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Sampling in x-ray ptychography
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Coherent diffractive imaging (CDI) is a means of overcoming the resolution and image contrast limitations of
electron and x-ray lenses. The central tenet of the method is that the intensity of the diffraction pattern must be
measured on a sufficiently fine pixel pitch, which is inversely related to the size of the illuminated region of the
object. We show here that ptychography—a form of CDI that uses many diffraction patterns—is not subject to
this constraint. Using a variant of the ePIE inversion algorithm, we demonstrate experimentally that the sampling
requirement in ptychography is independent of illumination size.
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I. INTRODUCTION

Since the first demonstration of x-ray diffractive imaging in
1999 using an iterative phase-retrieval algorithm [1], various
implementations of the approach (see, for example, [2–6]) have
attracted wide interest and extensive research. The principal
advantage of the method is that it disposes of the need
for refractive or diffractive lens optics: This is particularly
advantageous for microscopic imaging using atomic-scale
wavelengths (x-rays and electrons) where it is only possible
to manufacture lenses of very small usable numerical aperture
(of the order of 0.05).

In contrast to having lenses, which are rather poor, the
experimental apparatus for diffractive imaging is extraordinar-
ily simple. A specimen or object is illuminated by radiation
and the intensity of the scattered waves is recorded on a
two-dimensional detector. An algorithm of some type is
then used to reconstruct an image of the object by solving
for the phase of the diffraction pattern (given certain a
priori knowledge about the object or the way that it was
illuminated), thus creating a synthetic lens of high-numerical
aperture (equivalent to the angle subtended by the detector
at the object plane). Diffractive imaging therefore promises
unsurpassed atomic-scale resolution, which is a key require-
ment in the understanding of many inorganic and biological
structures.

Since its inception, an absolutely central tenet of diffractive
imaging has been that the intensity of the diffraction pattern
must be sampled at least at its Nyquist frequency. Since the
diffraction pattern lies in reciprocal space, this sampling phys-
ically relates to the angular size of a detector pixel subtended
at the object plane. Note that some authors have referred to this
criterion as “oversampling” or “double sampling” because the
Nyquist sampling of the intensity of the diffraction pattern is
twice the requisite sampling of the underlying complex-valued
wave function. Roughly speaking, this means that for a given
detector in the Fraunhofer regime, the object or illumination
incident upon the object must be smaller than a lateral size
given by D = λL/2W , where λ is the wavelength, L is the
distance from the specimen to the detector plane, and W is the
physical detector pixel pitch. This condition can be thought of
as the minimum change in scattering angle necessary for the

path length of waves emanating from opposite edges of the
object (or illumination) to be λ/2.

We show here that for ptychography—a widely adopted
form of diffractive imaging in which many diffraction patterns
are collected from the specimen as it is moved to a number
of positions relative to the illumination—this conventional
wisdom relating to the sampling condition in reciprocal space
does not apply. We demonstrate experimentally using visible
light and x-rays that ptychographical diffraction patterns can
be grossly undersampled, yet still give rise to satisfactory
reconstructions. In fact, it would seem that the diffraction
space sampling in ptychography is entirely independent of the
illumination size: an astonishing result given the very extensive
literature on diffractive imaging.

II. THE NYQUIST PTYCHOGRAPHIC SAMPLING
CONDITION

Ptychography requires the recording of a number of
diffraction patterns, each of which is collected from an area
of the object delineated by a localized illumination function
(often called a probe function). These areas are required to
overlap with one another, thus furnishing the recorded dataset
with a degree of redundancy. The object structure at any
one point is expressed in two or more diffraction patterns,
depending on how much the illuminated regions overlap
with another. Clearly, as this overlap increases so does the
redundancy in the recorded data. It is well established that
this extra information can be used to good effect: to solve for
the illumination function as well as the object function [7,8];
to solve for super-resolution diffraction data lying outside the
detector area [9,10]; to recover experimental uncertainties such
as errors in the position of probe [11–14]; and to reconstruct
three-dimensional objects without rotating the specimen [15].
By simple number counting arguments [10], there is no
mystery why it is possible to solve for so much more than
the two-dimensional object function. The question of whether
the diffraction pattern itself can be undersampled (and then
retrieved), or what the fundamental ptychographic sampling
actually is, is explored in the present work.

