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Resonant propulsion of a microparticle by a surface wave
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We investigate the electromagnetic force experienced by a microparticle supporting high-quality whispering
gallery modes that are excited by a surface wave. Our theoretical approach is based on an analytical representation
of the solution of the scattering problem with a subsequent numerical treatment. It accounts rigorously for
the interaction of the microparticle with the waveguiding surface and allows us to establish the balances of
electromagnetic power and momentum flow for the system. We show that the resonant excitation of the whispering
gallery modes and suppression of the transmitted surface wave lead to an almost complete transformation of
the momentum flow of the initial surface wave into the propelling force on the microparticle. The validation of
the momentum balance justifies the definition of the momentum flow of the surface wave as the ratio of carried
power and phase velocity. A simple approximate relation between the propelling force and the power of the
transmitted surface wave is also introduced. The transverse force can be either attractive or repulsive depending
on the particle-to-surface distance, particle size, and operating frequencies, and it can significantly exceed the
value of the propelling force. A comparison with a microparticle excited by a plane wave is also included.
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I. INTRODUCTION

The incidence of a focused electromagnetic beam on
a microparticle can lead to its significant acceleration
due to the smallness of the particle mass. This was the
original motivation behind the optical trapping and manipula-
tion of neutral microparticles using lasers [1]. The magnitude
of the electromagnetic force is determined by the amount of
radiation absorbed or scattered by the microparticle. In typical
experimental cases with dielectric microparticles, especially
immersed in liquids, the smallness of the refractive index
contrast gives rise to forces that are significantly smaller as
compared to the case of total absorption. The low efficiency
of power-to-force transformation may be counteracted by
increasing the power of the electromagnetic beam, but this
is not always possible or desirable.

One of the ways to increase the electromagnetic force is to
use some resonant properties of microparticles. Resonances,
for example, can exist in small metal particles. Another
interesting direction is to use dielectric microparticles with
relatively large sizes that support high-quality (Q) whispering
gallery modes (WGMs). Although the appearance of peaks
of the optical force due to the excitation of WGMs was
experimentally demonstrated in Ref. [2], no significant en-
hancement of force was observed. It was proposed that the
experiments [2] detected only third- or higher-order WGMs
with lower Q factors, while first- and second-order modes
with the highest Q factors were not detected, either due to
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insufficient instrumental resolution or the presence of weak
absorption or irregularities of shape [3]. The reason for
only a weak enhancement of the optical forces was the low
efficiency of light coupling from a laser beam to the WGMs
of the microparticles. The most common way to increase the
coupling is to use waveguiding modes or prisms that create
evanescent tails due to total internal reflection [4]. These
schemes form the foundations of multiple applications of
WGMs that appeared recently [5].

The emergence of new applications of WGM resonances
stimulated renewed attention (both theoretical and experimen-
tal) to the optical forces that result from the excitation of
WGMs. The interest lies in the development of optofluidic
technologies aimed at manipulating microparticles and sorting
them according to the positions of their WGM peaks. These
technologies may result in creating integrated microsphere
resonator circuits [6]. From the theoretical side, earlier works
studied the force on particles using a plane-wave excitation
based on the Mie theory and predicted weak force oscillations
as a function of the size parameter [7]. Using an infinitely
extended evanescent tail (to model the behavior of a guided
mode with a reduced phase velocity) gives much larger
oscillations of force due to a more efficient excitation of
WGMs [8]. However, the infinitely extended evanescent
tail does not allow one to evaluate the efficiency of the
excitation since the available power is not limited. A similar
model was used for the prism excitation [9]. The force in
the prism-coupling geometry was also studied numerically
considering the interaction of the surface and the resonator in
two-dimensional (2D) geometry [10]. Although this configu-
ration allows one to obtain significant excitation of WGMs
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and a large peak-to-background ratio in the force spectra,
the evaluation of the excitation efficiency was complicated
by the fact that the incident plane wave had infinite power.
Monotonic growth of force with diameter (without WGM-
based enhancement) was also calculated recently for particles
smaller than 0.9 μm excited by a fiber mode [11].

From the experimental side, the measurement of the
propelling force on microparticles with diameters 3–12 μm
created by the evanescent tail of a waveguiding mode showed
no oscillations but only an increase with their diameter [12].
The lack of oscillations was attributed to the deviations in the
particle diameters. The velocity of particles showed a linear
dependence on the diameter (that translates into a quadratic
dependence of force) for sizes 0.5–3 μm [13].

From a more general point of view, there is a significant
amount of interest in studying the nanoscale optomechanical
properties of integrated photonic circuits. This includes the
investigation of forces between chip-scale waveguides [14,15],
the enhancement of force on a waveguide evanescently coupled
to a high-Q microdisk resonator [16], and the enhancement of
force acting on particles in the vicinity of photonic crystal
cavities [17,18] or inside resonators [19].

