. Arbitrary units are used for the field components.

different situations where the same dielectric slab is hit by
two spatially equal pulses with different carrier frequencies ω̄:
The first (pulse 0) is such that ω̄ = ω0 so that it is suitable to
scan the slab behavior in its ENZ regime; the second (pulse
1) has ω̄ = ω1 for which Re[ε(ω1)] > 0 so that it experiences
standard dielectric behavior.

In view of the generality and ubiquity of the Lorentz model
of Eq. (2), we have chosen for our numerical simulations a
medium with Lorentz parameters ωe = 3.75 × 1015 Hz, γ =
1.50 × 1012 s−1, and fe = 2.25 × 1030 s−2. These parameters
have been chosen in order to deal with optical pulses in the
visible spectrum, the resonant frequency corresponding to the
wavelength λe = 2πc/ωe = 0.502 μm (evidently, different
values of the Lorentz model would give analogous results at
different frequencies for appropriate slabs of scaled thickness).
For such parameters Eq. (5) yields ω0 = 4.03 × 1015 Hz and
we have set ω1 = 4.23 × 1015 Hz (for which Re[ε(ω1)] =
0.42), the two frequencies corresponding to the wavelengths
λ0 = 2πc/ω0 = 0.466 μm and λ1 = 2πc/ω1 = 0.445 μm,
respectively. In Fig. 1(b) we plot the real and imaginary parts
of the dielectric permittivity for the chosen Lorentz parameters
as functions of the wavelength λ = 2πc/ω, indicating the
carrier wavelengths λ0 and λ1 that characterize the two pulses.
We have set t0 = 500 fs and we have chosen a slab width
L = 0.41 μm to minimize the pulse propagation features and
to effectively highlight the impact of the medium polarization
on field dynamics. For the pulse spatial and temporal widths
we have chosen wx = 1 μm and τ = 200 fs: The former
is comparable to the central wavelength of the pulse for
providing it a non-negligible longitudinal field component
Ez (see below) whereas the latter corresponds to a spectral
width δω � 1/τ = 5 × 1012 Hz so that the pulses are in the
quasimonochromatic regime.

B. Pulse 0 scattering

In Fig. 2 we report the main results of the FDTD simulation
dealing with the interaction of pulse 0 with carrier frequency
ω̄ = ω0 with the Lorentz slab represented in the figure by
semitransparent rectangular blocks. The first two columns
of the figure contain the plots of Ex(x,z,t), Ez(x,z,t) as
functions of (x,z) whereas the third contains the Fourier
transform F [Ex](kx,z,t) = ∫ +∞

−∞ dxeikxxEx(x,z,t) as a func-
tion of (kx,z); each row of the figure corresponds to a selected
simulation time step. At the first time step (first row of
Fig. 2), t = 371 fs, the pulse is fully interacting with the slab
(the pulse peak being about to hit the slab at t = 500 fs)
and the electromagnetic field is characterized by standard
reflection and transmission features; in particular, both the
reflected and transmitted pulses have a transverse bell-shaped
spatial profile and accordingly the Fourier transform F [Ex] is
peaked as well. Note however that, even in this early transient
stage of the interaction, within the slab the longitudinal
component Ez is comparable to Ex and is much greater than
its vacuum counterpart. Such an enhancement of the electric
field component perpendicular to the slab is a feature typically
associated with the monochromatic ENZ regime, arising as
a consequence of the continuity of the displacement field
component perpendicular to the interface [14,15]. Therefore
this is evidence that the ENZ regime can effectively be
observed in thoroughly realistic Lorentz slabs by means of
an equally realistic scattering interaction configuration. The
second row of Fig. 2 corresponds to the time step t = 767 fs,
a time when the incoming pulse (if freely propagating) would
have passed behind the slab (its temporal width being 200 fs).
Note that the longitudinal component Ez is even greater
than the previous time step, testifying to the fact that the
ENZ regime also occurs in the time domain. The transverse
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FIG. 3. (Color online) Results of the FDTD simulation pertaining to the interaction of pulse 1 (with ω̄ = ω1) with the slab. The fields
Ex ,Ez and the Fourier transform F [Ex], for comparison purposes, are captured at same time steps considered in Fig. 2. Note that both Ex and
F [Ex] are bell shaped, that magnitudes of Ez within the slab and in vacuum are comparable, and that no residual polariton oscillation has been
produced by pulse passage. Arbitrary units are used for the field components.