We write the complex wave field underlying the ptycho-
graphic dataset as the Fourier transform of the product of the
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two-dimensional object function and an illumination function:

M(u,R) =
∫

q(r)a(r − R) exp[2πu · r]d r, (1)

where u is a two-dimensional coordinate in reciprocal space
(the Fraunhofer diffraction plane), R is a real-space two-
dimensional vector coordinate (usually referred to as the probe
position coordinate in the object plane), q(r) is the specimen
function, a(r) is the illumination function, and r is a dummy
real-space variable [16]. We now sample this physical function
with a four-dimensional Dirac comb function: �U,R(u,R) �
δ(u − us ,R − Rs), where the discrete coordinates us and Rs

comprise integer multiples of the real- and reciprocal-space
sampling periods U and R, respectively, i.e., us = (mûx +
nûy)U and Rs = (p r̂x + q r̂y)R; here m,n,p,q are integers,
whereas ûx,y , r̂x,y represent unit vectors in the detector and
specimen planes, respectively. The resulting sampled wave
field is

M[us ,Rs] =
∫

M(u,R)�U,R(u,R)du d R. (2)

Although ptychography is all about solving the phase
problem, it is informative to start by considering sampling
in the case of the underlying complex wave impinging on
the detector. We assume that the complex value of M[us ,Rs]
can be measured directly, which can then be referred to real
space (the object plane) by taking its Fourier transform with
respect to us . Let us segment the specimen plane into a
set of nonoverlapping square tiles of side R, and perform
a ptychographic experiment in which a square illumination
(probe) of side D is moved in steps of size R. Now when D =
R, the entire specimen is spanned but there is no overlap and
each square tile represents an independent experiment, with the
sampling of its discrete Fourier transforms having the usual
reciprocal relationship U = 1/D, which by definition is the
exact Nyquist sampling. Clearly, the requisite Nyquist comb
function for the entire dataset is therefore �1/R,R(u,R), where

U = 1

R
. (3)

We investigate undersampling in the detector plane by
increasing the physical probe size, while keeping the sampling
function at the same intervals as defined in Eq. (3). With
reference to Fig. 1, consider a square tile of the object of side
R (the fixed probe movement sampling in real space): This
is shown in red in both one dimension and two dimensions.
If D > R, the detector pixel pitch U is now larger than the
reciprocal of the probe size (1/D). We can no longer obtain
a true representation of the object function within any one
tile by simply back Fourier transforming its phased diffraction
pattern. Undersampling in the Fraunhofer diffraction plane
means that areas of the object outside the tile wrap around and
add to the opposite side of the tile. Areas of gray in Fig. 1(b)
illustrate the parts of the object (within any given single
tile) that have been corrupted by aliasing. Let us introduce a
function αU (r) that measures the nonuniqueness of the object
estimate (due to aliasing) within a tile. Since the aliased object
function is made up of the sum of n cyclic views, we can
define the ambiguity at coordinate r as αU (r) = 1/n, where
n is the (integer) number of times the object estimate has

FIG. 1. (Color online) Illustration of the conservation of infor-
mation density in the specimen plane in ptychography. (a) shows the
Nyquist sampling limit in a one-dimensional case, where the sampling
points in both real and reciprocal space are specified by the four-
dimensional Dirac comb function �U,R(u,R). As the illumination
size is increased from D = R in the nonoverlapping configuration
(red rectangle) to D > R in the overlapping configuration (solid
green rectangle), aliasing due to undersampling creates cyclically
overlapping regions where the solution is ambiguous. These regions
are illustrated in (b) by αU (r) = 1/2 in the case involving two
cyclically overlapping areas and by αU (r) = 1/4 at the edge where
the solution comprises the sum of four cyclically overlapping areas of
the specimen. At the same time, the linear overlapping regions from
adjacent illumination positions in ptychography [see (c)] provide
additional constraints for the solution in the aliased region via
πR(r). Consequently, the Nyquist limit may also be expressed by
the equation αU (r)πR(r) = 1.