The appearance of large and highly size-selective propelling
forces on liquid-immersed microparticles with diameters 10–
20 μm has been demonstrated very recently [20,21]. The
experiments were performed with simultaneous control of the
WGM resonances in the fiber-to-microsphere couplers [22].
Estimates of force based on Stokes’ law showed that the
measured velocities correspond to a 60% power absorption
from the exciting mode of the optical fiber. The magnitude
and selectivity of the force were interpreted as a result of
WGM excitation based on a theoretical model and supporting
simulations. The purpose of this paper is to investigate in detail
the force (both the propelling and transverse components) on
microparticles due to the excitation of WGMs and evaluate the
efficiency of the power-to-force conversion. Some preliminary
results for the propelling force were reported in Refs. [20,21]
without providing a detailed explanation of the model and
of the analytical theory. In this paper, we fill in this gap
by describing the model and the theory. We also expand
our theoretical treatment by including a comparison with the
case of a microparticle in free space and investigating the
transverse force. More importantly, we advance the theoretical
treatment to include the investigation of the balance of
electromagnetic momentum in the system. This allows us to
obtain a relation between the electromagnetic momentum and
the propelling force, and to explain the large value of the
force.

To capture the most relevant physical phenomena related
to the excitation of the WGMs of a microparticle by a surface
wave, we choose the following physical model of the system.
It consists of a cylindrical resonator located near a surface that
supports surface waves. This 2D model describes the physical
processes of the excitation of the WGMs and interaction of the
excited modes with the surface. The evanescent field created by
the surface wave has similar properties (decay, phase velocity)
to that created by the waveguide modes of a dielectric slab.
Finite power and momentum flow carried by the initial wave
allow us to investigate their balances in the system during the
interaction of the wave and the resonator. Furthermore, since

the surface can support only one guided mode and prohibits the
wave propagation in the metal, verification of the power and
momentum balances is easier than in the case with a dielectric
slab. In calculating the forces, we also assume that the cylinder
is surrounded by a vacuum rather than liquid. The consistent
mathematical model of calculating the forces on dielectric
objects in liquids still remains under debate [23]. We therefore
address a simplified case in which the cylinder is surrounded
by a vacuum, and we focus only on the resonant excitation of
its WGMs.

The 2D model allows one to investigate the interaction of
the resonator and guided surface very accurately. Although
the use of spherical particles would be more desirable, the
most commonly used method to study the excitation of WGMs
of microspheres relies on neglecting the interaction between
the sphere and the waveguide and/or assuming a single mode
of the sphere [4]. Such approximations may be difficult to
justify since there is no comparison with exact solutions.
The commonly used finite-difference time-domain (FDTD)
method suffers from various artifacts (for example, the stair-
case approximation of the surface and numerical dispersion).
More importantly, the FDTD method can even completely
miss high-Q resonances [24], and that makes it unsuitable for
an accurate modeling of high-Q circular resonators both in
2D and 3D geometries. The finite-element method (FEM) is
more suitable for treating irregular geometries, but it requires
substantial computational resources even in the 2D case [25].
We therefore choose a simpler model that allows a rigorous
solution to capture the most relevant physical phenomena
over more complicated models that require less justifiable
approximations.

The scattering of a surface wave represents a complicated
diffraction problem even in 2D geometry. There exist several
analytical approaches to tackle it. They are based on using
a spectral representation of the polarization current in the
resonator [26], using the volume-integral equation based on
Green’s functions [27], or using effective surface potentials
[28,29]. In our case, we expand the fields inside the resonator
using the cylindrical functions as bases and represent the
fields outside of the resonator using effective magnetic surface
currents. Solving the diffraction problem gives the expansion
for the fields in terms of the cylindrical functions. The
expansion allows one to derive simple formulas for the force
by integrating the fields inside the cylinder.

The high numerical accuracy of the computational tech-
nique that we use allows us to establish the balance of the
power and momentum in the system consisting of the particle
and surface. Based on the momentum balance, we can also
check the definition of the momentum flow for the surface
waves that is appropriate for calculating the force. Such a ver-
ification helps to clarify the Abraham-Minkowski controversy
[23].

The paper is organized as follows. Section II specifies the
physical model, introduces basic equations, and describes the
solutions of the scattering problem and calculation of forces. It
also introduces the balances of the electromagnetic power and
of momentum flow. Results of scattering and force calculation
for a plane-wave illumination are presented in Sec. III, and
results for surface-wave illumination are presented in Sec. IV.
Section V gives our conclusion.
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FIG. 1. (Color online) Schematics of scattering of a surface
electromagnetic wave guided by the boundary of a metal half-space
on a cylinder near the surface.

II. THEORY

A. Physical model

The physical model is specified in Fig. 1. It consists of a
dielectric cylinder with the dielectric constant εs located in
the background medium with the dielectric constant εb. The
cylinder is brought at a distance d to the interface between
the background material and a plasmalike material (metal)
with the dielectric constant εp < 0 that can support surface
waves. An initial surface wave with power P0 is scattered
by the cylinder. The scattering creates a transmitted surface
wave with power Pt , a reflected surface wave with power
Pr , and bulk waves with power Pb. As a result, the cylinder
experiences an electromagnetic force F, which is the subject
of our investigation.