component Ex shows different spatial features, even more
evidently displayed by its Fourier transform F [Ex] which
is no longer bell shaped and is characterized by a complex
multistructured profile. The third row of Fig. 2 considers a
later time step t = 941 fs that is much longer than the time
spent by the pulse to fully travel into the slab and leave it.
At this time step, the longitudinal component Ez is still very
large within the slab and the transverse component Ex displays
different and unexpected features: It is symmetric under the
reflection z → −z, it is not transversally bell shaped, and its
Fourier transform F [Ex] displays two peaks at the sides of
kx = 0. Such phenomena can be interpreted only by assuming
that the interaction of pulse 0 with the slab is accompanied
by the excitation of a polariton mode whose oscillation lasts a
time much longer than the pulse-slab interaction time.

C. Pulse 1 scattering

In order to appreciate the above-discussed time-domain
ENZ phenomena, we now discuss the interaction of pulse 1
with the slab, its carrier frequency being associated with
standard slab dielectric behavior. In Fig. 3 we report the results
of the FDTD simulation relative to pulse 1 and, for comparison
purposes, we have given Fig. 3 the same structure as Fig. 2
with the same fields at the same time steps. Remarkably, both
Ex and F [Ex] are everywhere and always bell shaped, while
the magnitude of Ez within the slab is comparable to its
vacuum magnitude. At the last time step the slab hosts no
residual polariton oscillation resulting from the pulse passage.
This is precisely the standard expected phenomenon of the
reflection and transmission of the pulse by a dielectric slab,
and the comparison with the results of Fig. 2 proves that the
phenomenon it contains is a manifestation of the time-domain
ENZ regime.

D. Transient trapping in the time-domain
epsilon-near-zero regime

In addition to the remarkable fact that the same features of
the monochromatic ENZ regime characterize its time-domain
counterpart (e.g., the slab hosts a pronounced enhancement
of the field Ez), the results discussed in the previous sections
also clearly reveal that the scattering situation leads to the
unique excitation of a polariton mode. In order to show more
explicitly such a phenomenon, in Fig. 4 we have plotted the
fields Ex and Ez, for both pulse 0 and pulse 1 as functions
of (z,t) at a fixed plane x = xp = 1.76 μm. The evident
feature that emerges is that pulse 0 [see Figs. 4(a) and 4(b)]
produces a strong and damped electromagnetic self-oscillation
persisting for a time (about 5500 fs) that is much longer than
the probing pulse duration (200 fs), self-oscillation which
is conversely not produced by pulse 1 [see Figs. 4(c) and
4(d)], and whose electromagnetic track fades within the slab
just after it has left the medium (at about t = 1000 fs).
We conclude that, in the ENZ regime, the pulse traveling
through the slab triggers an alternative mechanism of transient
light trapping. The same phenomenon is also reported in
Fig. 5, where the input [at (x,z,t) = (0, − L/2,t)] and the
output [at (x,z,t) = (0,L/2,t)] Ex components of pulse 0
[Fig. 5(a)] and pulse 1 [Fig. 5(b)] are reported together with
their temporal Fourier transform. The profile of the output
field for pulse 1 clearly shows the outgoing pulse followed
by a damped oscillation associated with the transient light
trapping. Accordingly, the corresponding temporal spectrum
is a replica of the incoming pulse spectrum with a central
hole associated with the excitation of internal slab modes
supporting the radiation trapping. As far as pulse 1 is concerned
[Fig. 5(b)], no light trapping occurs and the spectrum of
the outgoing pulse does not show the hole appearing in
Fig. 5(a).
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FIG. 4. (Color online) FDTD predictions about the fields Ex and Ez, for both pulse 0 and pulse 1 as function of (z,t) at a fixed plane
x = xp = 1.76 μm. Pulse 0 triggers an alternative mechanism of metastable light trapping since its passage produces a strong and damped
polariton oscillation which is absent in the case of pulse 1. Arbitrary units are used for the field components.