been superimposed upon itself at the position r . In Figs. 1(b)
and 1(c), the probe is delineated by the outer rectangle (solid
green box of size D). The light shaded areas show where
αU (r) = 1/2, and the darker regions are where αU (r) = 1/4.
We can define another function, πR(r), which enumerates the
number of diffraction patterns to which a particular element
of the object positioned at r contributes [see Fig. 1(c)]. By
using these functions, αU (r) and πR(r), we can identify the
Nyquist sampling limit in the overlapping configuration of the
simplified square geometry using the condition αU (r)πR(r) =
1. In other words, at least in terms of information content,
the effect of the ambiguity introduced by undersampling the
diffraction pattern is exactly compensated by the additional
redundancy due to the overlap of the illumination positions.
This argument is also valid for other geometries where the
probe has an arbitrary shape, as long as the probe fills the
primary real-space window defined by R.
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In the real experiment we undertake in Sec. IV, the probe
positions are offset by a random amount, as is usual practice,
to help reduce the emergence of periodic artifacts in the
recovered object and probe functions [17]. This random offset
in probe positions is detrimental at the Nyquist sampling
limit because any departure of the sampling function from
�U,R(u,R) results in a situation where αU (r)πR(r) < 1 and
as a result the corresponding ptychographic dataset cannot
exactly compensate for aliasing—we note, however, that this
situation can be remedied by decreasing the average step size
R until the condition αU (r)πR(r) � 1 is again satisfied for all
real-space points.

However, even bearing in mind that we are assuming the
diffraction pattern can be measured in modulus and phase,
there is no guarantee that a unique solution can be found for
the object function, since having exactly the same number
of equations as unknowns is not the same as proving that a
solution exists. We find that when an unmodified inversion
algorithm such as ePIE [8] is run on data that fulfills Eq. (3),
but does not satisfy the sampling condition in the detector
plane (i.e., when D > R, so that U > 1/D), then there is no
convergence to the correct solution. At points in the regions
of overlap, the calculated exit wave at each iteration is the
product of a wrapped-around probe function (due to periodic
continuation) and a wrapped-around object tile. The update
function does not separate these mixed up components, so this
particular solution method fails.

Nevertheless, we conjecture that the relationship expressed
in Eq. (3) together with the simple connection between
aliasing the ptychography illustrated in Fig. 1 are sufficient
to ensure that a unique solution is found at the Nyquist
limit (in the case of complex measurements), because the
configuration of diffractive imaging systems guarantees that
no two measurements corresponding to different values of
us and Rs encode the same information about the specimen.
That is to say, their underlying measurement basis (complex
exponential modified by the form of the shifted illumination)
never points in exactly the same Hilbert-space direction so that
their collection spans the space. Below we introduce a modified
version of ePIE that can indeed cope with gross undersampling
in the diffraction plane. We will show that the probe overlap
redundancy can in practice be used to compensate fully for
diffraction pattern undersampling.

Before we proceed, it is useful to introduce some di-
mensionless variables that characterize how much a given
ptychography experiment has been over- or undersampled.
Remember that this must take into account both the sampling
in the detector plane (U ) and the sampling in real space (the
probe movement distance, R). We will call the condition
in Eq. (3) the “fundamental ptychographic sampling”—or
FPS: We emphasize that this has been derived assuming the
diffraction patterns are measured in modulus and phase and
where the field of view is of infinite extent.