B. Outline of the solution

To find the force, we first calculate the electromagnetic
fields by solving the scattering problem and then use the fields
to obtain the force. The scattering problem is solved by using
particular representations for the electromagnetic fields inside
and outside of the scattering cylinder and matching the fields
using the boundary conditions. To represent the fields, it is
convenient to take advantage of the circular symmetry of the
scattering cylinder. The fields inside are expanded in terms of
the free-space solutions, i.e., cylindrical functions. The fields
outside are represented as generated by some effective mag-
netic currents along the cylindrical surface. The currents can
be conveniently expanded in terms of the angular harmonics
as well. Matching gives the system of equations to find the
expansion coefficients and, therefore, the fields both inside
and outside the cylinder. The force is calculated using two
alternative methods. One is based on using the Lorentz formula
applied to surface polarization charges and bulk currents. The
other is based on integrating the Maxwell tensor along a surface
outside of the cylinder. The solution of the scattering problem
is presented for arbitrary dielectric constants in the system,
while the force is calculated only for εb = 1.

C. Basic equations and boundary conditions

The initial surface wave that propagates in the +x direction
has its magnetic field along the cylinder axis, and no other
magnetic components exist. This dictates that only three
components of the electromagnetic field {Ex,Ey,Hz} are
present. We choose to work with complex amplitudes of

the field and assume ∼ exp(−iωt) time dependence. The
frequency ω is set by the initial surface wave. The real fields are
assumed to be equal to twice the real part of the corresponding
complex counterparts.

We take the Maxwell equations with a z-oriented magnetic
current density Jm

z (r), which we will later use as an effective
current. Keeping only the nonzero field components, we obtain

∂Ey

∂x
− ∂Ex

∂y
= iω

c
Bz − 4π

c
Jm

z , (1a)

∂Hz

∂y
= − iω

c
Dx, (1b)

−∂Hz

∂x
= − iω

c
Dy. (1c)

In a homogeneous region with the dielectric constant ε,
Eqs. (1) can be reduced to an equation for Hz only:(

∇2 + ω2

c2
ε

)
Hz = −αJm

z , (2)

where ∇ is the nabla operator and α = 4πiωε/c2. Equation
(2) is the Helmholtz equation with an excitation proportional
to Jm

z . We will use the current density on the cylinder surface
only to represent the fields outside of the cylinder. The
solutions inside and outside of the cylinder should satisfy the
usual boundary conditions—the continuity of the tangential
magnetic and electric field components. The electric field can
be obtained from the magnetic field using Eqs. (1b) and (1c).

D. Initial surface wave

The magnetic field of the initial surface wave has the
following form for y > −a:

Hi
z (x,y > −a) = B0e

ih0x−κ0(y+a), (3)

where H0 is the value of the magnetic field at the metal
boundary and a = R + d. The wave number h0 and the decay
constant κ0 are defined by the frequency ω and the constants
εp < 0 and εb > 0 (|εp| > εb):

h0 = ω

c

√
εpεb

εp + εb

, κ0 = ω

c

εb√−εb − εp

(4)

such that h2
0 − κ

2
0 = k2

b and k2
b = ω2εb/c

2. The power carried
by the surface wave is

P0 = c2

ω

|B0|2
4π

h0

εbκ0

(
1 − ε2

b

ε2
p

)
. (5)

We expand the fields of the initial wave (3) at |r| =√
x2 + y2 = R in terms of the angular harmonics:

Hi
z (r) =

∑
n

einϕH i
zn, Ei

ϕ(r) =
∑

n

einϕEi
ϕn. (6)

The sums are for −∞ < n < ∞ but are limited in the
numerical algorithms. The expansion coefficients in Eq. (6)
are

Hi
zn = H0e

−κ0ain
(

h0 + κ0

kb

)n

Jn(kbR), (7a)

Ei
ϕn = H0e

−κ0a
−ickb

ωεb

in
(

h0 + κ0

kb

)n

J ′
n(kbR), (7b)
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where Jn(ξ ) is the Bessel function of the first kind of order n

and J ′
n(ξ ) is its derivative.

E. Representation of the solution

We represent the total field inside the cylinder in terms of
the cylindrical functions:

Hz(r) =
∑

n

AnJn(ksr)einϕ, r < R, (8)

Eϕ(r) = −icks

ωεs

∑
n

AnJ
′
n(ksr)einϕ, r < R, (9)

where An are some unknown complex coefficients.
The total field outside of the cylinder can be represented as

a sum of the initial field (3) and scattered field:

Hz(r) = Hs
z (r) + Hi

z (r). (10)

The scattered field can be represented as a field created by
some effective magnetic current j (ϕ) localized on the cylinder
surface:

Hs
z (r) =

∫ 2π

0
dϕ′ j (ϕ′)G(r,r′). (11)

The Green’s function G(r,r′) is for the system consisting of
the background material and metal. Its calculation is presented
in Sec. II F. In principle, we can also use electric currents on
the surface [30].