III. THEORETICAL ANALYSIS OF TIME-DOMAIN
ENZ REGIME

A. Polariton virtual mode analysis

From the above-discussed phenomenon, it is evident that
a quasimonochromatic pulse with a spectrum centered at the
zero of the real part of the slab permittivity excites a polariton
mode that lasts for a time much longer than the pulse-slab
interaction time. In order to rigorously prove this statement
and gain a deeper understanding of the underpinning physical
mechanisms that support the time-domain ENZ regime, in
this section we analyze the exact quasisteady modes (virtual
modes) of the slab. In our analysis we fully take into account
damping processes, which include medium absorption and
radiation leakage in vacuum, adopting the complex frequency
approach [27]. We start our analysis from the curl Maxwell
equations for TM fields,

−∂Ez

∂x
+ ∂Ex

∂z
= −μ0

∂Hy

∂t
,

−∂Hy

∂z
= ε0

∂Ex

∂t
+ ∂Px

∂t
, (6)

∂Hy

∂x
= ε0

∂Ez

∂t
+ ∂Pz

∂t
,

where the polarization P(x,z,t) = Px(x,z,t)êx + Pz(x,z,t)êz

satisfies Eq. (2) within the slab (|z| < L/2) and it vanishes
outside the slab (|z| > L/2). We take the ansatz Aj (x,z,t) =
Re[aj (z)ei(kxx−�t)] for every field component (A = E,H,P ,
a = e,h,p, and j = x,z), where kx is the (real) transverse wave
vector and � = ω − i� is the complex angular frequency with
� > 0 so that only damping modes are considered. Owing to
the mutual temporal evolution of the electromagnetic field
(E,H) and of the polarization field P, the ansatz effectively
amounts to considering polariton virtual modes. The magnetic
field can be expressed in terms of the electric field components
hy = −(kxez + i∂zex)/ (μ0�) so that Maxwell’s equations
reduce to

ez = ikx

�2

c2
ε̃(�,z) − k2

x

dex

dz
, (7)

d2ex

dz2
+

[
�2

c2
ε̃(�,z) − k2

x

]
ex = 0, (8)

where ε̃(�,z) = ε(�)θ (L/2 − |z|) + θ (|z| − L/2) [θ (z) be-
ing the Heaviside step function] is the z-dependent dielectric
profile. It is worth stressing that the permittivity ε is evaluated
at the complex frequency �. The general solution of Eqs. (7)
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FIG. 5. Electric field x component Ex of (a) pulse 0 and (b) pulse 1 evaluated at (x,z,t) = (0, − L/2,t) and (x,z,t) = (0,L/2,t), together
with their temporal Fourier transform Fω[Ex]. Arbitrary units are used for the field components.
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and (8) is explicitly given by

ex(z) = C

⎧⎪⎪⎨
⎪⎪⎩

�e−i�K(z+ L
2 ), z < −L

2 ,

eikz+�e−ikz

e
ik L

2 +�e
−ik L

2
, −L

2 � z � L
2 ,

ei�K(z−L/2), z > L
2 ,

(9)

ez(z) = C

⎧⎪⎪⎨
⎪⎪⎩

��kx

K
e−i�K(z+ L

2 ), z < −L
2 ,

kx

k
−eikz+�e−ikz

e
ik L

2 +�e
−ik L

2
, −L

2 � z � L
2 ,

−�kx

K
ei�K(z− L

2 ), z > L
2 ,

where K =
√

�2

c2 − k2
x , k =

√
�2

c2 ε(�) − k2
x , C is the arbitrary

mode amplitude, � = ±1 is a parameter that distinguishes the
symmetry of the solutions, and � = ±1 is another parameter
selecting the sign of the exponentials in vacuum. By construc-
tion, the modal fields in Eqs. (9) already satisfy the continuity
of the field component parallel to the slab surface (ex)
at the interfaces x = ±L/2. The boundary conditions (BCs)
for the continuity of the displacement field component (ε̃ez)
perpendicular to the interfaces x = ±L/2 yield the dispersion
relation