The FPS intervals in reciprocal and real space are equal
to the reciprocal of one another; hence UR = 1. Since in
a real experiment, the values of U and R can be changed
independently, the value of their product differs from unity
when the dataset is either oversampled or undersampled
relative to the FPS. To oversample the dataset, we decrease
the value of R while keeping U fixed or decrease the value

of U while keeping R fixed (or both). Thus the amount of
oversampling along either the x or y direction is inversely
proportional to the product of these sampling intervals and is
quantified by the one-dimensional sampling ratio

Sx,y = 1

UR
. (4)

The amount of oversampling or undersampling for the
entire ptychographic dataset is given by the sampling ratio
S�, which is the product of the one-dimensional sampling
ratios along the x and y directions, i.e., S� = S2

x,y , so that

S� =
(

1

UR

)2

. (5)

The FPS requirement for the wave field in Eq. (2) occurs
when S� = 1, with S� > 1 and S� < 1 corresponding to
over- and undersampling, respectively. In a real experiment,
the reciprocal-space sampling interval is determined by the
detector sampling pitch W , the wavelength of the radiation λ,
and the distance from the specimen plane to the detector plane,
L, via the relationship U = W/λL for the Fraunhofer regime,
giving

S� =
(

λL

WR

)2

. (6)

The main benefit of Eq. (6) is that it can be used to compute
the sampling ratio from parameters that are readily accessible
from experiments without the need to estimate the size of the
illumination, which is particularly difficult for a soft edge
illumination function, of the type that is employed in the
experimental section of this paper. However, the expression
in Eq. (6) does not immediately highlight the means via which
real-space oversampling relaxes the reciprocal-space sampling
requirement. For this, the sampling ratio needs to be expressed
using dimensionless illumination-dependent parameters, such
as the coherent diffractive imaging (CDI) oversampling ratio
σx,y—given by (UD)−1, a similar expression to Eq. (4)—
and the overlap parameter of ptychography, 	x,y—given
by (1 − R/D). Consequently, the real- and reciprocal-space
sampling intervals can be written as R = D(1 − 	x,y) and
U = (Dσx,y)−1, respectively, where the size of the illumi-
nation now serves as the basic unit of measurement. In this
nomenclature, the sampling ratio is

S� =
(

σx,y

1 − 	x,y

)2

, (7)

where the range of the CDI oversampling ratio is 0 < σx,y < 2
and the range of the overlap parameter of ptychography is
0 < 	x,y < 1.

The fact that we have a phase problem suggests that we
need at least two times as many measurements to obtain
a reconstruction (S� > 2). In fact, we find below that in
favorable circumstances (cases where the probe is highly
structured) we can experimentally reconstruct an object when
S� < 1; a very surprising result. This suggests that the
sampling requirement (and thus oversampling) is one facet
of the phase problem that should be decoupled from the
contributions due to probe structure, since the form of the
probe (which is clearly independent of the sampling condition)
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impacts on the quality of the reconstruction. Furthermore, the
quality of the reconstruction is also dependent on the field
of view, since perimeter areas in a finite field of view have
reduced redundancy. In light of these complications, the FPS
is useful because it provides the means to decouple the effect of
sampling from other aspects of the phase problem that impact
on the quality of the reconstruction, so that they can be further
investigated in isolation. Its precise definition means it can be
used to compare quantitatively the ptychographic sampling in
different experimental configurations.

III. A RECONSTRUCTION ALGORITHM FOR SPARSE
DIFFRACTION PATTERNS

We examine in this paper the case of recovering ptycho-
graphic reconstructions from “sparse” diffraction patterns. In
a physical experiment, it will normally be the case that the
detector pixels are closely packed, so that if the diffraction
pattern is undersampled, a significant region of intensity
structure in the diffraction pattern will contribute to a given
single measured data value. Here we confine ourselves to the
situation where the detector pixels are small, but separated
by large gaps. In this way, we examine the issue of sampling
and information content per se, and thus demonstrate that
the FPS periodicity in real and reciprocal space does indeed
apply and that the degree of probe overlap balances the
ambiguities introduced by undersampling in the detector plane.
With reference to Fig. 2, the square grid represents the pixels
at the detector plane of a ptychographic experiment. The
grid itself satisfies the sampling criterion (U ≈ 1/2D—the
factor of 1/2 allows the algorithm to cope with soft edged
illumination, because a larger real-space window minimizes
the effect of aliasing during iterative calculations). In the
calculations and experiments that follow, we discard the black
pixels, leaving a sparsely and undersampled diffraction pattern,
with measurements only made at the white pixels. Since U and
R can be traded for one another without loss of information at
the FPS limit, this means that as long as S� > 2 for intensity
measurements, the value of the wave field in the black pixel
region should be dependent on the measured data across the
entire dataset and can thus be recovered.