We define the following expansion of an arbitrary function
f (ϕ) into the angular harmonics:

f (ϕ) =
∞∑

n=−∞
fne

inϕ, fn = 1

2π

∫ 2π

0
dϕ f (ϕ)e−inϕ. (12)

Just outside of the cylinder, we obtain the angular compo-
nents of the fields:

Hs
zm =

∑
n

Gmnjn, (13)

Es
ϕm = −ic

ωεb

(
− jm

2R
+

∑
n

∂rGmnjn

)
, (14)

where the expansion coefficients for the Green’s function are
defined using

Gmn = 1

2π

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ G(r,r ′)e−imϕ+inϕ′

, (15a)

∂rGmn = 1

2π

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ ∂rG(r,r ′)e−imϕ+inϕ′

. (15b)

Note that G is a singular function and its derivative must be
handled properly [31].

F. The Green’s function for the two half-spaces

To find the Green’s function G that enters (11), we take

Jm
z (r) = 1

αb

δ(x − x ′)δ(y − y ′) (16)

and solve (1). The solution for Hz is G(r,r′). The solution
is obtained by expanding (16) into the Fourier integral

representing the current density as a superposition of current
sheets with the x dependence as ∼eihx . This reduces the
problem to finding the fields in all regions: in the background
material (above and below the current sheet) and in the metal.
Writing down the solution in all regions as plane waves with
fixed h and matching the fields by the boundary conditions
and then taking the inverse Fourier integrals gives the solution
[32]. We can then represent the Green’s function for the two
half-spaces as two terms:

G(r; r′) = G0(r; r′) + G1(r; r′). (17)

The first term is the Green’s function for the homogeneous
background medium with εb. The second term is the remaining
contribution due to the presence of the metal. They have the
following form:

G0(r; r′) = i

4π

∫ ∞

−∞
dh

eih(x−x ′)

gb(h)
eigb |y−y ′ |, (18a)

G1(r; r′) = i

4π

∫ ∞

−∞
dh

eih(x−x ′)

gb(h)
rbp(h)eigb(y+y ′+2a). (18b)

The reflection coefficient rbp(h) in Eq. (18b) is for an obliquely
incident plane wave from the metal boundary:

rbp(h) = gb(h)/εb − gp(h)/εp

gb(h)/εb + gp(h)/εp

, (19)

where gb(h) =
√

ω2εb/c2 − h2 and gp(h) = √
ω2εp/c2 − h2

describe the y components of the waves in the background
material and in the metal, respectively.

For G0(r; r′) we can evaluate the integral in Eq. (18a)
analytically and obtain

G0(r; r′) = i

4
H0(kb|r − r′|), (20)

where H0 is the Hankel function of the first kind.
The coefficients defined by (15) become

G0
mn = δmni

π

2
Jn(kbR)Hn(kbR), (21a)

∂rG
0
mn = δmn

(
1

2R
+ i

π

2
kbJn(kbR)H ′

n(kbR)

)
, (21b)

and

G1
mn = i

2
im−nJm(kbR)Jn(kbR)fm+n, (22a)

∂rG
1
mn = i

2
im−nkbJ

′
m(kbR)Jn(kbR)fm+n, (22b)

where

fn =
∫ ∞

−∞
dh

rbp(h)

gb(h)
e2igb(h)a

(
h − igb(h)

kb

)n

. (23)

Integral (23) has two singularities related to the excitation
of the forward and backward surface waves. It also has two
branches corresponding to the double-valued function gb(h).

G. Equation for the expansion coefficients

Matching the expansions of Hz and Eϕ gives the following
set of equations for finding the expansion coefficients Am

053848-4



RESONANT PROPULSION OF A MICROPARTICLE BY A . . . PHYSICAL REVIEW A 87, 053848 (2013)

and jm:

AmJm(ksR) −
∑

n

Gmnjn = Hi
zm, (24a)

ks

εs

AmJ ′
m(ksR) + 1

εb

[
jm

2R
−

∑
n

∂rGmnjn

]
= iω

c
Ei

ϕm.

(24b)

We can eliminate An from these equations, and by applying
expansions (7), (21), and (22) we obtain a set of equations for
finding jm: ∑

n

Mmnjn = Fm, (25)

where

Mmn = δmn + im

πJm(kbR)(1 + i
m)
i−nJn(kbR)fm+n,

Fm = im

πJm(kbR)(1 + i
m)
2iB0e

−κ0a

(
h0 + κ0

kb

)m

,


m = (ks/εs)Ym(b)J ′
m(s) − (kb/εb)Y ′

m(b)Jm(s)

(ks/εs)Jm(b)J ′
m(s) − (kb/εb)J ′

m(b)Jm(s)
,

b = kbR, and s = ksR. Similar equations can be obtained by
using the approach based on effective surface potentials that
create the fields inside and outside of the cylinder [29] and by
using the spectral decomposition of the polarization current
[26]. Solving (25) numerically gives the current density from
which all fields can be calculated.