(Kε − �k) eikL = �(Kε + �k), (10)

which provides the complex frequency � for every given slab
thickness L and transverse wave vector kx . We have solved
Eq. (10) numerically and obtained the allowed � correspond-
ing to different values of kx using the same slab thickness
and Lorentz dispersive parameters of the slab considered in
Sec. II. In Fig. 6 we plot the results for the case � = −1 in the
complex plane � parametrized through the wavelength λ and
the damping constant � (i.e., � = 2πc/λ − i�), using circles
and stars for the � = −1 and � = 1 modes, respectively, and
using the marker color to label the value of the corresponding
kx . Note that the � = −1 and � = 1 modes belong to two
different branches which are characterized by the fact that the
� = −1 modes have a damping constant that is greater than
the � = +1 modes. This property can be easily understood by
considering the z component of the nonoscillatory part of the
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FIG. 6. (Color online) Virtual modes of the slab considered in
Sec. II for the symmetry � = −1 in the complex plane � = 2πc/λ −
i�. Circles and stars label the � = −1 and � = 1 modes whereas
the marker color labels the corresponding kx value. The complex
frequency �P is such that ε(�P ) = 0. The thin continuous line is the
temporal spectrum of the incoming pulse reported in arbitrary units.

Poynting vector S = E × H for z > L/2:

〈Sz〉 = �e−2[� Im(K)(z− L
2 )+�t] 1

2
ε0 Re

(
�

K

)
|C|2. (11)

For � = −1, the energy outflows from the slab and the
damping of the virtual mode is more rapid since it loses
energy through both medium absorption and radiation leakage.
Conversely, for � = 1 the electromagnetic energy is dragged
into the slab, thus partially compensating for the medium
absorption and consequently decreasing the virtual mode
damping time (note that there is also a point where � = 0 on
the � = 1 branch corresponding to the exact balance between
medium absorption and radiation drag). It is remarkable that
the � = −1 and � = 1 branches intersect each other at point
�P for kx → 0. In this limit the dispersion relation of Eq. (10)
(for � = −1) reduces to

ei
�P
c

√
ε(�P ) = � − √

ε(�P )

� + √
ε(�P )

, (12)

and is satisfied only if ε(�P ) = 0. Starting from the Lorentz
model, it is straightforward to prove that the permittiv-
ity vanishes at �P = √

fe + ω2
e − γ 2/4 − iγ /2 that, for

the above-used Lorentz dispersive parameters, yields λP =
2πc/Re(�P ) = 0.4667 μm and �P = −Im(�P ) = 8.3 ×
10−3 fs−1, precisely matching the point of Fig. 6 where
the two branches � = ±1 intersect each other. In turn, the
plasmonic �P at which the permittivity vanishes plays a
central role in the analysis of the virtual modes. For the
complex frequencies � reported in Fig. 6, |ε(�)| < 0.06 and
therefore all the obtained modes with symmetry � = −1
imply the time-domain ENZ regime.

In the same portion of the complex plane � we have
numerically found no allowed modes for the symmetry � = 1.
This can be grasped by expanding both sides of Eq. (10) in a
Taylor series of ε (since |ε(�)| � 1); at the zeroth order we
readily obtain e−kxL = −� which is not consistent if � = 1
(and which, on the other hand, yields kx = 0 for � = −1).