FIG. 2. Illustration of detector plane undersampling. The white
boxes represent pixels with measured intensities and black boxes
represent pixels with no information. The algorithm recovers phase
of the wave field in regions represented by the white boxes and also
solves for the complex-valued wave field in the regions represented
by black boxes. (a) represents the case where the diffraction pattern
is undersampled over the two dimensions by a factor of 4, whereas
(b) and (c) represent the cases for undersampling factors of 9 and 16,
respectively.

To achieve the requisite “up-sampling” process, we use a
modified version of the ePIE algorithm. It has been shown
elsewhere [9,10] that super-resolution data residing outside
the detector can be recovered by allowing unmeasured regions
to “float”. That is to say, the Fourier modulus constraint is
only applied to the pixels that have been measured. Whatever
modulus (and phase) that is derived from the forward prop-
agation calculation at unmeasured pixels remains untouched.
As long as the experiment is sufficiently overconstrained, the
unmeasured pixels should converge to their correct value.
In the present context, the value of the wave field in the
black pixel regions of Fig. 2 is allowed to float: Its running
estimate is retained in phase and modulus. We have shown that
information content lost by under-sampling in the diffraction
plane is balanced by redundancy in the probe area overlap.
This strategy is therefore a way of allowing that redundancy to
reduce the necessary sampling in the detector plane. We will
call this algorithm floating-PIE (or f -PIE).

IV. EXPERIMENTAL TESTS

We test the limits of ptychographic sampling using both
hard x rays and visible light. X-ray experiments were per-
formed at the Diamond Light Source on the I13 beamline [18],
which is unusually long (250 m) so as to provide for very
large transverse coherence lengths (about 100 × 800 μm).
The monochromated x-ray energy E was 8.7 keV, with
�E/E = 10−4. Since the largest path length difference in
the experimental set-up described below is about 150λ, we
can therefore assume the coherence width is sufficiently large
to guarantee that the diffraction data is fully coherent. The
beam illuminated a test object consisting of 28-μm-diameter
M-270 amine superparamagnetic dynabeads mounted on a
transmission electron microscopy grid with a thin amorphous
carbon support film. The illumination size at the object plane
was first checked by direct observation using a phosphor
screen, and then reconstructed using the f -PIE algorithm. The
detector, a MaxiPix TAA22PC with a pixel pitch of 55 μm,
was mounted 14.62 m downstream from the sample. The
dataset comprises 1024 diffraction patterns generated using a
32 × 32 raster scan of the specimen with an average step size
(real-space sampling) of 5.8 μm (with small known random
offsets of up to ±0.3 μm to avoid the raster pathology) and a
reciprocal-space sampling pitch of 26.9 mm−1 (U = W/λL).
The setup for the x-ray experiment is shown in Fig. 3.

The f -PIE algorithm was used to process four datasets,
each with different sampling ratios, derived from the measured
diffraction patterns. These four datasets contain diffraction
patterns that were undersampled by factors of 1, 4, 9, and 16,
respectively, giving sampling-ratio parameters for the dataset
shown in Table I. The first column of Table I shows the amount
of diffraction pattern oversampling, which is governed by
the reciprocal-space sampling-ratio (or CDI sampling-ratio)
parameter. The second column shows the real-space sampling
ratios, which govern the amount of real-space oversampling
due to the ptychographic overlap; this value is a constant in all
of these experiments because we only undersample the dataset
in reciprocal space. The final column shows the amount of
oversampling for the entire ptychographic dataset.
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FIG. 3. (Color online) Experimental setup for x-ray ptychography. The specimen was illuminated by an x-ray beam that was formed with
the two sets of horizontal and vertical slits shown in the figure.