H. Electromagnetic force

The most direct way to calculate the electromagnetic force
is to use the formula for the distributed Lorentz force acting
on the dielectric object:

F =
∫

d� σEσ + 1

c

∫∫
dS

∂P
∂t

× B. (26)

The first term in Eq. (26) describes the sum of all forces acting
on small surface polarization charges σd� due to the presence
of the field Eσ created by other sources. The second term
describes the force acting on the bulk polarization current. The
electric component of the force appears only on the surface of
the cylinder due to polarization charges, while the magnetic
component is distributed over the volume.

Using the representation of the fields (8) and integrating
(26), we obtain for the x component of the force

Fx = Fe
x + Fm

x , (27)

where the electric Fe
x and magnetic Fm

x contributions are

Fe
x = (εs − 1)

2ε
3/2
s

c

ω

∑
n

Re(AnA
∗
n+1)

[
(n + 1)J 2

n+1(s)

+ nJ 2
n (s) + (εs − 1)

1

s
n(n + 1)Jn(s)Jn+1(s)

]
, (28)

Fm
x = −εs − 1

2ε
3/2
s

c

ω
s
∑

n

Re(AnA
∗
n+1)Jn(s)Jn+1(s), (29)

s = ksR = R
√

εsω/c, and Re(ξ ) denotes the real part of
a complex number ξ . The y components of the force can
be calculated by taking the imaginary part instead of the

real part in Eqs. (28) and (29). Expressions (28) and (29)
allow one to calculate the forces without any time-consuming
integration procedures since all integrations were carried out
analytically using the cylindrical functions. The force can also
be calculated using the Maxwell tensor integrated over the
surface of the cylinder. We implemented both approaches and
obtained identical results.

I. The balance of electromagnetic power and momentum flow

The scattering of the initial surface waves results in
the creation of the transmitted surface wave, the reflected
surface wave, and bulk radiation in the background material.
Calculating the powers of these waves allows one to check the
power balance to verify the analytical derivation and numerical
implementation.

The amplitudes of the scattered surface waves are found
as residues of integral (11). The residues occur at the points
h = ±h0 and correspond to the excitation of the forward and
backward surface waves. Their amplitudes at y = −a are

H±
z = iπ

κ0
e−κ0a Res

h=h0

(rbp)

×
∑

n

jn(−i)n
(

κ0 ± h0

kb

)n

Jn(kbR), (30)

where Res denotes the residue. The amplitude of the forward
wave H+

z must be added to the initial wave to determine
the amplitude of the transmitted wave. The powers of the
transmitted Pt and reflected Pr surface waves are determined
in same manner as for the initial wave using Eq. (5).

The waves in the background material far away from the
cylinder have a typical far-field form at r → ∞. It can be
obtained using the asymptotic representation of the Hankel
function and Eq. (11):

Hz(r) ≈ f (ϕ)√
kbr

e−iπ/4+ikbr , (31)

where the far-field distribution f (ϕ) (0 < ϕ < π ) is

f (ϕ) = i

√
π

2

∑
n

jn(−i)nJn(kbR)

× [einϕ + rbp(kb cos ϕ)e−inϕ+2ikba sin ϕ]. (32)

The power of the bulk radiation Pb becomes

Pb =
∫ π

0
dϕ Sb(ϕ), Sb(ϕ) = c2

ω

1

2πεb

|f (ϕ)|2, (33)

where Sb(ϕ) is the bulk power scattered in the background
material per unit angle.

The required power balance reads

P0 = Pt + Pr + Pb. (34)

The momentum flow M0 of the initial surface wave in the
+x direction is related to its power P0 by

M0 = P0

vph
= nphP0

c
, (35)

where vph is the phase velocity and nph is the phase index
[33,34]. Similar expressions are valid for the momentum flow
of the transmitted Mt and reflected Mr surface waves. How-
ever, we must note that the exact expression for the momentum
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flux in a material is still debated [23]. The verification of
the momentum balance can potentially clarify whether the
expression (35) is consistent with the force calculation.

We can also calculate the momentum flow of the bulk waves
in the x and y directions (for εb = 1):

Mbx = 1

c

∫ π

0
dϕSb(ϕ) cos ϕ, Mby = 1

c

∫ π

0
dϕSb(ϕ) sin ϕ.

(36)

The balance of the momentum flow for the x direction gives


M = M0 − (Mt − Mr + Mbx) = Fx. (37)

The difference 
M corresponds to the x component of force
experienced by the system consisting of the cylinder and the
half-space region. We will show later that the force on the
half-space is zero and the force in Eq. (37) must be attributed
to that on the cylinder only. This force should coincide with
that calculated using Eqs. (28) and (29).