B. Interpretation of FDTD results in terms of virtual
polariton modes and slow-light regime

Usually, within the standard real frequency approach, the
solutions for the slab modes with � = −1 are disregarded
since they are considered unphysical. Indeed, if |kx | > ω/c, the
solutions with � = +1 represent confined modes propagating
along the x direction, while solutions with � = −1 are
unbound modes that diverge at z → ±∞. In addition, the
introduction of the complex frequency introduces an inherent
field singularity in the past t → −∞. Due to such intrinsic
singularities, it is strictly impossible to rigorously excite
a single virtual mode, its global existence on the whole
space-time being unphysical. However, both singularities
occur asymptotically and therefore virtual modes provide a
very adequate description of the transient ENZ slab behavior
occurring within a spatially bounded region and through a
finite-time lapse. In order to prove this statement and to
basically provide a theoretical description of the transient
light trapping discussed in Sec. II D, in Fig. 6 we have
superimposed the temporal spectrum profile of the incoming
pulse of Eq. (1) (using the thin continuous line) on the
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complex-plane virtual modal structure. Note that, due to its
wavelength bandwidth δλ = (2πc/ω2

0)δω = 5.8 × 10−4 μm,
the pulse spectrum centered at λ0 overlaps a limited portion
of the considered complex frequency plane so that, specifically,
the sole virtual modes with |λ − λ0| < δλ/2 are actually
excited by the considered pulse 0. From Fig. 6 it is evident
that the excited virtual modes are characterized by the
transverse wave vector kx spanning the range 1.1 μm−1 <

kx < 2.7 μm−1 and that, due to the finite bandwidth of the
impinging pulse, the excited virtual modes with the largest
amplitude are those around the central transverse wave vector
kx = 1.9 μm, which corresponds to λ = 2πc/Re(�) close to
λ0 = 0.466. This observation is in striking agreement with
the results contained in Fig. 2, where one can see that the
transverse Fourier transform of the field has, at the latest time
step, two peaks centered at kx � 1.9 μm and kx � −1.9 μm
whose width is of the order of δkx � 0.8 μm. Therefore,
when pulse 0 impinges onto the slab, it excites precisely the
virtual modes analytically predicted in Sec. III A, which are
compatible to its spectral structure. As a further validation of
this statement, note that the virtual modes excited by pulse 0
(|λ − λ0| < δλ/2) have a damping constant � spanning the
range 1.2 × 10−3 fs−1 < � < 4.9 × 10−3 fs−1 (see Fig. 6),
which corresponds to the extinction time τ = 3/� spanning
the range 609 fs < τ < 2604 fs. Also this prediction based
on the above virtual mode analysis is in striking agreement
with the FDTD results since, by looking at Figs. 4(a) and
4(b), one can see that the electromagnetic excitation persists
for a time of the order of 3000 fs, which is compatible with
the maximum extinction time of the excited virtual modes. In
addition, the spatial symmetry of the � = −1 virtual polariton
modes matches the numerical results displayed in Fig. 4: The
transverse field component (ex) is antisymmetric with respect
to the z = 0 axis, whereas the longitudinal field component (ez)
is symmetric.

The final ingredient needed to thoroughly interpret the
transient light trapping observed in FDTD simulations is
related to the intrinsic slow-light nature of the phenomenon,
which may be preliminarily grasped by considering a bulk
Lorentz medium, where transverse plane waves satisfy the
dispersion relation k(ω) = (ω/c)

√
ε(ω). Neglecting medium

absorption (γ � 0), one finds that the phase velocity is vf =
ω/k and the group velocity vg = dω/dk is

vg(ω) = c

[√
ε(ω) + feω

2

√
ε(ω)

(
ω2

e − ω2
)2

]−1

. (13)

Thus, in the ENZ regime, the phase velocity diverges vf → ∞
whereas the group velocity tends to zero vg → 0. Even
though the subwavelength Lorentz slab used in our FDTD
simulations is not a bulk medium and absorption has not
been neglected, the rough argument above still predicts the
correct outcome. Indeed, by numerically solving the dispersion
relation of Eq. (10) without neglecting losses, one finds that,
at the optical wavelength λ0, the transverse phase velocity of
virtual polariton modes is superluminal, vf = ω/kx � 10c,
while the transverse group velocity is extremely reduced,
vg = dω/dkx � c/100. For this reason, it is now clear how the
virtual polariton modes, once excited, do not disperse quickly
in the x direction and remain quasitrapped within the slab

owing to the tremendously reduced temporal dynamics. We
conclude that the above-described transient light trapping can
be fully interpreted and physically understood by means of
slow polariton modes supported by the slab.