The diffraction patterns were inputted to the f -PIE algo-
rithm using the up-sampling scheme in Fig. 2. The outputs
of the f -PIE algorithm calculations after 200 iterations are
shown in Fig. 4. These results demonstrate that it is possible
to obtain a reasonable x-ray ptychographic reconstruction
from diffraction data which has been undersampled—in terms
of lost two-dimensional data—by a factor of 9 relative to
conventional single shot CDI.

However, in this first experiment we have used a very
simple illumination function. It is well known that when
the illumination has a complicated form, the ptychographic
inversion is more constrained. To demonstrate much more
radical undersampling in the diffraction data, we perform
a second experiment using visible light in the so-called
super-resolution geometry [10], employing a strong spatial
diffuser to add random diversity into the illumination.

With reference to Fig. 5, the illumination is formed by
propagating the image of a 100-μm pinhole—which is covered
with a diffuse plastic film—3.17 mm to the specimen plane.

TABLE I. Illustration of the distribution of the amount of
sampling between real and reciprocal space in the x-ray experiment.
S� was calculated using Eq. (6). Furthermore, we assume that
σx,y = 1 when the diffraction data was just sufficiently sampled
according to the CDI criterion.

σ 2
x,y

a (1 − 	x,y)−2b S�
c

1 41 41
1/4 41 10
1/9 41 4.6
1/16 41 2.6

aReciprocal-space sampling ratio.
bReal-space sampling ratio.
cPtychography sampling ratio.

The specimen (a resolution test target) was mounted on a
computer-controlled motorized x/y stage, which translated
the specimen laterally by a step size of ∼50 μm to a grid of
20 × 20 positions, wherefrom 400 diffraction patterns were
recorded. The data were recorded with a 16-bit AVT Pike

FIG. 4. X-ray ptychographic reconstructions using a set of un-
dersampled diffraction patterns. The images in (a)–(d) represent the
output of the algorithm for datasets with a two-dimensional diffraction
pattern undersampling of 1, 1/4, 1/9, and 1/16, respectively, corre-
sponding to ptychographic sampling ratios of S� = 41, S� = 10,
S� = 4.6, and S� = 2.6.
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FIG. 5. (Color online) Experimental setup used to demonstrate the gross reciprocal-space undersampling that can be tolerated in
ptychography when there is a large amount of illumination area overlap and high illumination diversity. The size of the scale bars at the
pinhole and specimen planes are 25 and 100 μm, respectively. See text for further details.

F421F detector (comprising 2048 × 2048 pixels of 7.4 μm
pixel pitch) placed 94.6 mm downstream from the specimen
plane. The maximum sampling pitch above which a significant
amount of aliasing crops into the real-space representation of
the illumination was eight times this detector pixel pitch. All
the diffraction patterns were therefore first undersampled by a
factor of 8 to 256 × 256 pixels to serve as the reference dataset.

The reference diffraction patterns (256 × 256 pixels) from
the visible light setup of Fig. 5 were then undersampled by
factors of 1, 4, 16, 64, 256, and 1024 to generate datasets
with sampling parameters shown in Table II. Comparing the
sampling ratios for the reference datasets of both experiments
(S� = 41 for x-ray and S� = 465 for visible light) shows
that the visible light setup has a much higher sampling ratio
and is thus expected to produce higher quality reconstructions
for calculations that process diffraction patterns with the same
amount of reciprocal-space undersampling. Figure 6 shows the

TABLE II. Illustration of the distribution of the amount of
sampling between real and reciprocal space in the visible light
experiment. S� was calculated using Eq. (6) and we again make
the assumption that σx,y = 1 for the reference dataset where the
reciprocal-space sampling is only just fulfilled.