III. SCATTERING AND FORCE CREATED
BY A PLANE WAVE

We first consider the case in which the cylinder is located in
free space and illuminated by a plane wave. This allows us to
identify various modes of the cylinder, the efficiency of their
excitation, and the resultant propelling force. The scattering
of a plane electromagnetic wave by a cylinder is a classical
problem, but its analysis requires a numerical implementation.
The solution also follows from the more general approach that
we presented in Sec. II. The knowledge of the fields allows
one to find the total scattering cross section and the force.
The force can be calculated using Eq. (28). It is convenient to
introduce the dimensionless size parameter kR where k = ω/c

and analyze the results depending on its values.
In our analysis, we choose εb = 1 and ns = √

εs = 1.2,1.4.
The dependence of the scattering cross section and force on
kR in a large interval (0 < kR < 40) is shown in Fig. 2 and on
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FIG. 2. (Color online) (a) The scattering cross section σ/(2R) for
a cylinder and (b) the propulsion force cFx/P0 as functions of kR for
ns = 1.2,1.4.
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a small interval (30 < kR < 32) in Fig. 3. To normalize the
force, we take the power P0 incident on the cylinder, i.e., area
of size 2R. The quantity cFx/P0 can also be referred to as the
normalized cross section for radiation pressure [7].

For a small kR, the scattering cross section is

σ

2R
≈

(
π

2

)2(
εs − εb

εs + εb

)2

ε
3/2
b (kR)3, (38)

while for kR → ∞ we obtain σ/(2R) → 2. An analysis of
data from Fig. 2 also gives a ∼(kR)3 behavior for the force at
kR 
 1.

The large-scale oscillations of σ (kR) correspond to the
interference between the scattered and directly transmitted
waves. These large-scale oscillations are not present for Fx .
However, for kR � 10, the force shows some oscillations
that are not present in σ (kR). The sharp quasiperiodic peaks
(minor oscillations) that appear for large values of kR, both
for σ (kR) and Fx(kR), correspond to the excitation of WGMs.
The WGMs in a cylinder are characterized by their radial and
azimuthal numbers. We will focus only on the WGMs that
have one maximum in the radial direction inside the cylinder.
The number of periods in the azimuthal direction is defined
by the azimuthal number n. The range 0 < kR < 40 covers
WGMs of the first order with azimuthal numbers of up to
n = 49 for ns = 1.4. The WGM peaks for the force are more
pronounced than that for the scattering. This is consistent
with qualitatively similar results obtained for spheres in free
space [7]. However, even for the force, the resonances provide
an enhancement of the peak force over its background value
by about a factor of 2 or less.

For the lower index ns = 1.2 there is only one minor
oscillation, while the higher index case ns = 1.4 shows several
higher-order components (with higher WGM radial numbers).
For ns = 1.4 and kR � 30, the fast oscillations tend to merge
and become difficult to resolve. However, we verified that our
resolution is sufficient so as not to miss any peaks in the studied
range of 0 < kR < 40. The maximum values for the force in
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the case of ns = 1.4 become smaller for kR � 30, but the
peaks become denser. It is important to note that although in
both cases ns = 1.2 and 1.4 the scattering oscillates around
σ/(2R) = 2, the force shows a tendency to decrease with
decrease of ns .

IV. SCATTERING AND FORCE CREATED
BY A SURFACE WAVE

To specify the initial surface wave, we take εp = −2, which
gives κ0c/ω = 1. Therefore, the characteristic decay distance
for such a wave in the background region is 1/κ0 = λ/(2π ),
where λ = 2πc/ω. We also take ns = 1.4. Figure 4 shows
the results for the powers of the surface and bulk waves as
well as created forces on the cylinder for kd = 1.5. We note
that solving the problem at each frequency takes a fraction
of a second with a minimum memory requirement. This
compares quite favorably with a similar 2D approach based
on a commercial FEM which requires a few minutes for each
frequency point with an error of 5% related to discretization
[25].

Let us discuss the power dependencies first. In general,
we see that the powers are distributed mainly between the
transmitted surface wave and bulk radiation. Only a very small
fraction of power is going into the reflected surface wave. The
power dependence for bulk waves on kR is characterized by a
set of peaks with uniform spacing. This contrasts the scattering
of a plane wave where the spacing was irregular due to the
excitation of various order modes. For small kR, scattering
is small and most of the radiation is transmitted unaltered.
Increasing kR results in more and more power removed
from the transmitted surface wave and converted into the bulk
waves. The excitation of the resonant modes of the cylinder
facilitates the transfer of power. The transmitted wave can be
almost completely suppressed at resonances for kR � 30.

For the entire range 0 < kR < 40, the numerical error in
the power balance satisfies |Pt + Pr + Pb − P0|/P0 < 10−8;
see Eq. (34). This verifies, at least partially, the correctness of
the theory and its numerical implementation.

Moving on to the analysis of the propelling force Fx , we
clearly see that the peaks of the force correlate with the dips
of the transmitted surface wave. Unlike the case of a plane
wave, see Figs. 2 and 3, where small peaks are superimposed
on a significant background, the force dependence now is a
set of easily recognizable narrow peaks with practically no
background at kR � 20. The remarkable feature of Fx is
its very large value. Indeed, cFx/P0 can exceed 1.4. For an
ideal absorber in vacuum illuminated by a plane wave, the
corresponding ratio for a unit area would be 1.

Regarding the transverse force Fy , its behavior at small kR

shows an attraction Fy < 0 which increases with kR. However,
at larger kR the force starts to exhibit strong repulsive peaks
that also correlate with the position of WGM resonances. The
magnitude of this force exceeds significantly the propulsion
force Fx .