C. Volume plasmons

Although the above-discussed numerical and analytical
analysis of the transient light trapping characterizing the time-
domain ENZ regime is quite exhaustive, we now discuss its
connection with the purely longitudinal modes, either volume
plasmons (collective oscillations of electrons) or volume
phonons (collective oscillations of ions), which the Lorentz
medium can support. Hereafter we focus on volume plasmons,
considering an unbounded bulk Lorentz medium where the
TM electromagnetic and polarization dynamics are described
by Eqs. (2) and (6). For the plane-wave ansatz Aj (x,z,t) =
Re[aj e

i(kxx+kzz−�t)], where A = E,H,P , a = e,h,p, j = x,z,
kx,kz are the (real) wave-vector components, and � is the
generally complex frequency, one gets

μ0�hy = −kxez + kzex,

kzhy = �ε0ε(�)ex, (14)

kxhy = −�ε0ε(�)ez,

where ε(�) is the dielectric permittivity with complex fre-
quency �. Volume plasmons are purely longitudinal electric
oscillations owing to the collective motion of electrons and
are not accompanied by the generation of a magnetic field,
a feature that for plane waves amounts to the collinearity of
the wave vector k = kx êx + kzêz and the electric field E =
kxÊx + kzÊz. Therefore, imposing the condition k × E = 0,
i.e., −kxez + kzex = 0, Eqs. (14) readily yield hy = 0 and
ε(�P ) = 0. Thus, volume plasmons are inherently involved
in the time-domain ENZ regime we are considering in this
paper. However, it is worth noting that the virtual modes of
the Lorentz slab are polaritons, entities fundamentally different
from volume plasmons (or volume phonons). Indeed, a volume
plasmon is strictly characterized by the condition ε(�) = 0
that implies the severe dispersion � = �P and, in the presence
of the slab boundaries at z = ±L/2, inevitably leads to the
inconsistency Ez → ∞ within the slab unless Ez = 0 in the
outer medium. This is consistent with the well-known impossi-
bility to excite volume plasmons by means of light. On the other
hand, from Eq. (9) one can see that the virtual polariton mode
component Ez neither vanishes outside the slab nor diverges
within it. This is because for polaritons the dispersion relation
of Eq. (10) is not as strict as the volume plasmon dispersion
� = �P and is satisfied also for � 
= �P . In addition, the vol-
ume plasmon is a purely electric oscillation with a strictly null
magnetic field, whereas the considered virtual polariton modes
are accompanied by a magnetic field. In turn, even though TM
polariton modes and volume plasmons occur in the same spec-
tral region and are accidentally connected by the fact that in
the limit L � λ the Lorentz slab is almost equivalent to a bulk
medium, conceptually they are very distinct entities. In view of
this, we conclude by remarking that volume plasmons cannot
be excited by classical light and that the absorption peak ob-
served in experiments [30,32] is due to the excitation of virtual
polariton modes, confirming the results given in Refs. [29,31].
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IV. CONCLUSIONS

In conclusion, we have investigated both numerically and
analytically the properties of the time-domain ENZ regime.
Specifically we have considered a dielectric slab whose
polarization dynamics has been described through the realistic
and ubiquitous Lorentz model, and we have analyzed its
interaction with quasimonochromatic and spatially confined
pulses with carrier frequencies close to the crossing point
of the permittivity real part. The FDTD analysis has shown
that the pulse is able to excite a polarization-electromagnetic
(polariton) oscillation which is damped and persists for a

time generally longer than the effective time required by the
pulse for passing through the slab. The underlying nature
of this excitation has been elucidated through the analysis
of the slab virtual modes that turn out to be located in a
portion of the complex frequency plane close to the plasmonic
frequency characterizing plasmon and phonon longitudinal
volume excitations. Remarkably, due to this spectral property,
both the group velocity and the transverse velocity (parallel
to the slab) of each virtual mode turn out to be very
small and, therefore, the time-domain ENZ regime can be
naturally regarded as an alternative platform for discussing
and investigating a plethora of slow-light phenomena.
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