σ 2
x,y (1 − 	x,y)−2 S�

1 465 465
1/4 465 116
1/9 465 29
1/16 465 7.3
1/256 465 1.8
1/1024 465 0.5

FIG. 6. Results from the f -PIE algorithm after 100 iterations. The
images in (a)–(f) represent the output of the algorithm for datasets
with two-dimensional diffraction plane undersampling ratios of 1,
1/4, 1/16, 1/64, 1/256, and 1/1024, respectively; corresponding to
S� = 465, S� = 116, S� = 29, S� = 7.3, S� = 1.8, and S� = 0.5.
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output images from the f -PIE algorithm after 100 iterations
of processing these different datasets. Diffraction patterns
undersampled by a factor of 4 and greater still give a good
quality reconstruction, as expected given the high sampling
ratios.

Surprisingly, the results also show that the reconstruction
does not completely break down as the sampling ratio
decreases below 2, and still gives a recognizable image at
a sampling ratio of 0.5. We should recall that a sampling
ratio of 1 in theory applies only when diffraction patterns
are complex variables—half the sampling expected when we
measure intensity. In other words, a sampling ratio of 0.5 has
undersampled the recorded intensity by a factor of 4. Clearly,
the information content of these images is less straightforward
than simply the number of pixels they contain. We might
suppose that the test object has favorably low information
content and that the diversity in the illumination interacts
with the sparse sampling in a way that leads to a form of
compressive sensing [19]. These issues clearly require further
work.

V. DISCUSSIONS AND CONCLUSION

We have demonstrated experimentally that the sampling
requirement in the detector plane of an x-ray ptychographic
diffractive imaging experiment bears no relationship to the
usual oversampling condition in a conventional CDI exper-
iment (where only one diffraction pattern is processed). A
simple geometric construction with a square probe was first
used to show that in the absence of the phase problem,
information content in ptychography is wholly independent of
the probe size (illumination area). Reducing the probe move-
ment step size R—thus increasing the sampling periodicity in
real space (sometimes expressed as the degree of overlap)—
relaxes the sampling periodicity in the diffraction plane U .
As long as the simple reciprocal relationship R = 1/U is
satisfied, then the probe can be of any size greater than or
equal to R. We call this condition the FPS. We would expect
that in an actual experiment the minimum sampling should
need to be substantially increased beyond the FPS to obtain
a meaningful image, if nothing else because measuring only

intensity will introduce at least a further factor of 2 in the
number of diffraction pixels or probe positions required. In fact
we have shown here experimentally (using visible-light optics)
that in favorable circumstances we can obtain recognizable
reconstructions of the object with a sampling of half that of
the FPS.

These demonstrations have been undertaken using a variant
of the ePIE algorithm wherein sparsely sampled ptychographic
diffraction patterns can be up sampled in order to access the
probe-position redundancy data in the object plane. We used
this successfully with experimental hard x-ray and visible-
light data to up sample diffraction patterns in any one linear
direction by a factor of 4 for x rays and 32 in the case of light;
corresponding to retrieving a factor of 16 and 1024 times
as much data over that selected from the two-dimensional
detector.

These results raise many new interesting questions. How
can we solve a phase problem when we have fewer measure-
ments than unknown variables? In the case we demonstrate
here, this is almost certainly due to the simple and sharp
structure of the object we are using in the optical experiments
and the very high diversity in the structure of the illumination.
We conjecture that the combination of the experimental setup
and the processing scheme has fortuitously led to a form of
compressive sensing, at least in the case of the extreme under-
sampling of the visible-light data. Understanding the exact
interplay of the probe shape, object structure, and requisite
sampling is a complex problem. However, the key conclusion
of this work is that when we think of sampling in diffractive
imaging, the central tenet of conventional CDI—the principle
of oversampling which has dominated the whole rationale of
the subject since its inception 14 years ago—simply does not
apply to ptychography. In ptychography, the illumination size
does not matter.
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