To understand the role of the waveguiding surface, we also
investigated the case in which the interaction with the surface
is neglected. This is a common approximation since in this case
the resonator is excited by an evanescent tail but it is assumed to
be surrounded by an infinitely extended uniform medium (with
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FIG. 4. (Color online) Power of the (a) transmitted and
(b) reflected surface waves, and (c) power of the bulk waves,
(d) propulsion force, and (e) transverse force as functions of kR

for ns = 1.4 and kd = 1.5.

εb = 1 in our case). Such a case can be directly obtained from
our results if we set rbp = 0 in Eq. (23). However, we kept rbp in
Eq. (32) to model the reflection of the excited bulk waves. The
results of scattering in this approximation are shown in Fig. 5.
Neglecting the interaction with the surface breaks down the
self-consistency of the solution. As a result, the power balance
is also violated. This is especially pronounced in the most
interesting regime of large kR > 10. This can be attributed
to the unlimited power that can be provided by the infinitely
extended evanescent tail. The neglect of the interaction also
overestimates the propulsion force. For the transverse force, it
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FIG. 5. (Color online) Same as Fig. 4 but assuming that there is
no reflection from the surface at y = −R − d .

not only gives the incorrect magnitude for the force but it also
changes the symmetry of the peaks.

To explain the origin of the large force cFx/P0 > 1 in Fig. 4,
we study the balance of the electromagnetic momentum flow.
By using (4) with εp = −2 and εb = 1, we obtain the phase
velocity for the initial surface wave vph = ω/h0 = c/

√
2 and,

therefore, M0 = P0

√
2/c. Assuming a complete absorption of

the transferred momentum gives the maximum value of force
Fx/M0 ≈ 1. This agrees with the maximum values of force
in Fig. 4. Thus, our results suggest that the maximum
force that we observe is very close to the value of the
momentum flow of the initial surface wave (see Fig. 4). The
maximum value of force is reached when the transmitted

-0.04

-0.02

0

 0.02

 0.04

 0.06

cM
bx

/P
0

(a)

(b)

0

 0.2

 0.4

 0.6

 0.8

0 5 10 15 20 25 30 35 40

cM
by

/P
0

kR

(a)

(b)

FIG. 6. (Color online) Momentum flow of the bulk radiation in
the x and y directions as functions of kR.

surface waves are almost completely suppressed and the initial
power goes into bulk waves via the excitation of WGMs.

We can also look more closely at the momentum balance
not only when the force reaches maxima but also for arbitrary
values of kR. Figure 6 shows the dependence of cMbx/P0

and cMby/P0 defined by Eq. (36) on kR. We see that the
momentum cMbx/P0 carried by the bulk waves in the x

direction is rather small.
The numerical difference between 
M calculated using

(37) and Fx calculated using (28) and (29) remains c|
M −
Fx |/P0 < 10−8 for 0 < kR < 40. Thus, the force on the
cylinder coincides with 
M , as required by (37). We can
conclude that the propelling force on the cylinder can be
found either by calculating the force directly (using the Lorentz
formula or the Maxwell tensor) or by calculating the change
in the momentum flow. This means that there is no lateral
force on the metal half-space. However, in some cases the
lateral force may appear as a result of beam transmission into
a dielectric medium [35]. The verification of the momentum
balance also confirms that (35) is the correct expression for
the momentum flow of the surface wave. In the regime when
the excitation of WGMs is important, the contribution of the
momentum flow of the bulk waves is rather small (although
their power is large) and the force can be estimated using the
following approximate formula:

Fx ≈ nphP0

c

(
1 − Pt

P0

)
≈ nphP0

c

Pb

P0
. (39)

Increasing the force Fx (for a fixed P0) can in principle be
achieved either by decreasing Pt or increasing nph. However,
these two methods affect each other. For example, increasing
nph causes a phase mismatch between the initial surface wave
and WGMs, low excitation for WGMs, and therefore a higher
value of Pt .

The bulk radiation has a significant momentum flow in
the +y direction. Interestingly, its dependence on kR is
similar to that for the propelling force Fx but it is smaller by
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approximately a factor of 2. The existence of this momentum
as well as the transverse force on the cylinder results in a
corresponding force on the metal half-space.

After investigating the behavior of powers and forces in
a wide range of kR, we now focus on a single resonance
and investigate its behavior for various cylinder-to-surface
distances. The results are summarized in Fig. 7. We start by
looking at the power of the bulk waves shown in Fig. 7(a).
Starting from a large kd, we see that the peak shows a
tendency to become wider as kd decreases. The widening of
the peak can be explained by the reduction of the Q factor of
the WGM due to the interaction with the surface. However,
its height exhibits strongly nonmonotonic behavior with two
well-defined maxima, at kd ∼ 2 and kd ∼ 0.3. Interestingly,
the scattering practically vanishes between these points at
kd = 0.8.

The behavior of the propelling force in Fig. 7(b) correlates
well with the behavior of the scattered bulk radiation. The
behavior of the transverse force is more complicated. For
relatively large distances kd � 1.5, the force represents a

(a) (b)
kR=30.3928

(a) (b)
x150, kR=30.5

FIG. 8. (Color online) Angular distribution of the power of bulk
radiation (a) on-resonance (kR = 30.3928) and (b) off-resonance
(kR = 30.5) for kd = 1.5. The grid size is the same on both frames
and the off-resonance curve was multiplied by a factor of 150 as
indicated.

repulsive peak on top of some attractive background. As
the distance becomes smaller, the repulsive peak undergoes
significant transformation: its magnitude and shape change.
At kd = 0.8, it practically vanishes. However, the background
shows a clear tendency to become more and more attractive as
kd decreases.

Another interesting feature of the force dependence on
distance is a shift of the peak that significantly exceeds its
width. The shift to higher kR values with decreasing kd

means that for the same R, the WGM frequency increases.
In general, the interaction of a resonator with a waveguide
can increase or decrease the resonant frequency [36]. Such
shifts are used in sensor applications of resonators [37]. This
shift also affects the possibility of experimental observations
of the optical propulsion [20,21]. The experiments involve an
optical attraction to the surface compensated at short distances
by electrostatic repulsion. The steady-state gaps between the
particle and the fiber are rather small such that kd < 1. It can
be concluded from Fig. 7 that there are particles (kR � 30.4)
that can experience a large propelling force at small particle-
to-surface separations and an attractive force regardless of the
separation. This explains why resonant particles can be radially
trapped in the propulsion experiments.

Figure 8 shows the angular distribution of the power of
bulk radiation at kd = 1.5 for the same peak as investigated
in Fig. 7. We clearly see a highly anisotropic scattering both
on- and off-resonance. Scattering occurs both in the forward
and backward directions. The presence of such anisotropy also
explains the smallness of momentum transferred by the bulk
waves in the +x direction [see Fig. 6(a)] and its neglect in
the approximate formula for the force (39). In general, the
oscillations of the radiation pattern appear as the result of the
interference in the far-field region of the waves that are emitted
directly from the resonator and that are reflected from the metal
boundary. Indeed, by looking at the emission of a particular
component of the effective current with a fixed n (32) (the case
relevant for resonant excitation), we obtain that the far-field
pattern behaves as

|f (ϕ)|2 ∼ cos2[ϕr (kb cos ϕ)/2 − nϕ + kba sin ϕ], (40)

where ϕr (h) is the phase of the reflection coefficient. Several
features are explained by Eq. (40). First, since ϕr (±kb) = π

there is no scattering in the directions ϕ = 0,π . Second, since
n and kba are large and of comparable values, the difference
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−nϕ + kba sin(ϕ) changes slowly at small angles and fast at
large angles. This explains the slow oscillations of the pattern
with ϕ at 0 < ϕ < π/2 and the fast oscillations at π/2 < ϕ <

π . However, one also has to keep in mind that all current com-
ponents with various azimuthal numbers n emit coherently,
and that creates the complex pattern observed in Fig. 8.

V. CONCLUSION

We investigated the force experienced by a microparticle
supporting high-Q whispering gallery modes excited by a
surface wave. Our approach uses an analytical formulation
of the scattering problem based on the representation of the
fields outside of the microparticle as excited by effective
surface currents with corresponding Green’s function. The
current distribution and the resultant fields are then calculated
numerically by solving a linear system of equations. The force
is calculated by substituting the fields into either the Lorentz
formula or the Maxwell tensor.

We showed that the excitation of WGMs by an incident
surface wave results in suppression of the transmitted surface
wave and enhancement of scattering into bulk waves. The bulk
radiation has a strongly anisotropic angular distribution that
highlights the importance of including the interaction between
the microparticle and the guiding surface. The efficiency of
the resonant excitation depends nonmonotonically on the
resonator-to-surface distance. Interestingly, there can be a
particular distance where the resonant excitation is strongly
suppressed. On the other hand, the width of the scattering peak
increases monotonically as the microparticle comes closer to
the surface.

We showed that the resonant peaks of the propelling force
Fx on the microparticle correlate with the suppression of the

transmitted surface wave and enhancement of the scattered
bulk radiation. Our results for the force and momentum flow
balance are consistent with the momentum flow of the surface
wave defined as M0 = P0/vph, where P0 is the power and vph

is the phase velocity of the surface wave. The maximum value
of force can reach a value that corresponds approximately to a
complete transformation of the momentum flow of the incident
surface wave. Moreover, our results establish that the slowness
of the initial surface wave of power P0 allows one to achieve
cFx/P0 > 1 even though there is no reflected surface wave and
scattered bulk waves transfer very small momentum in the x

direction. This means that, in general, the surface waves with
smaller phase velocities can create a higher force on micropar-
ticles when compared to bulk beams with the same power.

We also show that the transverse force consists of two
parts: an attractive nonresonant background and a resonant
part. The nonresonant background grows with the decreasing
particle-to-surface distance. The shape of the resonant part
depends strongly on the parameters: it can show an asymmetric
structure as well as strong repulsion. The magnitude of the
transverse force can exceed significantly that of the propulsion
force.
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